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Simplicial Rook Graphs

Let d , n ∈ N, and let n∆d−1 denote the dilated simplex

{v = (v1, . . . , vd) ∈ Rd :
d∑

i=1

vi = n}.

The simplicial rook graph SR(d , n) is the graph with vertices

V (d , n) = n∆d−1 ∩ Nd

with two vertices adjacent iff they differ in exactly two coordinates.
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Simplicial Rook Graphs

I |V (d , n)| = v =
(n+d−1

d−1

)
I SR(d , n) is regular of degree δ = (d − 1)n

I Eigenspaces of adjacency matrix A and Laplacian matrix L are
the same because AX = λX ⇐⇒ LX = (δ − λ)X

I Independence number α(SR(d , n)) = maximum number of
nonattacking rooks on a simplicial chessboard

I α(SR(3, n)) = b(2n + 3)/3c
[Nivasch–Lev 2005; Blackburn–Paterson–Stinson 2011]
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The Adjacency and Laplacian Matrices

Adjacency matrix of a graph G : A = A(G ) = matrix with rows
and columns indexed by V (G ) with 1s for edges, 0s for non-edges

Laplacian matrix of G : L = D − A, where D = diagonal matrix of
vertex degrees

I A acts on the vector space RV by

Av =
∑

neighbors w of v

w

I Eigenvalues of A, L =⇒ connectivity, spanning trees, . . .

I G regular =⇒ eigenspaces of A, L are the same
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The Spectrum of A(3, n)

Theorem (JLM/JDW, 2012)

The eigenvalues of A(3, n) = A(SR(3, n)) are as follows:

n = 2m + 1 odd n = 2m even

Eigenvalue Multiplicity Eigenvalue Multiplicity

−3
(2m

2

)
−3

(2m−1
2

)
−2, . . . ,m − 3 3 −2, . . . ,m − 4 3

m − 1 2 m − 3 2
m, . . . , n − 2 3 m − 1, . . . , n − 2 3

2n 1 2n 1

Method of proof: Construct explicit eigenvectors.
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Counting Spanning Trees

Corollary

The number of spanning trees of SR(3, n) is

32(2n + 3)
(n−1

2 ) 2n+2∏
a=n+2

a3

3(n + 1)2(n + 2)(3n + 5)3
if n is odd,

32(2n + 3)
(n−1

2 ) 2n+2∏
a=n+2

a3

3(n + 1)(n + 2)2(3n + 4)3
if n is even.
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Simplicial Rook Graphs in Arbitrary Dimension

Conjecture

The graph SR(d , n) is integral for all d and n.

Partial results for least eigenvalue λ and corresp. eigenspace W :

I Eigenvectors come from lattice permutohedra.

I If n ≥
(d
2

)
, then λ = −

(d
2

)
and dim W =

(n−(d−1)(d−2)/2
d−1

)
.

Note that

lim
n→∞

dim W

|V (d , n)|
= 1.

I If n <
(d
2

)
, then the least eigenvalue appears to be −n, and

dim W is the Mahonian number M(d , n) of permutations in
Sd with exactly n inversions.
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Hexagon Vectors in V (3, n)

For each “internal” vertex v ∈ V (3, n) (i.e., vi > 0 for all i), the
signed characteristic vector of the hexagon centered at v is an
eigenvector with eigenvalue −3.
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Hexagon Vectors in V (3, n)

I Number of possible centers for a hexagon vector = number of
interior vertices of n∆d−1 =(

v − 1

2

)
.

I The hexagon vectors are all linearly independent.

I The other
(v+2

2

)
−
(v−2

2

)
= 3v eigenvectors have explicit

formulas in terms of characteristic vectors of lattice lines.

Simplicial Rook Graphs



Permutohedron Vectors in G (d , n)

Definition
Let p ∈ Zd (if d is odd) or (Z + 1

2)d (if d is even). The lattice
permutohedron centered at p is

Per(p) = {p + σ(w) : σ ∈ Sd}

where Sd is the symmetric group and

w =

(
1− d

2
,

3− d

2
, . . . ,

d − 3

2
,

d − 1

2

)
.

“Most” eigenvectors of SR(d , n) are signed characteristic vectors
Hp of lattice permutohedra inscribed in the simplex n∆d−1.

[SHOW THE NIFTY SAGE PICTURE]
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Permutohedron Eigenvectors

I Each Hp is an eigenvalue of A(d , n) with eigenvalue −
(d
2

)
I The Hp are linearly independent.

I Permutohedron vectors account for “most” eigenvectors:

#{p : Per(p) ⊂ V (d , n)}
|V (d , n)|

=

(n−(d−1
2 )

d−1

)(n+d−1
d−1

) → 1 as n→∞.
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The Case n <
(
d
2

)
When n <

(d
2

)
, the simplex n∆d−1 is too small to contain any

lattice permutohedra.

On the other hand, characteristic vectors of partial permutohedra

Per(p) ∩ n∆d−1

are eigenvectors with eigenvalue −n.

Number of partial permutohedra = Mahonian number M(d , n)
= number of permutations in Sd with n inversions
= coefficient of qn in (1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qd−1)

Construction uses (ordinary, non-simplicial) rook theory!
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The Case n <
(
d
2

)
I Permutation π ∈ Sd with n inversions → “inversion word”

(a1, . . . , ad), where ai = #{j ∈ [d ] : πi > πj}
(note that

∑
ai = n)

I Rook placement σ on skyline Ferrers board (a1, . . . , ad) →
lattice point x(σ) = (ai + i − σi ) ∈ n∆d−1

I Eigenvector Xπ =
∑

σ ε(σ)x(σ)

I Proof that Xπ is an eigenvector: sign-reversing involution
moving rooks around
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Open Problems

I (The big one.) Prove that A(d , n) (equivalently, L(d , n)) has
integral spectrum for all d , n. (Verified for lots of d , n.)

I The induced subgraphs

SR(d , n)|V (d ,n)∩Per(p)

also appear to be Laplacian integral for all d , n,p. (Verified
for d ≤ 6.)

I Is A(d , n) determined up to isomorphism by its spectrum?
(We don’t know.)
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