On the Eigenvalues of Simplicial Rook Graphs

Jeremy L. Martin (University of Kansas)
Jennifer D. Wagner (Washburn University)

AMS Southeastern Sectional Meeting
Tulane University
October 13-14, 2012

Simplicial Rook Graphs

Let $d, n \in \mathbb{N}$, and let $n \Delta^{d-1}$ denote the dilated simplex

$$
\left\{\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d}: \sum_{i=1}^{d} v_{i}=n\right\} .
$$

The simplicial rook graph $S R(d, n)$ is the graph with vertices

$$
V(d, n)=n \Delta^{d-1} \cap \mathbb{N}^{d}
$$

with two vertices adjacent iff they differ in exactly two coordinates.

Simplicial Rook Graphs

Simplicial Rook Graphs

Simplicial Rook Graphs

- $|V(d, n)|=v=\binom{n+d-1}{d-1}$
- $\operatorname{SR}(d, n)$ is regular of degree $\delta=(d-1) n$
- Eigenspaces of adjacency matrix A and Laplacian matrix L are the same because $A X=\lambda X \Longleftrightarrow L X=(\delta-\lambda) X$
- Independence number $\alpha(S R(d, n))=$ maximum number of nonattacking rooks on a simplicial chessboard
- $\alpha(S R(3, n))=\lfloor(2 n+3) / 3\rfloor$
[Nivasch-Lev 2005; Blackburn-Paterson-Stinson 2011]

The Adjacency and Laplacian Matrices

Adjacency matrix of a graph $G: A=A(G)=$ matrix with rows and columns indexed by $V(G)$ with 1 s for edges, 0 s for non-edges

Laplacian matrix of G : $L=D-A$, where $D=$ diagonal matrix of vertex degrees

- A acts on the vector space $\mathbb{R} V$ by

$$
A \mathbf{v}=\sum_{\text {neighbors } \mathbf{w} \text { of } \mathbf{v}} \mathbf{w}
$$

- Eigenvalues of $A, L \Longrightarrow$ connectivity, spanning trees, \ldots
- G regular \Longrightarrow eigenspaces of A, L are the same

The Spectrum of $A(3, n)$

Theorem (JLM/JDW, 2012)
The eigenvalues of $A(3, n)=A(S R(3, n))$ are as follows:

$\mathbf{n}=\mathbf{2 m}+\mathbf{1}$ odd		$\mathbf{n = 2 m}$ even	
Eigenvalue	Multiplicity	Eigenvalue	Multiplicity
-3	$\binom{2 m}{2}$	-3	$\binom{2 m-1}{2}$
$-2, \ldots, m-3$	3	$-2, \ldots, m-4$	3
$m-1$	2	$m-3$	2
$m, \ldots, n-2$	3	$m-1, \ldots, n-2$	3
$2 n$	1	$2 n$	1

Method of proof: Construct explicit eigenvectors.

Counting Spanning Trees

Corollary

The number of spanning trees of $\operatorname{SR}(3, n)$ is

$$
\left\{\begin{array}{l}
\frac{32(2 n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2 n+2} a^{3}}{3(n+1)^{2}(n+2)(3 n+5)^{3}} \\
\frac{32(2 n+3)^{\binom{n-1}{2}} \prod_{a=n+2}^{2 n+2} a^{3}}{3(n+1)(n+2)^{2}(3 n+4)^{3}}
\end{array} \quad \text { if } n \text { is odd, } n\right. \text { is even. }
$$

Simplicial Rook Graphs in Arbitrary Dimension

Conjecture

The graph $S R(d, n)$ is integral for all d and n.
Partial results for least eigenvalue λ and corresp. eigenspace W :

- Eigenvectors come from lattice permutohedra.
- If $n \geq\binom{ d}{2}$, then $\lambda=-\binom{d}{2}$ and $\operatorname{dim} W=\binom{n-(d-1)(d-2) / 2}{d-1}$. Note that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{dim} W}{|V(d, n)|}=1
$$

- If $n<\binom{d}{2}$, then the least eigenvalue appears to be $-n$, and $\operatorname{dim} W$ is the Mahonian number $M(d, n)$ of permutations in \mathfrak{S}_{d} with exactly n inversions.

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

For each "internal" vertex $\mathbf{v} \in V(3, n)$ (i.e., $v_{i}>0$ for all i), the signed characteristic vector of the hexagon centered at \mathbf{v} is an eigenvector with eigenvalue -3 .

Hexagon Vectors in $V(3, n)$

- Number of possible centers for a hexagon vector $=$ number of interior vertices of $n \Delta^{d-1}=$

$$
\binom{v-1}{2}
$$

- The hexagon vectors are all linearly independent.
- The other $\binom{v+2}{2}-\binom{v-2}{2}=3 v$ eigenvectors have explicit formulas in terms of characteristic vectors of lattice lines.

Permutohedron Vectors in $G(d, n)$

Definition

Let $\mathbf{p} \in \mathbb{Z}^{d}$ (if d is odd) or $\left(\mathbb{Z}+\frac{1}{2}\right)^{d}$ (if d is even). The lattice permutohedron centered at \mathbf{p} is

$$
\operatorname{Per}(\mathbf{p})=\left\{\mathbf{p}+\sigma(\mathbf{w}): \sigma \in \mathfrak{S}_{d}\right\}
$$

where \mathfrak{S}_{d} is the symmetric group and

$$
\mathbf{w}=\left(\frac{1-d}{2}, \frac{3-d}{2}, \ldots, \frac{d-3}{2}, \frac{d-1}{2}\right) .
$$

"Most" eigenvectors of $S R(d, n)$ are signed characteristic vectors \mathcal{H}_{p} of lattice permutohedra inscribed in the simplex $n \Delta^{d-1}$.
[SHOW THE NIFTY SAGE PICTURE]

Permutohedron Eigenvectors

- Each $\mathcal{H}_{\mathbf{p}}$ is an eigenvalue of $A(d, n)$ with eigenvalue $-\binom{d}{2}$
- The $\mathcal{H}_{\mathbf{p}}$ are linearly independent.
- Permutohedron vectors account for "most" eigenvectors:

$$
\frac{\#\{\mathbf{p}: \operatorname{Per}(\mathbf{p}) \subset V(d, n)\}}{|V(d, n)|}=\frac{\left(\begin{array}{c}
n-\binom{d-1}{2}
\end{array}\right)}{\binom{n+d-1}{d-1}} \rightarrow 1 \quad \text { as } n \rightarrow \infty
$$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

On the other hand, characteristic vectors of partial permutohedra

$$
\operatorname{Per}(\mathbf{p}) \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

On the other hand, characteristic vectors of partial permutohedra

$$
\operatorname{Per}(\mathbf{p}) \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.
Number of partial permutohedra $=$ Mahonian number $M(d, n)$
$=$ number of permutations in \mathfrak{S}_{d} with n inversions
$=$ coefficient of q^{n} in $(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{d-1}\right)$

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex $n \Delta^{d-1}$ is too small to contain any lattice permutohedra.

On the other hand, characteristic vectors of partial permutohedra

$$
\operatorname{Per}(\mathbf{p}) \cap n \Delta^{d-1}
$$

are eigenvectors with eigenvalue $-n$.
Number of partial permutohedra $=$ Mahonian number $M(d, n)$
$=$ number of permutations in \mathfrak{S}_{d} with n inversions
$=$ coefficient of q^{n} in $(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{d-1}\right)$
Construction uses (ordinary, non-simplicial) rook theory!

The Case $n<\binom{d}{2}$

- Permutation $\pi \in \mathfrak{S}_{d}$ with n inversions \rightarrow "inversion word" $\left(a_{1}, \ldots, a_{d}\right)$, where $a_{i}=\#\left\{j \in[d]: \pi_{i}>\pi_{j}\right\}$ (note that $\sum a_{i}=n$)
- Rook placement σ on skyline Ferrers board $\left(a_{1}, \ldots, a_{d}\right) \rightarrow$ lattice point $x(\sigma)=\left(a_{i}+i-\sigma_{i}\right) \in n \Delta^{d-1}$
- Eigenvector $X_{\pi}=\sum_{\sigma} \varepsilon(\sigma) x(\sigma)$
- Proof that X_{π} is an eigenvector: sign-reversing involution moving rooks around

Open Problems

- (The big one.) Prove that $A(d, n)$ (equivalently, $L(d, n)$) has integral spectrum for all d, n. (Verified for lots of d, n.)
- The induced subgraphs

$$
\left.S R(d, n)\right|_{V(d, n) \cap \operatorname{Per}(\mathbf{p})}
$$

also appear to be Laplacian integral for all d, n, \mathbf{p}. (Verified for $d \leq 6$.)

- Is $A(d, n)$ determined up to isomorphism by its spectrum? (We don't know.)

Acknowledgements

Thanks to...

- The MathOverflow crowd (in particular Cristi Stoica and Noam Elkies)
- Sage (sagemath.org)
- Mahir, Michael and Jeff for organizing
- You for listening!

Preprint: arxiv:1209.3493

