Simplicial and Cellular Spanning Trees

Jeremy L. Martin Department of Mathematics University of Kansas

Graduate Student Combinatorics Conference April 7, 2017

Graphs

A graph is a pair G = (V, E), where

- V is a set of vertices, and
- *E* is a set of **edges**, each joining two vertices (its **endpoints**).

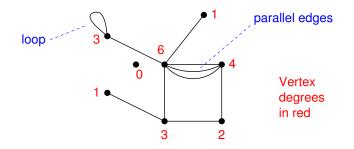
The **degree** of a vertex is the number of edges incident to it.

Graphs

A graph is a pair G = (V, E), where

- V is a set of vertices, and
- *E* is a set of **edges**, each joining two vertices (its **endpoints**).

The **degree** of a vertex is the number of edges incident to it.

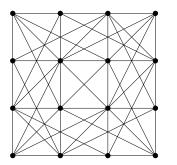




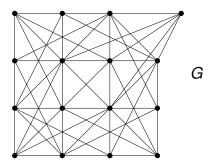
Complete graph K_6

Cube graph Q_3

Complete bipartite graph $K_{5,3}$



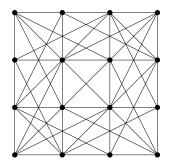
G



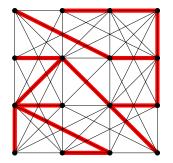
Definition A spanning tree of a graph G is a set of edges T (or a subgraph (V, T)) such that:

(V, T) is connected: every pair of vertices is joined by a path
 (V, T) is acyclic: there are no cycles
 |T| = |V| - 1.

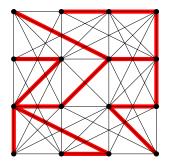
Any two of these conditions together imply the third.



G



G T₁



Counting Spanning Trees

 $\mathscr{T}(G) = \text{set of spanning trees of } G$ $\tau(G) = \text{number of spanning trees of } G$

•
$$\tau(\text{tree}) = 1$$

•
$$\tau(C_n) = n$$

• $\tau(K_n) = n^{n-2}$ (Cayley's formula; highly nontrivial!)

$$\quad \bullet \ \tau(K_{m,n}) = n^{m-1}m^{n-1}$$

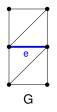
Many other enumeration formulas for nice graphs

Deletion and Contraction

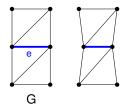
Deletion G - e: Remove e

- ▶ **Deletion** *G* − *e*: Remove *e*
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point

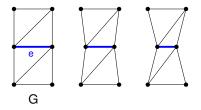
- **Deletion** G e: Remove e
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point



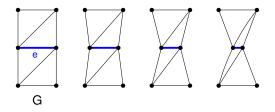
- ▶ **Deletion** *G* − *e*: Remove *e*
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point



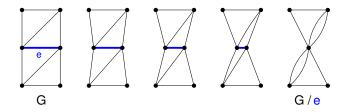
- ▶ **Deletion** *G* − *e*: Remove *e*
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point



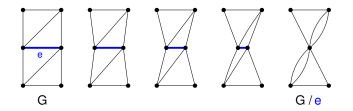
- ▶ **Deletion** *G* − *e*: Remove *e*
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point



- ▶ **Deletion** *G* − *e*: Remove *e*
- Contraction G/e: Shrink e to a point



- ▶ **Deletion** *G* − *e*: Remove *e*
- ▶ **Contraction** *G*/*e*: Shrink *e* to a point

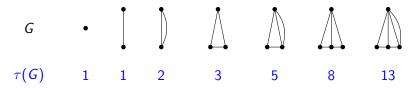


Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

Deletion and Contraction

Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

This formula allows easy calculation of $\tau(G)$ and some fun results:



Unfortunately:

- ► "easy" does not mean "efficient": 2^{|E|} steps are required to calculate \(\tau(G)\) this way.
- ► Useful only for graph families with recursive deletion/contraction structure (not K_n, K_{m,n}, Q_n, etc.).

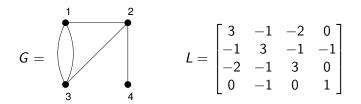
Definition Let *G* be a connected graph with vertices $[n] = \{1, ..., n\}$ and no loops. The Laplacian of *G* is the $n \times n$ matrix $L = [\ell_{ij}]$:

$$\ell_{ij} = \begin{cases} \deg_G(i) & \text{if } i = j, \\ -(\text{number of edges from } i \text{ to } j) & \text{if } i \neq j. \end{cases}$$

L is symmetric and positive semi-definite
 L = ∂∂^T, where ∂ = signed vertex-edge incidence matrix

- rank L = n 1
- ker L is spanned by the all-1's vector

Example



The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G)=\frac{\lambda_1\lambda_2\cdots\lambda_{n-1}}{n}$$

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

(2) Let $1 \le i \le n$. Form the **reduced Laplacian** L_i by deleting the i^{th} row and i^{th} column of L. Then

$$au({\sf G})={\sf det}\,{\sf L}_i$$
 .

Proof Sketch #1: Use linear algebra and deletion/contraction.

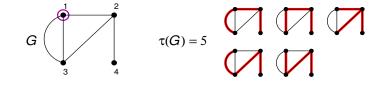
Proof Sketch #2: (Dall–Pfeifle 2014) Dissect one polyhedron with volume det L_i and reassemble it into one with volume $\tau(G)$. (Ask Ken for details.)

Proof Sketch #3: Let ∂ be the signed vertex/edge incidence matrix of *G* (so rank $\partial = n - 1$).

- Note that $L = \partial \partial^T$ and $L_i = \partial_i \partial_i^T$.
- Column bases of ∂ = spanning trees of G.
- Binet-Cauchy:

$$\det(\partial_i \, \partial_i^T) = \sum_{\substack{A \subseteq E(T) \\ |A| = n-1}} (\det \partial_A)^2 = \sum_{T \in \mathscr{T}(G)} (\pm 1)^2 = \tau(G).$$

The Matrix-Tree Theorem: Example

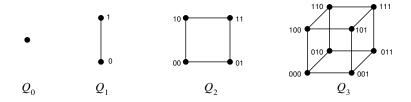


$$\partial = \begin{bmatrix} 1 & 1 & -1 & 0 & 0 \\ -1 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad L = \begin{bmatrix} 3 & -1 & -2 & 0 \\ -1 & 3 & -1 & -1 \\ -2 & -1 & 3 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Eigenvalues: 0, 1, 4, 5

Hypercubes

The hypercube graph Q_n has 2^n vertices, labeled by strings of n bits (0's and 1's), with two vertices adjacent if they agree in all but one bit.

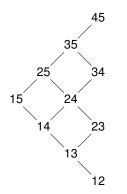


Theorem The eigenvalues of the Laplacian of Q_n are 0, 2, 4, ..., 2n, with 2k having multiplicity $\binom{n}{k}$. Therefore,

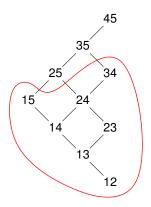
$$\tau(Q_n) = 2^{2^n - n - 1} \prod_{k=2}^n k^{\binom{n}{k}}.$$

A graph G with vertex set $\{1, 2, ..., n\}$ is a **threshold graph** if, whenever ab is an edge, so is a'b' for all $a' \le a$ and $b' \le b$.

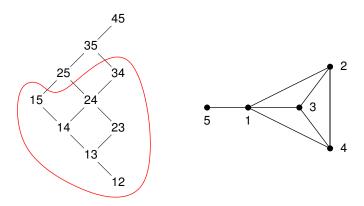
A graph G with vertex set $\{1, 2, ..., n\}$ is a **threshold graph** if, whenever ab is an edge, so is a'b' for all $a' \le a$ and $b' \le b$.



A graph G with vertex set $\{1, 2, ..., n\}$ is a **threshold graph** if, whenever ab is an edge, so is a'b' for all $a' \le a$ and $b' \le b$.



A graph G with vertex set $\{1, 2, ..., n\}$ is a **threshold graph** if, whenever ab is an edge, so is a'b' for all $a' \le a$ and $b' \le b$.

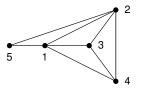


Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph *G* on vertices [n] are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

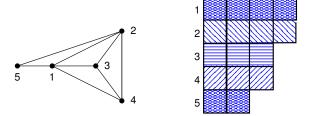
Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph *G* on vertices [n] are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.



Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph *G* on vertices [*n*] are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

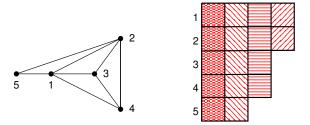
Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.



Vertex degrees: 4, 4, 3, 3, 2

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph *G* on vertices [*n*] are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.

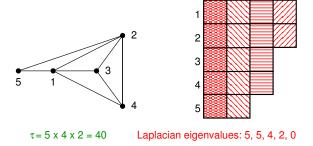


Laplacian eigenvalues: 5, 5, 4, 2, 0

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph *G* on vertices [*n*] are the columns λ'_j of the partition $\lambda = \lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G) = \lambda'_2 \lambda'_3 \cdots \lambda'_{n-1}$.



Theorem [Cayley–Prüfer]

$$\sum_{T \in \mathscr{T}(K_n)} x_1^{\deg_T(1)} \cdots x_n^{\deg_T(n)} = x_1 \cdots x_n (x_1 + \cdots + x_n)^{n-2}$$

- Setting $x_i = 1$ for all *i* recovers $\tau(K_n) = n^{n-2}$
- Can be proved either bijectively (*Prüfer code*) or by a souped-up version of the Matrix-Tree Theorem
- Other weighted tree counting formulas:
 - Via bijections: Fiedler-Sedláček (complete bipartite graphs), Knuth, Kelmans, Remmel-Williamson, etc.
 - Via MTT: JLM-Reiner (threshold graphs, hypercubes)

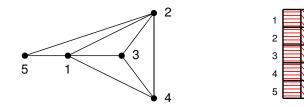
Theorem [JLM-Reiner 2005] Let *G* be a threshold graph on vertices [n] with degree sequence λ . Weight each edge e = ij with i < j by $x_i y_j$. Then the bidegree generating function is

$$\sum_{T \in \mathscr{T}(G)} \prod_{e:i < j} x_i y_j = x_1 y_n \prod_{r=2}^{n-1} \left(\sum_{i=1}^{\lambda'_r} x_{\min(i,r)} y_{\max(i,r)} \right)$$

and therefore (setting $y_i = x_i$) the degree generating function is

$$\sum_{T \in \mathscr{T}(G)} \prod_{i=1}^{n} x_i^{\deg(i)} = x_1 \cdots x_n \prod_{r=2}^{n-1} \left(\sum_{i=1}^{\lambda'_r} x_i \right)$$

Weighted Tree Counts for Threshold Graphs

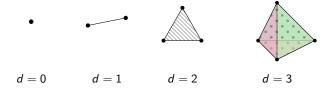


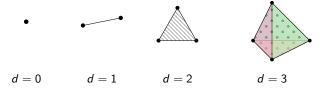
Bidegree generating function:

$$\begin{array}{l} x_1 y_5 (x_1 y_2 + x_2 y_2 + x_2 y_3 + x_2 y_4 + x_2 y_5) \\ \times (x_1 y_3 + x_2 y_3 + x_3 y_3 + x_3 y_4) (x_1 y_4 + x_2 y_4) \end{array}$$

Degree generating function:

$$x_1 x_2 x_3 x_4 x_5 (x_1 + x_2 + x_3 + x_4 + x_5)(x_1 + x_2 + x_3 + x_4)(x_1 + x_2)$$

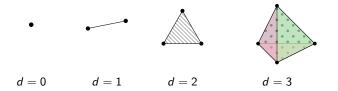




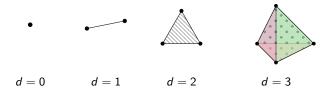
A simplicial complex is a space built (properly!) from simplices.

Simplicial Complexes

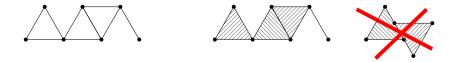
A *d*-simplex is the convex hull of d + 1 general points in \mathbb{R}^{d+1} .



A simplicial complex is a space built (properly!) from simplices.



A simplicial complex is a space built (properly!) from simplices.



Simplicial Complexes

Combinatorially, a simplicial complex is a set family $\Delta \subseteq 2^{\{1,2,\dots,n\}}$ such that if $\sigma \in \Delta$ and $\sigma' \subseteq \sigma$, then $\sigma' \in \Delta$.

 $\Delta_1 = \langle 12, 14, 24, 24, 25, 35 \rangle$

$$\Delta_2=\langle 124,245,35\rangle$$

- faces or simplices: elements of Δ
- dimension: dim $\sigma = |\sigma| 1$
- facet: a maximal face
- pure complex: all facets have equal dimension

Definition Let Δ^D be a simplicial complex of dimension d. A subcomplex $\Upsilon \subseteq \Delta$ is a simplicial spanning tree (SST) if:

- 1. Υ contains all simplices of Δ of dimension < d.
- 2. Υ is "acyclic" and "connected".
 - Technically: $\tilde{H}_d(\Upsilon; \mathbb{Q}) = \tilde{H}_{d-1}(\Upsilon; \mathbb{Q}) = 0.$
 - Intuitively: ↑ has no "bubbles" whose boundary is an orientable *d* or (*d* − 1)-manifold.

As before, we'll write $\mathscr{T}(\Delta)$ for the set of SSTs of Δ .

• dim
$$\Delta = 1$$
: $\mathscr{T}(\Delta) =$ graph-theoretic spanning trees

• dim
$$\Delta = 1$$
: $\mathscr{T}(\Delta) =$ graph-theoretic spanning trees

• dim
$$\Delta = 0$$
: $\mathscr{T}(\Delta) =$ vertices of Δ

• dim
$$\Delta = 1$$
: $\mathscr{T}(\Delta) =$ graph-theoretic spanning trees

• dim
$$\Delta = 0$$
: $\mathscr{T}(\Delta) =$ vertices of Δ

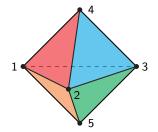
- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - ▶ Some noncontractible complexes also qualify, notably \mathbb{RP}^2

• dim
$$\Delta = 1$$
: $\mathscr{T}(\Delta) =$ graph-theoretic spanning trees

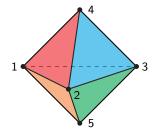
• dim
$$\Delta = 0$$
: $\mathscr{T}(\Delta) =$ vertices of Δ

- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - ▶ Some noncontractible complexes also qualify, notably \mathbb{RP}^2
- If Δ is a simplicial sphere: SSTs are Δ \ {σ}, where σ ∈ Δ is any facet (maximal face)
 - Simplicial spheres are analogous to cycle graphs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

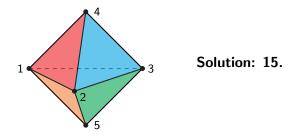


Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?



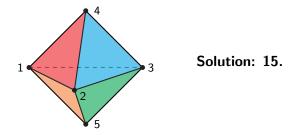
Solution: 15.

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?



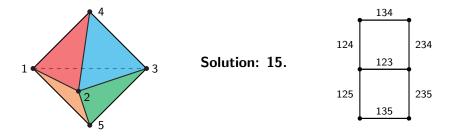
• Either remove triangle 123 and any other triangle (6 SSTs)...

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?



- Either remove triangle 123 and any other triangle (6 SSTs)...
- ... or one each "northern" and "southern" triangle (9 SSTs).

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta = \langle 123, 124, 134, 234, 125, 135, 235 \rangle$ have?



- Either remove triangle 123 and any other triangle (6 SSTs)...
- ... or one each "northern" and "southern" triangle (9 SSTs).

Simplicial Boundary Maps and Homology

Let Δ be a simplicial complex on vertices [n]. Write Δ_k for the set of k-dimensional faces.

The k^{th} simplicial boundary matrix of Δ is is

$$\partial_k = \partial_k(\Delta) = [d_{\rho,\sigma}]_{\rho \in \Delta_{k-1}, \sigma \in \Delta_k}$$

where

$$d_{\rho,\sigma} = \begin{cases} (-1)^j & \text{if } \sigma = \{v_0 < v_1 < \dots < v_k\} \text{ and } \rho = \sigma \setminus v_j \\ 0 & \text{if } \rho \not\subseteq \sigma \end{cases}$$

Note: ∂_1 is the signed incidence matrix of the 1-skeleton of Δ . **Fact:** ker $\partial_k \supseteq$ im ∂_{k+1} for all k. (Check it!)

Simplicial Boundary Maps and Homology

Fact: ker $\partial_k \supseteq \operatorname{im} \partial_{k+1}$ for all k. In other words, the sequence

$$\cdots \to R\Delta_{k+1} \xrightarrow{\partial_{k+1}} R\Delta_k \xrightarrow{\partial_k} R\Delta_{k-1} \to \cdots$$

is a chain complex for any ring R. (Default in this talk: $R = \mathbb{Z}$.) The homology groups of Δ are

$$\widetilde{H}_k(\Delta; R) = \ker \partial_k / \operatorname{im} \partial_{k+1}.$$

These are topological invariants of Δ .

- $ilde{H}_0(\Delta) = 0 \iff \Delta$ is connected
- $\tilde{H}_1(\Delta) = 0 \iff \Delta$ is simply connected (essentially)
- If Δ is contractible then $\tilde{H}_k(\Delta) = 0$ for all k

The k^{th} (updown) Laplacian matrix of a simplicial complex Δ is $L_{k-1}^{ud}(\Delta) = \partial_k \partial_k^T$.

L^{ud}₀(Δ) is the usual graph Laplacian.

• $L_{k-1}^{\mathrm{ud}}(\Delta)$ is a square matrix with entries

$$\ell_{\rho,\pi} = \begin{cases} \#\{\sigma \in \Delta_k \mid \sigma \supseteq \rho\} & \text{ if } \rho = \pi, \\ \pm 1 & \text{ if } \rho, \pi \text{ lie in a common } k\text{-face,} \\ 0 & \text{ otherwise} \end{cases}$$

for $\rho, \pi \in \Delta_{k-1}$.

```
Simplicial Matrix-Tree Theorem
(Bolker, Kalai, Adin, Duval–Klivans–JLM, ...)
```

Let Δ^d be a simplicial complex.

Form a **reduced Laplacian** $L_T(\Delta)$ from $L(\Delta)$ by deleting the rows and columns corresponding to a (d-1)-dimensional SST $T \subseteq \Delta$.

Then the "number" of spanning trees of Δ is det L_T , divided by a correction factor given by T.

The Simplicial Matrix-Tree Theorem (Precisely)

The torsion of a spanning tree $\Upsilon \in \mathscr{T}(\Delta)$ is

$$\left| \widetilde{H}_{d-1}(\Upsilon;\mathbb{Z})
ight| = \left| \ker \partial_{d-1}(\Upsilon) \ / \ \operatorname{im} \partial_{d}(\Upsilon)
ight|$$

(which must be finite).

- This number is 1 if dim $\Delta \leq 1$.
- Torsion \approx non-orientability: e.g., $\tilde{H}_1(\mathbb{RP}^2) = \mathbb{Z}/2\mathbb{Z}$.

Simplicial Matrix-Tree Theorem

$$\tau(\Delta) \stackrel{\text{def}}{=} \sum_{\Upsilon \in \mathscr{T}(\Delta)} |\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})|^2 = \frac{|\tilde{H}_{d-2}(\Delta)|}{|\tilde{H}_{d-2}(T)|} \det \hat{L}_{T}$$

If d = 1 then all summands are 1. In many natural cases, the correction factor is trivial. Simplicial generalization of the complete graph:

$$K_{n,d} = \{F \subseteq \{1,\ldots,n\} \mid \dim F \leq d\}$$

Simplicial generalization of the complete graph:

$$K_{n,d} = \{F \subseteq \{1,\ldots,n\} \mid \dim F \leq d\}$$

Theorem [Kalai 1983]

$$\tau(K_{n,d}) = n^{\binom{n-2}{d}}.$$

More generally,

$$\sum_{\Upsilon \in \mathscr{T}(K)} |\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{i=1}^n x_i^{\deg_{\Upsilon}(i)} = (x_1 \cdots x_n)^{\binom{n-2}{d-1}} (x_1 + \cdots + x_n)^{\binom{n-2}{d}}.$$

- ► Kalai's theorem reduces to \(\tau(K_n) = n^{n-2}\) when \(d = 1\), and the weighted version reduces to Cayley-Pr\"ufer.
- Bolker (1976): Observed that n⁽ⁿ⁻²⁾/_d is an exact count of trees for small n, d, but fails for n = 6, d = 2.
 - \blacktriangleright The problem is torsion \mathbb{RP}^2 requires six vertices to triangulate
- ► Adin (1992): Analogous formula for complete colorful complexes, generalizing τ(K_{n,m}) = n^{m-1}mⁿ⁻¹

A simplicial complex Δ with vertex set $\{1, 2, ..., n\}$ is **shifted** if whenever $a_1a_2 \cdots a_k \in \Delta$ and $b_i \leq a_i$ for all *i*, then $b_1b_2 \cdots b_k \in \Delta$.

(So one-dimensional shifted complexes are just threshold graphs.)

Theorem [Duval–Reiner 2002]

Let λ_i = number of max-dim faces containing *i*. Then eigenvalues of $L(\Delta)$ = column lengths of λ . (Generalization of Merris' Theorem)

Theorem [Duval–Klivans–JLM 2009]

Factorization of multidegree g.f. for spanning trees of a shifted complex. (Generalization of JLM–Reiner formula)

Further Directions

- Theory of SSTs and the Matrix-Tree Theorem generalize easily from simplicial complexes to cell complexes
 - Cubes and their skeletons [Duval–Klivans–JLM 2011], [Aalipour–Duval–Kook–Lee–JLM 2017⁺]
 - Cellular MTT discovered independently in contexts of probability [Lyons 2009] and mathematical physics [Catanzaro–Chernyak–Klein 2015]
- Simplicial/cell complexes that have integer Laplacian eigenvalues "should" have factorizable weighted tree g.f.'s
 - Matroid complexes; others?
- Critical groups:
 - Complex $\Delta \Rightarrow$ abelian group $K(\Delta)$ of size $\tau(\Delta)$
 - Cuts, flows, sandpile theory, "algebraic geometry on graphs"
 - Group structure very mysterious