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Shifted Complexes

Definition A simplicial complex ∆ on vertices [n] is shifted if

for all F ∈ ∆, i ∈ ∆, j 6∈ ∆, and j < i ,

we have F \ {i} ∪ {j} ∈ ∆.

Example If ∆ is shifted and 235 ∈ ∆, then ∆ must also contain
the faces 234, 135, 134, 125, 124, 123.

I Shifted complexes of dimension 1 are threshold graphs.
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Shifted Complexes

Define the componentwise (partial) order on (d + 1)-sets of
positive integers

A = {a1 < a2 < · · · < ad+1},
B = {b1 < b2 < · · · < bd+1}

by
A � B ⇐⇒ ai ≤ bi for all i .

I The set of facets of a shifted complex is a lower order ideal
with respect to �.
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Shifted Complexes

Proposition Shifted complexes are shellable, hence
Cohen-Macaulay, hence metaconnected.

Theorem [Duval–Reiner 2001]
For ∆ shifted, the eigenvalues of the unweighted Laplacian L are
given by the transpose of the vertex/facet degree sequence.

I In particular, shifted complexes are Laplacian integral.
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The Combinatorial Fine Weighting

Let ∆d be a shifted complex on vertices [n].
For each facet A = {a1 < a2 < · · · < ad+1}, define

xA =
d+1∏
i=1

xi ,ai
.

Example If Υ = 〈123, 124, 134, 135, 235〉 is a simplicial spanning
tree of ∆, its contribution to h2 is
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The Algebraic Fine Weighting

For faces A ⊂ B ∈ ∆ with dim A = i − 1, dim B = i , define

XAB =
↑d−i xB

↑d−i+1 xA

where ↑xi ,j = xi+1, j .

I Weighted boundary maps ∂ satisfy ∂∂ = 0.

I Laplacian eigenvalues are the same as those for the
combinatorial fine weighting, except for denominators.
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Critical Pairs

Definition A critical pair of a shifted complex ∆d is an ordered
pair (A, B) of (d + 1)-sets of integers, where

I A ∈ ∆ and B 6∈ ∆; and

I B covers A in componentwise order.
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The Signature of a Critical Pair

Let (A, B) be a critical pair of a complex ∆:

A = {a1 < a2 < · · · < ai < · · · < ad+1},

B = A \ {ai} ∪ {ai + 1}.

Definition The signature of (A, B) is the ordered pair(
{a1, a2, . . . , ai−1}, ai

)
.
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Finely Weighted Laplacian Eigenvalues

Theorem [Duval–Klivans–JLM 2007]

Let ∆d be a shifted complex.

Then the finely weighted Laplacian eigenvalues of ∆ are specified
completely by the signatures of critical pairs of ∆.

signature (S , a) =⇒ eigenvalue
1

↑XS

a∑
j=1

XS∪j
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Examples of Finely Weighted Eigenvalues

I Critical pair (135,145); signature (1,3):

X11X21 + X11X22 + X11X23

X21

I Critical pair (235,236); signature (23,5):

X11X22X33 + X12X22X33 + X12X23X33 + X12X23X34 + X12X23X35

X22X33
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Sketch of Proof

I Calculate eigenvalues of ∆ in terms of eigenvalues of the
deletion and link:

del1 ∆ = {F ∈ ∆ | 1 6∈ F},
link1 ∆ = {F ∈ ∆ | 1 6∈ F , F ∪ {1} ∈ ∆}.

I If ∆ is shifted, then so are del1 ∆ and link1 ∆.

I Establish a recurrence for critical pairs of ∆ in terms of those
of del1 ∆ and link1 ∆

I “Here see ye two recurrences, and lo! they are the same.”
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Consequences of the Main Theorem

I Passing to the unweighted version (by setting xi ,j = 1 for all
i , j) recovers the Duval–Reiner theorem.

I Special case d = 1: recovers known weighted spanning tree
enumerators for threshold graphs (Remmel–Williamson 2002;
JLM–Reiner 2003).

I A shifted complex is determined by its set of signatures, so we
can “hear the shape of a shifted complex” from its Laplacian
spectrum.
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Ferrers Graphs

A Ferrers graph is a bipartite graph whose vertices correspond to
the rows and columns of a Ferrers diagram.
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Ferrers Graphs

Ferrers graphs are bipartite analogues of threshold graphs.

I Degree-weighted spanning tree enumerator for Ferrers graphs:
Ehrenborg and van Willigenburg (2004)

I Formula can also be derived from our finely weighted spanning
tree enumerator for a threshold graph

I Higher-dimensional analogues?
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Color-Shifted Complexes

Let ∆ be a complex on V =
⋃

i Vi , where

V1 = {v11, . . . , v1r1}, . . . , Vn = {vn1, . . . , vnrn}.

are disjoint vertex sets (“color classes”).

Definition ∆ is color-shifted if

I no face contains more than one vertex of the same color; and

I if {v1b1 , . . . , vnbn} ∈ ∆ and ai ≤ bi for all i , then
{v1a1 , . . . , vnan} ∈ ∆.
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Color-Shifted Complexes

I Color-shifted complexes generalize Ferrers graphs
(Ehrenborg–van Willigenburg) and complete colorful
complexes (Adin)

I Not in general Laplacian integral. . .

I . . . but they do seem to have nice degree-weighted spanning
tree enumerators.



Shifted Simplicial Complexes
More Applications

Ferrers Graphs
Color-Shifted Complexes
Matroid Complexes

Matroid Complexes

Definition A pure simplicial complex ∆ is a matroid complex if
its facets form a matroid basis system:

I if F , G are facets and i ∈ F \ G ,

I then there exists j ∈ G \ F such that F \ {i} ∪ {j} is a facet.

Theorem [Kook–Reiner–Stanton 1999] Matroid complexes are
Laplacian integral.

I Experimentally, degree-weighted spanning tree enumerators
seem to have nice factorizations.
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