Simplicial and Cellular Spanning Trees, II: Applications

Art Duval (University of Texas at El Paso) Caroline Klivans (Brown University) Jeremy Martin (University of Kansas)

University of California, Davis
March 2011

Shifted Complexes

Definition A simplicial complex Δ on vertices $[n]$ is shifted if for all $F \in \Delta, i \in \Delta, j \notin \Delta$, and $j<i$, we have $F \backslash\{i\} \cup\{j\} \in \Delta$.

Example If Δ is shifted and $235 \in \Delta$, then Δ must also contain the faces $234,135,134,125,124,123$.

- Shifted complexes of dimension 1 are threshold graphs.

Shifted Complexes

Define the componentwise (partial) order on ($d+1$)-sets of positive integers

$$
\begin{aligned}
A & =\left\{a_{1}<a_{2}<\cdots<a_{d+1}\right\}, \\
B & =\left\{b_{1}<b_{2}<\cdots<b_{d+1}\right\}
\end{aligned}
$$

by

$$
A \preceq B \quad \Longleftrightarrow \quad a_{i} \leq b_{i} \text { for all } i
$$

- The set of facets of a shifted complex is a lower order ideal with respect to \preceq.

Shifted Complexes

Proposition Shifted complexes are shellable, hence Cohen-Macaulay, hence metaconnected.

Theorem [Duval-Reiner 2001]
For Δ shifted, the eigenvalues of the unweighted Laplacian L are given by the transpose of the vertex/facet degree sequence.

- In particular, shifted complexes are Laplacian integral.

The Combinatorial Fine Weighting

Let Δ^{d} be a shifted complex on vertices $[n]$.
For each facet $A=\left\{a_{1}<a_{2}<\cdots<a_{d+1}\right\}$, define

$$
x_{A}=\prod_{i=1}^{d+1} x_{i, a_{i}}
$$

Example If $\Upsilon=\langle 123,124,134,135,235\rangle$ is a simplicial spanning tree of Δ, its contribution to h_{2} is

$$
x_{1,1}^{4} x_{1,2} x_{2,2}^{2} x_{2,3}^{3} x_{3,3} x_{3,4}^{2} x_{3,5}^{2}
$$

The Algebraic Fine Weighting

For faces $A \subset B \in \Delta$ with $\operatorname{dim} A=i-1, \operatorname{dim} B=i$, define

$$
X_{A B}=\frac{\uparrow^{d-i} x_{B}}{\uparrow^{d-i+1} x_{A}}
$$

where $\uparrow x_{i, j}=x_{i+1, j}$.

- Weighted boundary maps $\boldsymbol{\partial}$ satisfy $\boldsymbol{\partial} \boldsymbol{\partial}=0$.
- Laplacian eigenvalues are the same as those for the combinatorial fine weighting, except for denominators.

Critical Pairs

Definition A critical pair of a shifted complex Δ^{d} is an ordered pair (A, B) of $(d+1)$-sets of integers, where

- $A \in \Delta$ and $B \notin \Delta$; and
- B covers A in componentwise order.

The Signature of a Critical Pair

Let (A, B) be a critical pair of a complex Δ :

$$
\begin{aligned}
& A=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots<a_{d+1}\right\}, \\
& B=A \backslash\left\{a_{i}\right\} \cup\left\{a_{i}+1\right\} .
\end{aligned}
$$

Definition The signature of (A, B) is the ordered pair

$$
\left(\left\{a_{1}, a_{2}, \ldots, a_{i-1}\right\}, a_{i}\right)
$$

Finely Weighted Laplacian Eigenvalues

Theorem [Duval-Klivans-JLM 2007]
Let Δ^{d} be a shifted complex.
Then the finely weighted Laplacian eigenvalues of Δ are specified completely by the signatures of critical pairs of Δ.

$$
\text { signature }(S, a) \quad \Longrightarrow \quad \text { eigenvalue } \frac{1}{\uparrow X_{S}} \sum_{j=1}^{a} X_{S \cup j}
$$

Examples of Finely Weighted Eigenvalues

- Critical pair $(135,145)$; signature $(1,3)$:

$$
\frac{X_{11} X_{21}+X_{11} X_{22}+X_{11} X_{23}}{X_{21}}
$$

- Critical pair $(235,236)$; signature $(23,5)$:

$$
\frac{X_{11} X_{22} X_{33}+X_{12} X_{22} X_{33}+X_{12} X_{23} X_{33}+X_{12} X_{23} X_{34}+X_{12} X_{23} X_{35}}{X_{22} X_{33}}
$$

Sketch of Proof

- Calculate eigenvalues of Δ in terms of eigenvalues of the deletion and link:

$$
\begin{aligned}
\operatorname{del}_{1} \Delta & =\{F \in \Delta \\
\operatorname{link}_{1} \Delta & =\{F \in \Delta \mid \\
\mid & 1 \notin F\}, F \cup\{1\} \in \Delta\}
\end{aligned}
$$

- If Δ is shifted, then so are del Δ and link ${ }_{1} \Delta$.

Sketch of Proof

- Calculate eigenvalues of Δ in terms of eigenvalues of the deletion and link:

$$
\begin{aligned}
& \operatorname{del}_{1} \Delta=\{F \in \Delta \quad \mid 1 \notin F\}, \\
& \operatorname{link}_{1} \Delta=\{F \in \Delta \mid \\
&1 \notin F, F \cup\{1\} \in \Delta\}
\end{aligned}
$$

- If Δ is shifted, then so are $\operatorname{del}_{1} \Delta$ and $\operatorname{link}_{1} \Delta$.
- Establish a recurrence for critical pairs of Δ in terms of those of $\operatorname{del}_{1} \Delta$ and link ${ }_{1} \Delta$

Sketch of Proof

- Calculate eigenvalues of Δ in terms of eigenvalues of the deletion and link:

$$
\begin{aligned}
& \operatorname{del}_{1} \Delta=\{F \in \Delta \quad \mid 1 \notin F\}, \\
& \operatorname{link}_{1} \Delta=\{F \in \Delta \mid \\
&1 \notin F, F \cup\{1\} \in \Delta\}
\end{aligned}
$$

- If Δ is shifted, then so are $\operatorname{del}_{1} \Delta$ and $\operatorname{link}_{1} \Delta$.
- Establish a recurrence for critical pairs of Δ in terms of those of $\operatorname{del}_{1} \Delta$ and link ${ }_{1} \Delta$
- "Here see ye two recurrences, and lo! they are the same."

Consequences of the Main Theorem

- Passing to the unweighted version (by setting $x_{i, j}=1$ for all i, j) recovers the Duval-Reiner theorem.
- Special case $d=1$: recovers known weighted spanning tree enumerators for threshold graphs (Remmel-Williamson 2002; JLM-Reiner 2003).
- A shifted complex is determined by its set of signatures, so we can "hear the shape of a shifted complex" from its Laplacian spectrum.

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

- w_{1}
v_{1} •
- w_{2}
v_{2} -
- w_{3}
v_{3} -
- w_{4}
- w_{5}

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs

Ferrers graphs are bipartite analogues of threshold graphs.

- Degree-weighted spanning tree enumerator for Ferrers graphs: Ehrenborg and van Willigenburg (2004)
- Formula can also be derived from our finely weighted spanning tree enumerator for a threshold graph
- Higher-dimensional analogues?

Color-Shifted Complexes

Let Δ be a complex on $V=\bigcup_{i} V_{i}$, where

$$
V_{1}=\left\{v_{11}, \ldots, v_{1 r_{1}}\right\}, \ldots, \quad V_{n}=\left\{v_{n 1}, \ldots, v_{n r_{n}}\right\}
$$

are disjoint vertex sets ("color classes").

Definition Δ is color-shifted if

- no face contains more than one vertex of the same color; and
- if $\left\{v_{1 b_{1}}, \ldots, v_{n b_{n}}\right\} \in \Delta$ and $a_{i} \leq b_{i}$ for all i, then $\left\{v_{1 a_{1}}, \ldots, v_{n a_{n}}\right\} \in \Delta$.

Color-Shifted Complexes

- Color-shifted complexes generalize Ferrers graphs (Ehrenborg-van Willigenburg) and complete colorful complexes (Adin)
- Not in general Laplacian integral...
- ... but they do seem to have nice degree-weighted spanning tree enumerators.

Matroid Complexes

Definition A pure simplicial complex Δ is a matroid complex if its facets form a matroid basis system:

- if F, G are facets and $i \in F \backslash G$,
- then there exists $j \in G \backslash F$ such that $F \backslash\{i\} \cup\{j\}$ is a facet.

Theorem [Kook-Reiner-Stanton 1999] Matroid complexes are Laplacian integral.

- Experimentally, degree-weighted spanning tree enumerators seem to have nice factorizations.

