Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

What Else Can You Count If You Can Count Trees?

Jeremy L. Martin Department of Mathematics University of Kansas

> Washburn University March 3, 2020

Trees ●00000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Trees			

Tree: a nonempty set of vertices connected by edges, so that

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Trees ●00000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Trees			

Tree: a nonempty set of vertices connected by edges, so that

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Trees ●00000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Trees			

Tree: a nonempty set of vertices connected by edges, so that

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Trees ○●○○○○○○○	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Properties o	of Trees		

1. Every tree with *n* vertices has exactly n - 1 edges. (Any fewer and it cannot be connected; any more and it must contain a cycle.)

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

Properties of Trees

1. Every tree with *n* vertices has exactly n - 1 edges. (Any fewer and it cannot be connected; any more and it must contain a cycle.)

2. Every tree with at least two vertices has at least two leaves (vertices with only one neighbor).

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

Properties of Trees

1. Every tree with *n* vertices has exactly n - 1 edges. (Any fewer and it cannot be connected; any more and it must contain a cycle.)

2. Every tree with at least two vertices has at least two leaves (vertices with only one neighbor).

3. We only care about **which vertices are connected**, not how the tree is depicted on the page. These trees are the **same**:

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

Trees 00●000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Question: How many different trees are there on *n* vertices?

n=1 1 tree

Trees 00●000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

Trees 000●00000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

For n = 5, there are three tree shapes:

Total: 125 trees on 5 labeled vertices.

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000			

For n = 6, there are six tree shapes:

Total: 1296 trees on 6 labeled vertices.

Trees 00000●000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Let $\tau(n)$ = number of labeled trees on *n* vertices.

n	$\tau(n)$
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

Trees 00000●000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Let $\tau(n)$ = number of labeled trees on *n* vertices.

n	$\tau(n)$		
1	1	=	1^{-1}
2	1	=	2 ⁰
3	3	=	3 ¹
4	16	=	4 ²
5	125	=	5 ³
6	1296	=	6 ⁴
7	16807	=	7 ⁵
8	262144	=	8 6

Trees 00000●000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
<u> </u>			

Let $\tau(n)$ = number of labeled trees on *n* vertices.

п	$\tau(n)$		
1	1	=	1-1
2	1	=	2 ⁰
3	3	=	3 ¹
4	16	=	4 ²
5	125	=	5 ³
6	1296	=	6 ⁴
7	16807	=	7 ⁵
8	262144	=	8 6

Theorem 1 ("Cayley's formula") For every integer *n*,

$$\tau(n)=n^{n-2}.$$

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

Given a tree T, we construct its **Prüfer code** P(T) as follows.

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

P(T) =

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$P(T) = (7,$$

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

P(T) = (7, 1, 1)

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

P(T) = (7, 1, 2, 1)

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$P(T) = (7, 1, 2, 8,$$

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$P(T) = (7, 1, 2, 8, 2,$$

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$P(T) = (7, 1, 2, 8, 2, 6)$$

- Find the **leaf** with the **smallest** label.
- Write down the label of its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

P(T) = (7, 1, 2, 8, 2, 6)

Yeah, But How Do You Prove That? (#1)

Theorem 2: Every tree can be reconstructed from its Prüfer code. Therefore, there is a **bijection** (a one-to-one, onto function)

$$\{ ext{trees on } n ext{ vertices}\} \stackrel{P}{\longrightarrow} \{(p_1,\ldots,p_{n-2}): \ 1 \leq p_i \leq n\}$$

and the size of the right-hand set is clearly n^{n-2} .

Theorem 2: Every tree can be reconstructed from its Prüfer code. Therefore, there is a **bijection** (a one-to-one, onto function)

$$\{\text{trees on } n \text{ vertices}\} \xrightarrow{P} \{(p_1,\ldots,p_{n-2}): 1 \leq p_i \leq n\}$$

and the size of the right-hand set is clearly n^{n-2} .

Observation: the number of neighbors of each vertex is one more than the number of times that vertex appears in P(T).

Theorem 2: Every tree can be reconstructed from its Prüfer code. Therefore, there is a **bijection** (a one-to-one, onto function)

$$\{\text{trees on } n \text{ vertices}\} \xrightarrow{P} \{(p_1,\ldots,p_{n-2}): 1 \le p_i \le n\}$$

and the size of the right-hand set is clearly n^{n-2} .

Observation: the number of neighbors of each vertex is one more than the number of times that vertex appears in P(T).

Theorem 3: The number of trees in which vertex *i* has exactly d_i neighbors is the coefficient of the monomial

$$x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n}$$

in the expansion of $x_1x_2\cdots x_n(x_1+x_2+\cdots+x_n)^{n-2}$.

The **Matrix-Tree Theorem** (which dates back to 1845!) says that trees can be counted using linear algebra.

TL;DR: $\tau(n)$ is the determinant of the $(n-1) \times (n-1)$ matrix

$$\begin{pmatrix} n-1 & -1 & -1 & \cdots & -1 \\ -1 & n-1 & -1 & \cdots & -1 \\ -1 & -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & n-1 \end{pmatrix}$$

and you can work out for yourself that its eigenvalues are n (with multiplicity n-2) and 1.

Trees 000000000	Parking Functions •0000	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fun	ctions		

► There are *n* parking spaces on a one-way street, labeled 0,..., *n* − 1.

Trees 000000000	Parking Functions ●○○○○	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fun	ctions		

- ► There are *n* parking spaces on a one-way street, labeled 0,..., *n* − 1.
- Along come *n* cars trying to park. Each car has a preferred spot *p_i*.

Trees 000000000	Parking Functions •0000	Sandpiles and Shopping Sprees	The Shi Arrangement

- ► There are *n* parking spaces on a one-way street, labeled 0,..., *n* − 1.
- Along come *n* cars trying to park. Each car has a preferred spot *p_i*.
- Each car drives to its preferred spot and tries to park there.

- ► There are *n* parking spaces on a one-way street, labeled 0,..., *n* − 1.
- Along come *n* cars trying to park. Each car has a preferred spot *p_i*.
- Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is full, it takes the next open spot.

- ► There are *n* parking spaces on a one-way street, labeled 0,..., *n* − 1.
- Along come *n* cars trying to park. Each car has a preferred spot *p_i*.
- Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is full, it takes the next open spot.
- Did I mention the pit full of snakes?

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Example #2 $(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees Parl	king Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000 000	000	000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	0000		000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Success!

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000	0000	000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Success!

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
	00000		

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

· · · ·	
00000000 000000 0000000	000000000

Example #1 $(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fi	Inctions		

О

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function (PF)** if it enables all cars to park without being eaten by snakes.

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fur	octions		

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function (PF)** if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a parking function $\iff i^{th}$ smallest entry is < i (for each i).

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fun	ctions		

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function (PF)** if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a parking function $\iff i^{th}$ smallest entry is < i (for each i).

(So any shuffle of a parking function is also a parking function.)

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
Parking Fun	ctions		

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function (PF)** if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a parking function $\iff i^{th}$ smallest entry is < i (for each *i*).

(So any shuffle of a parking function is also a parking function.)

Theorem 5 There are $(n+1)^{n-1}$ parking functions of length *n*.

Trees 000000000	Parking ○○○●○	Functions		Sandpiles and	I Shopping Sprees	The Shi Arrangement
Parking Fu	inctior	าร				
n = 1:	0					
<i>n</i> = 2:	00	01				
		10				
<i>n</i> = 3:	000	001	011	002	012 021	
		010	101	020	102 120	
		100	110	200	201 210	
n = 4 (up to shuffling):						
,	0000	0)				
	0001	0002	0003			
	0011	0012	0013	0022	0023	
	0111	0112	0113	0122	0123	

Number of PFs up to shuffling: Catalan number $\frac{1}{n+1}\binom{2n}{n}$

A Rather Slick Way To Count Parking Functions

- Remove the snakepit. Replace it with an extra parking spot (#n) and a return ramp (like an airport terminal).
- Number of preference lists **p** is now $(n+1)^n$.
- > All cars will be able to park, and one spot $o(\mathbf{p})$ will be left open.
- Cyclically rotating \mathbf{p} also rotates $o(\mathbf{p})$.
- ► Therefore, all spots are equally likely to be open.
- **• p** is a parking function $\iff o(\mathbf{p}) = n$.
- Number of parking functions = $(n+1)^n/(n+1) = (n+1)^{n-1}$.

Start with a bucket of sand. Make m piles.¹ Let s_i be the number of grains of sand in the i^{th} pile. Watch what happens.

• When a sandpile gets too big, it **topples**.

Specifically, if $s_i \ge m$, then pile *i* spews sand in all directions, giving one grain of sand to each other pile and putting one grain back in the bucket.

 If no pile is too big, add one grain from the bucket to each pile (replenishment)

How does the system evolve?

¹I know a three-year-old who can help with this.

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000	00000	000000	000000000

Let m = 2. Record the state the model is in by the pair (s_1, s_2) . (Dotted lines indicate replenishment steps.)

Trees P	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000 0	00000	000000	000000000

Let m = 2. Record the state the model is in by the pair (s_1, s_2) . (Dotted lines indicate replenishment steps.)

The states (0,1), (1,0), and (1,1) are called **critical**:

- no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

Trees P	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
00000000 0	00000	000000	000000000

Let m = 2. Record the state the model is in by the pair (s_1, s_2) . (Dotted lines indicate replenishment steps.)

The states (0,1), (1,0), and (1,1) are called **critical**:

- no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

Fact: Every initial state evolves to exactly one critical state.

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

A possible evolution pattern for m = 3:

Complete list of critical states for m = 3:

222, 221, 212, 122, 211, 121, 112, 220, 202, 022, 012, 021, 102, 120, 201, 210.

The Shi Arrangement

Sandpiles and Shopping Sprees

Sandpile model	Dollar game
(statistical physics)	(economics)
Sandpiles	Consumers
Sand grains	Dollars
Big enough	Rich enough
Toppling	Shopping spree
Bucket	Bank
Replenishment	Economic stimulus package

Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to Bob Ani gives a dollar to Chris
Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to BobBob gives a dollar to AniAni gives a dollar to ChrisBob gives a dollar to Chris

Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to BobBob gives a dollar to AniAni gives a dollar to ChrisBob gives a dollar to Chris

Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to BobBob gives a dollar to AniAni gives a dollar to ChrisBob gives a dollar to Chris

Ani and Bob only need \$1 each to go on a **joint** shopping spree.

The Shi Arrangement

Simultaneous Shopping Sprees

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to BobBob gives a dollar to AniAni gives a dollar to ChrisBob gives a dollar to Chris

Ani and Bob only need \$1 each to go on a **joint** shopping spree.

In a **joint shopping spree**, each consumer in a set X (not including the bank) gives \$1 to each consumer not in X (including the bank). This is possible if

$$s_i > m - |X| \qquad \forall x \in X.$$

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement
		0000000	

Superstable States

A state of the dollar game is called **superstable** if no simultaneous shopping sprees are possible.

Theorem 2 (s_1, \ldots, s_m) superstable $\iff (m - s_1, \ldots, m - s_m)$ critical

Theorem 3 There is a bijection

{superstable states} \rightarrow {labeled trees on *n* vertices}.

The proof uses the **Burning Algorithm** [Dhar, 1990].

Dhar's Burning Algorithm (A Sketch)

Let n = m + 1. Start with a superstable state $\mathbf{s} = (s_1, \ldots, s_{n-1})$.

- For each i = 1, ..., n 1, place s_i firefighters at vertex i.
- Set vertex n on fire.
- The fire tries to spread from burned vertices to unburned vertices. Unburned vertices can deploy firefighters to protect themselves. (A firefighter cannot be moved once deployed.)
- Superstability of s is precisely equivalent to the condition that the fire eventually reaches every vertex!
- The route that the fire takes is a tree!
- Algorithm is reversible: s can be reconstructed from the output tree!

Trees 00000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Handicap Scoring

- Competitors in an individual event (e.g., marathon, bowling, pentathlon, Rubik's Cube) are seeded 1, 2, ..., n. Lower numbered seed = stronger player.
- ► Each competitor *i* achieves a score x_i ∈ ℝ (the higher the better).
- We want to level the playing field by comparing each pair of players head-to-head. For each 1 ≤ *i* < *j* ≤ *n*:
 - If $x_i < x_j$ ("upset"), then the underdog j scores a point.
 - If $x_j < x_i < x_j + 1$ ("chalk"), then no one scores a point.
 - If $x_j + 1 < x_i$ ("blowout"), then the favorite *i* scores a point.

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

Handicap Scoring

- If $x_i < x_j$ ("upset"), then the underdog j scores a point.
- If $x_j < x_i < x_j + 1$ ("chalk"), then no one scores a point.
- If $x_j + 1 < x_i$ ("blowout"), then the favorite *i* scores a point.

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement

The Shi Arrangement

In order to understand the possible score vectors, we want to look at the hyperplanes in \mathbb{R}^n defined by the equations

$$\begin{array}{ll} x_1 = x_2, & x_1 = x_3, & \dots, & x_i = x_j, & \dots, & x_{n-1} = x_n, \\ x_1 = x_2 + 1, & x_1 = x_3 + 1, & \dots, & x_i = x_j + 1, & \dots, & x_{n-1} = x_n + 1. \end{array}$$

The **Shi** arrangement Shi(n) is the set of all such hyperplanes.

The Shi arrangement separates \mathbb{R}^n into regions that record the possible outcomes from this scoring system.

Trees	Parking I

Sandpiles and Shopping Sprees

The Shi Arrangement

The Arrangement $\overline{Shi(2)}$

Parking Functions

Sandpiles and Shopping Sprees

The Shi Arrangement

The Arrangement $\overline{Shi(3)}$

Parking Functions

Sandpiles and Shopping Sprees

The Shi Arrangement

The Arrangement $\overline{Shi(3)}$

Trees 000000000	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement ○○○○○●○○○○
	y =	$= x \qquad y = x + 1$	
		\times	
	z = y + 1	z = x + 1	
	z = y		

What Else Can You Count... Washburn University, March 2020

y = z+1

y = z

X = Z

х

7

x = z+1

х

What Else Can You Count... W

Washburn University, March 2020

What Else Can You Count...

Washburn University, March 2020

What Else Can You Count...

Washburn University, March 2020

The Shi Arrangement

Theorem 6[Pak and Stanley]Labeling with score vectors gives a function

{regions of Shi(n)} \rightarrow {parking functions of length n}

that is a bijection!

In particular, the number of regions in Shi(n) is $(n+1)^{n-1}$.

Trees	Parking Functions	Sandpiles and Shopping Sprees	The Shi Arrangement ○○○○○○○●○
Conclusion			

The numbers $(n+1)^{n-1}$ count lots of things:

- labeled trees on n + 1 vertices,
- Iong-term behaviors of the sandpile model with n vertices plus a sink,
- superstable states of the dollar game with *n* vertices plus a bank,
- parking functions for n cars,
- regions of the Shi arrangement in \mathbb{R}^n ,
- and, quite possibly, other beautiful combinatorial structures that you will discover yourself (and please tell me).

Trees	Parking Functions	Sandpiles and Sh
00000000	00000	000000

Thank you!

What Else Can You Count... Washburn University, March 2020