Simplicial and Cellular Spanning Trees, II: Applications

Art Duval (University of Texas at El Paso) Caroline Klivans (Brown University) Jeremy Martin (University of Kansas)

> University of California, Davis March 2011

> > - 4 回 2 - 4 三 2 - 4 三 2

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

<ロ> <同> <同> <同> < 同> < 同>

Shifted Complexes

Definition A simplicial complex Δ on vertices [n] is **shifted** if for all $F \in \Delta$, $i \in \Delta$, $j \notin \Delta$, and j < i, we have $F \setminus \{i\} \cup \{j\} \in \Delta$.

Example If Δ is shifted and $235 \in \Delta$, then Δ must also contain the faces 234, 135, 134, 125, 124, 123.

Shifted complexes of dimension 1 are threshold graphs.

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Shifted Complexes

Define the **componentwise (partial) order** on (d + 1)-sets of positive integers

$$A = \{a_1 < a_2 < \dots < a_{d+1}\},\$$

$$B = \{b_1 < b_2 < \dots < b_{d+1}\}$$

by

$$A \preceq B \iff a_i \leq b_i$$
 for all i .

The set of facets of a shifted complex is a *lower order ideal* with respect to <u>≺</u>.

Shifted Simplicial Complexes More Applications Definitions of Shiftedness Critical Pairs SST Enumeration

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

Shifted Simplicial Complexes More Applications SST Enumeration

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Shifted Complexes

Proposition Shifted complexes are shellable, hence Cohen-Macaulay, hence metaconnected.

Theorem [Duval–Reiner 2001] For Δ shifted, the eigenvalues of the unweighted Laplacian *L* are given by the transpose of the vertex/facet degree sequence.

► In particular, shifted complexes are Laplacian integral.

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

イロト イヨト イヨト イヨト

The Combinatorial Fine Weighting

Let Δ^d be a shifted complex on vertices [n]. For each facet $A = \{a_1 < a_2 < \cdots < a_{d+1}\}$, define

$$x_{\mathcal{A}} = \prod_{i=1}^{d+1} x_{i,a_i} \; .$$

Example If $\Upsilon = \langle 123, 124, 134, 135, 235 \rangle$ is a simplicial spanning tree of Δ , its contribution to h_2 is

$$x_{1,1}^4 x_{1,2} x_{2,2}^2 x_{2,3}^3 x_{3,3} x_{3,4}^2 x_{3,5}^2 \ .$$

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

The Algebraic Fine Weighting

For faces $A \subset B \in \Delta$ with dim A = i - 1, dim B = i, define

$$X_{AB} = \frac{\uparrow^{d-i} x_B}{\uparrow^{d-i+1} x_A}$$

where $\uparrow x_{i,j} = x_{i+1,j}$.

- Weighted boundary maps ∂ satisfy $\partial \partial = 0$.
- Laplacian eigenvalues are the same as those for the combinatorial fine weighting, except for denominators.

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

イロト イヨト イヨト イヨト

Critical Pairs

Definition A **critical pair** of a shifted complex Δ^d is an ordered pair (A, B) of (d + 1)-sets of integers, where

- $A \in \Delta$ and $B \notin \Delta$; and
- B covers A in componentwise order.

Shifted Simplicial Complexes More Applications Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

◆□> ◆□> ◆目> ◆目> ◆目> = 三 のへで

Shifted Simplicial Complexes More Applications SST Enumeration

Shifted Simplicial Complexes More Applications SST Enumeration

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

The Signature of a Critical Pair

Let (A, B) be a critical pair of a complex Δ :

$$A = \{a_1 < a_2 < \dots < a_i < \dots < a_{d+1}\},\$$
$$B = A \setminus \{a_i\} \cup \{a_i + 1\}.$$

Definition The signature of (A, B) is the ordered pair

$$(\{a_1, a_2, \ldots, a_{i-1}\}, a_i).$$

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Finely Weighted Laplacian Eigenvalues

Theorem [Duval–Klivans–JLM 2007]

Let Δ^d be a shifted complex.

Then the finely weighted Laplacian eigenvalues of Δ are specified completely by the signatures of critical pairs of Δ .

signature
$$(S, a) \implies$$
 eigenvalue $\frac{1}{\uparrow X_S} \sum_{j=1}^{a} X_{S \cup j}$

・ロ・・ 「日・・ 山田・ 「田・ く日・

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

・ロン ・回と ・ ヨン・

Examples of Finely Weighted Eigenvalues

Critical pair (135,145); signature (1,3):

$$\frac{X_{11}X_{21} + X_{11}X_{22} + X_{11}X_{23}}{X_{21}}$$

Critical pair (235,236); signature (23,5):

$$\frac{X_{11}X_{22}X_{33} + X_{12}X_{22}X_{33} + X_{12}X_{23}X_{33} + X_{12}X_{23}X_{34} + X_{12}X_{23}X_{35}}{X_{22}X_{33}}$$

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

イロト イヨト イヨト イヨト

æ

Sketch of Proof

 Calculate eigenvalues of Δ in terms of eigenvalues of the deletion and link:

$$\begin{split} \mathsf{del}_1\,\Delta &= \{F\in\Delta \ | \ 1\not\in F\},\\ \mathsf{link}_1\,\Delta &= \{F\in\Delta \ | \ 1\not\in F,\ F\cup\{1\}\in\Delta\}. \end{split}$$

• If Δ is shifted, then so are del₁ Δ and link₁ Δ .

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Sketch of Proof

► Calculate eigenvalues of ∆ in terms of eigenvalues of the *deletion* and *link*:

$$\begin{split} \mathsf{del}_1 \Delta &= \{ F \in \Delta \ | \ 1 \not\in F \},\\ \mathsf{link}_1 \Delta &= \{ F \in \Delta \ | \ 1 \not\in F, \ F \cup \{1\} \in \Delta \}. \end{split}$$

• If Δ is shifted, then so are del₁ Δ and link₁ Δ .

 Establish a recurrence for critical pairs of Δ in terms of those of del₁ Δ and link₁ Δ

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Sketch of Proof

► Calculate eigenvalues of ∆ in terms of eigenvalues of the *deletion* and *link*:

$$\begin{split} \mathsf{del}_1 \Delta &= \{ F \in \Delta \ | \ 1 \not\in F \},\\ \mathsf{link}_1 \Delta &= \{ F \in \Delta \ | \ 1 \not\in F, \ F \cup \{1\} \in \Delta \}. \end{split}$$

- If Δ is shifted, then so are del₁ Δ and link₁ Δ .
- Establish a recurrence for critical pairs of Δ in terms of those of del₁ Δ and link₁ Δ
- "Here see ye two recurrences, and lo! they are the same."

Definitions of Shiftedness Fine Weightings Critical Pairs SST Enumeration

Consequences of the Main Theorem

- Passing to the unweighted version (by setting x_{i,j} = 1 for all i, j) recovers the Duval–Reiner theorem.
- Special case d = 1: recovers known weighted spanning tree enumerators for threshold graphs (Remmel–Williamson 2002; JLM–Reiner 2003).
- A shifted complex is determined by its set of signatures, so we can "hear the shape of a shifted complex" from its Laplacian spectrum.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

イロト イヨト イヨト イヨト

Ferrers Graphs

A **Ferrers graph** is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

イロト イヨト イヨト イヨト

æ

Ferrers Graphs

A **Ferrers graph** is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

イロト イヨト イヨト イヨト

æ

Ferrers Graphs

A **Ferrers graph** is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

Ferrers Graphs

A **Ferrers graph** is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

<ロ> <同> <同> <同> < 同>

- < ≣ →

æ

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

Ferrers Graphs

A **Ferrers graph** is a bipartite graph whose vertices correspond to the rows and columns of a Ferrers diagram.

イロト イヨト イヨト イヨト

æ

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

Ferrers Graphs

Ferrers graphs are bipartite analogues of threshold graphs.

- Degree-weighted spanning tree enumerator for Ferrers graphs: Ehrenborg and van Willigenburg (2004)
- Formula can also be derived from our finely weighted spanning tree enumerator for a threshold graph
- Higher-dimensional analogues?

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

Color-Shifted Complexes

Let Δ be a complex on $V = \bigcup_i V_i$, where

$$V_1 = \{v_{11}, \ldots, v_{1r_1}\}, \ \ldots, \ V_n = \{v_{n1}, \ldots, v_{nr_n}\}.$$

are disjoint vertex sets ("color classes").

Definition Δ is color-shifted if

no face contains more than one vertex of the same color; and

▶ if
$$\{v_{1b_1}, \ldots, v_{nb_n}\} \in \Delta$$
 and $a_i \leq b_i$ for all i , then $\{v_{1a_1}, \ldots, v_{na_n}\} \in \Delta$.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

- 4 回 2 - 4 三 2 - 4 三 2

Color-Shifted Complexes

- Color-shifted complexes generalize Ferrers graphs (Ehrenborg-van Willigenburg) and complete colorful complexes (Adin)
- Not in general Laplacian integral...
- ... but they do seem to have nice degree-weighted spanning tree enumerators.

Ferrers Graphs Color-Shifted Complexes Matroid Complexes

Matroid Complexes

Definition A pure simplicial complex Δ is a **matroid complex** if its facets form a matroid basis system:

- if F, G are facets and $i \in F \setminus G$,
- ▶ then there exists $j \in G \setminus F$ such that $F \setminus \{i\} \cup \{j\}$ is a facet.

Theorem [Kook–Reiner–Stanton 1999] Matroid complexes are Laplacian integral.

 Experimentally, degree-weighted spanning tree enumerators seem to have nice factorizations.