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Graphs and Spanning Trees

G = (V ,E ): simple connected graph

Definition A spanning tree of G is a subgraph (V ,T ) such that

1. (V ,T ) is connected (every pair of vertices is joined by a
path);

2. (V ,T ) is acyclic (contains no cycles);

3. |T | = |V | − 1.

Any two of these conditions together imply the third.
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Counting Spanning Trees

Let τ(G ) denote the number of spanning trees of G .

Graph G τ(G )

Any tree 1

Cn (cycle on n vertices) n

Kn (complete graph on n vertices) nn−2 (Cayley)

Kp,q (complete bipartite graph) pq−1qp−1 (Fiedler-Sedláçek)

Qn (n-dimensional hypercube) 22n−k−1
n∏

k=2

k(n
k)
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The Laplacian Matrix

Let G = (V ,E ) be a graph with V = [n] = {1, 2, . . . , n}.

Definition The Laplacian of G is the n × n matrix L = [`ij ]:

`ij =


degG (i) if i = j ,

−1 if i , j are adjacent,

0 otherwise.

I L is a real symmetric matrix

I L = MMtr , where M is the signed incidence matrix of G
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The Matrix-Tree Theorem

Matrix-Tree Theorem, Version I: Let 0, λ1, λ2, . . . , λn−1 be the
eigenvalues of L. Then

τ(G ) =
λ1λ2 · · ·λn−1

n
.

Matrix-Tree Theorem, Version II: Let Li be the reduced
Laplacian obtained by deleting the i th row and i th column of L.
Then

τ(G ) = det Li .

[Kirchhoff, 1847]
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The Matrix-Tree Theorem

Sketch of proof:

1. Expand det Li using the Binet-Cauchy formula:

det Li = det Mi M
tr
i =

∑
T⊂E
|T |=n−1

(det MT )2

where MT = square submatrix of Mi with columns T

2. Show that

det MT =

{
±1 if T is acyclic,

0 otherwise.
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Weighted Spanning Tree Enumerators

Idea: Let’s record combinatorial information about a spanning tree
T by assigning it a monomial weight xT .

(e.g., vertex degrees; number of edges in specified sets; etc.)

Definition The weighted spanning tree enumerator of G is
the generating function ∑

T∈T (G)

xT

where T (G ) denotes the set of spanning trees of G .
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Weighted Spanning Tree Enumerators

The weighted spanning tree enumerator of a graph

I reveals much more detailed combinatorial information about
spanning trees of G than merely counting them

I (particularly when it factors!)

I can suggest bijective proofs of formulas for τ(G )
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The Weighted Laplacian

Introduce an indeterminate eij for each pair of vertices i , j .
Set eij = eji , and if i , j are not adjacent, then set eij = 0.

The weighted Laplacian of G is the n × n matrix L̂ = [ˆ̀ij ], where

ˆ̀
ij =


∑
j 6=i

eij if i = j ,

−eij if i 6= j .

I Setting eij = 1 for each edge ij recovers the usual Laplacian L.
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The Weighted Matrix-Tree Theorem

Weighted Matrix-Tree Theorem I: If 0, λ̂1, λ̂2, . . . , λ̂n−1 are the
eigenvalues of L̂, then

∑
T∈T (G)

∏
ij∈T

eij =
λ̂1λ̂2 · · · λ̂n−1

n
.

Weighted Matrix-Tree Theorem II: If L̂k` is obtained by
deleting the kth row and `th column of L̂, then∑

T∈T (G)

∏
ij∈T

eij = (−1)k+` det L̂k`.
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Example: The Cayley-Prüfer Theorem

Weight spanning trees of complete graph Kn by degree sequence:

xT =
n∏

i=1

x
degT (i)
i

Theorem [Cayley-Prüfer]∑
T∈T (Kn)

xT = (x1x2 · · · xn)(x1 + x2 + · · ·+ xn)n−2.

(Setting xi = 1 for all i recovers Cayley’s formula.)



Graphs and Spanning Trees
From Graphs to Simplicial Complexes

Definitions
Counting Spanning Trees
Weighted Spanning Tree Enumerators

Example: The Cayley-Prüfer Theorem

Theorem [Cayley-Prüfer]∑
T∈T (Kn)

xT = (x1x2 · · · xn)(x1 + x2 + · · ·+ xn)n−2.

Combinatorial proof: the Prüfer code, a bijection

P : T (Kn)→ [n]n−2

where degT (i) = 1 + number of i ’s in P(T ).
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More Weighted Spanning Tree Enumerators

I Kp,q: degree sequence (bijection: Hartsfield–Werth)

I Threshold graphs: degree sequence and more
(Remmel–Williamson)

I Ferrers graphs: degree sequence
(Ehrenborg–van Willigenburg)

I Hypercubes: direction and facet degrees (JLM–Reiner;
bijection??)
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Simplicial Complexes

Definition A simplicial complex on vertex set V is a family ∆
of subsets of V such that

I {v} ∈ ∆ for every v ∈ V ;

I If F ∈ ∆ and G ⊂ F , then G ∈ ∆.

1

3

4 5

12, 13, 23, 34, 35, 45,
123}

{{}, 1, 2, 3, 4, 5,

2
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Simplicial Complexes

I Elements of ∆ are called faces.

I Maximal faces are called facets.

I dim F = |F | − 1; dim ∆ = max{dim F | F ∈ ∆}.

I ∆ is pure if all facets have equal dimension.

I fi (∆) = number of i-dimensional faces.

I The k-skeleton is ∆(k) = {F ∈ ∆ | dim F ≤ k}.

I A graph is just a simplicial complex of dimension 1.
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Simplicial Complexes
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∆ ∆ ∆

not pure; dim=2 pure; dim=1
f(   )=(5,7)f(   )=(5,6,1)f(   )=(5,9,7)
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Simplicial Homology

R = commutative ring with identity (typically Z or Q)
Ci (∆) = free R-module on i-dimensional faces of ∆

∆ has natural boundary and coboundary maps

∂i : Ci → Ci−1, ∂∗i : Ci−1 → Ci

such that
∂i ◦ ∂i+1 = ∂∗i+1 ◦ ∂∗i = 0.



Graphs and Spanning Trees
From Graphs to Simplicial Complexes

Simplicial Complexes and Homology
Simplicial Spanning Trees
Simplicial Matrix-Tree Theorems
Weighted SST Enumeration

Simplicial Homology

Definition The i th reduced simplicial homology group of ∆ is

H̃i (∆; R) = ker ∂i / im ∂i+1.

I Homology groups over Q measure the holes in ∆.

I Homology groups over Z measure holes (the free part) and
“twisting” (the torsion part).

Definition The i th Betti number of ∆ is

β̃i (∆) = dimQ H̃i (∆,Q).
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Simplicial Homology

Let G be a graph (a 1-dimensional simplicial complex).

I β̃0(G ) = (number of connected components of G ) − 1

I β̃1(G ) = number of edges that need to be deleted to make G
acyclic

I ∂1 is the signed vertex-edge incidence matrix M.

I The Laplacian of G is L = ∂1∂
∗
1 .
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Simplicial Spanning Trees

Let ∆d be a simplicial complex (i.e., dim ∆ = d).

Let Υ ⊂ ∆ be a subcomplex with Υ(d−1) = ∆(d−1).

Definition Υ is a simplicial spanning tree (SST) of ∆ if

1. H̃d(Υ; Z) = 0;

2. H̃d−1(Υ; Q) = 0;

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆).
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Simplicial Spanning Trees

Conditions for Υ ⊂ ∆d to be an SST:

0. Υ(d−1) = ∆(d−1) (“spanning”);

1. H̃d(Υ; Z) = 0 (“acyclic”);

2. H̃d−1(Υ; Q) = 0 (“connected”);

3. fd(Υ) = fd(∆)− β̃d(∆) + β̃d−1(∆) (“count”).

I Any two of these conditions together imply the third

I When d = 1, coincides with the usual definition
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Metaconnectedness

Denote by T (∆) the set of simplicial spanning trees of ∆.

Proposition T (∆) 6= ∅ if and only if ∆ has the homology type
of a wedge of d-spheres:

β̃j(∆) = 0 ∀j < dim ∆.

Equivalently,

|H̃j(∆; Z)| <∞ ∀j < dim ∆.

Such a complex is called metaconnected.



Graphs and Spanning Trees
From Graphs to Simplicial Complexes

Simplicial Complexes and Homology
Simplicial Spanning Trees
Simplicial Matrix-Tree Theorems
Weighted SST Enumeration

Metaconnectedness
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Metaconnectedness

I Every acyclic complex is metaconnected.

I Every Cohen-Macaulay complex is metaconnected (by
Reisner’s theorem), including:

I 0-dimensional complexes
I connected graphs
I simplicial spheres
I shifted complexes
I matroid complexes
I many other complexes arising in algebra and combinatorics
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Examples of SSTs

Example If dim ∆ = 0, then T (∆) = {vertices of ∆}.

Example If ∆ is Q-acyclic, then T (∆) = {∆}.
I Includes complexes that are not Z-acyclic, such as RP2.

Example If ∆ is a simplicial sphere, then

T (∆) = {∆ \ {F} | F a facet of ∆}.

I Simplicial spheres are the analogues of cycle graphs.
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Kalai’s Theorem

Let ∆ be the d-skeleton of the n-vertex simplex:

∆ = {F ⊂ [n] | dim F ≤ d}.

Theorem [Kalai 1983]

∑
Υ∈T (∆)

|H̃d−1(Υ; Z)|2 = n

(n−2
d

)
.

I Reduces to Cayley’s formula when d = 1 (∆ = Kn).

I Adin (1992): Analogous formula for complete colorful
complexes (generalizing Fiedler-Sédlaçek formula for Kp,q)
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Simplicial Analogues of Graph Invariants

Let ∆d be a metaconnected simplicial complex.

Ci−1(∆)
∂∗i←− Ci (∆)

∂i−→ Ci−1(∆)

Li = ∂i ∂
∗
i (the up-down Laplacian)

si = product of nonzero eigenvalues of Li

hi =
∑

Υ∈T (∆(i))

|H̃i−1(Υ)|2
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The Simplicial Matrix-Tree Theorem — Version I

si = product of nonzero eigenvalues of Laplacian Li

hi =
∑

Υ∈T (∆(i))

|H̃i−1(Υ)|2

Theorem [Duval–Klivans–JLM 2006]

hd =
sd

hd−1
|H̃d−2(∆; Z)|2.
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Special Cases

I When ∆ is a graph on n vertices, the theorem says that

h1 =
s1

h0
|H̃−1(∆)|2 =

s1

n

which is the classical Matrix-Tree Theorem.

I If H̃i (∆,Z) = 0 for i ≤ d − 2, then

hd =
sd sd−2 · · ·

sd−1 sd−3 · · ·
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The Simplicial Matrix-Tree Theorem — Version II

∆d = simplicial complex

Γ ∈ T (∆(d−1))

∂Γ = restriction of ∂d to faces not in Γ

LΓ = ∂Γ∂
∗
Γ

Theorem [Duval–Klivans–JLM 2006]

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ.
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Simplicial Matrix-Tree Theorems

Theorem (SMTT–I: product of eigenvalues)

hd =
sd

hd−1
|H̃d−2(∆; Z)|2

Theorem (SMTT–II: reduced Laplacian)

hd =
∑

Υ∈T (∆)

|H̃d−1(Υ)|2 =
|H̃d−2(∆; Z)|2

|H̃d−2(Γ; Z)|2
det LΓ

I Version II is more useful for computing hd directly.

I In many cases, the H̃d−2 terms are trivial.
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Weighted SST Enumeration

I Introduce an indeterminate xF for each face F ∈ ∆

I Weighted boundary ∂: multiply the F th column of ∂ by xF

I Weighted Laplacian L = ∂∂∗

I Weighted analogues of si and hi :

si = product of nonzero eigenvalues of Li

hi =
∑

T∈T (∆(i))

|H̃i−1(T )|2
∏
F∈T

x2
F
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Weighted Simplicial Matrix-Tree Theorems

Weighted Simplicial Matrix-Tree Theorem I

hi =
si

hi−1
|H̃i−2(∆)|2

Weighted Simplicial Matrix-Tree Theorem II

hi =
|H̃i−2 (∆; Z)|2

|H̃i−2 (Γ; Z)|2
det LΓ

where Γ ∈ T (∆(i−1))
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Weighted SST Enumeration

As in the graphic case, we can use weights to obtain finer
enumerative information about simplicial spanning trees.

In order for the weighted simplicial spanning tree enumerators to
factor, we need L to have integer eigenvalues.

That is, ∆ must be Laplacian integral.

I Shifted complexes

I Matroid complexes

I Others?
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Example: The Bipyramid With Equator
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1

5

2

4

3

Vertices: 1, 2, 3, 4, 5

Edges: All but 45

Facets: 123, 124, 134, 234,
125, 135, 235

f (∆) = (5, 9, 7)

“Equator”: the facet 123
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Example: The Bipyramid With Equator

∆ = bipyramid with equator
= 〈123, 124, 134, 234, 125, 135, 235〉

I For each facet F = ijk, set xF = xixjxk .

Enumeration of SSTs of ∆ by degree sequence:

h2 =
∑

T∈T (∆)

∏
i∈V

x
degT (i)
i

= x3
1 x3

2 x3
3 x2

4 x2
5 (x1 + x2 + x3)(x1 + x2 + x3 + x4 + x5)
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A represented matroid is a collection of vectors.
A matroid structure on a finite set says, ”If this were a collection
of vectors, then here is a list of which subsets would be linearly
independent, bases, etc.”
If X is a simplicial complex, then the simplicial matroid is the
matroid represented by the columns of its boundary map.
Simplicial spanning trees are then exactly the bases of this matroid.
independence system is...
Cell complexes - argument that they are natural for
combinatorialists to think about
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