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Graphs

A graph is a pair G = (V ,E ), where

I V is a set of vertices, and

I E is a set of edges, each joining two vertices (its endpoints).

The degree of a vertex is the number of edges incident to it.
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Cycle graph C8 Complete graph K6

Complete bipartite graph K5,3Cube graph Q3
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Spanning Trees

Definition A spanning tree of a graph G is a set of edges T (or
a subgraph (V ,T )) such that:

1. (V ,T ) is connected: every pair of vertices is joined by a path

2. (V ,T ) is acyclic: there are no cycles

3. |T | = |V | − 1.

Any two of these conditions together imply the third.
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Counting Spanning Trees

T (G ) = set of spanning trees of G
τ(G ) = number of spanning trees of G

I τ(tree) = 1

I τ(Cn) = n

I τ(Kn) = nn−2 (Cayley’s formula; highly nontrivial!)

I τ(Km,n) = nm−1mn−1

I Many other enumeration formulas for nice graphs
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Deletion and Contraction

Let e ∈ E (G ).

I Deletion G − e: Remove e

I Contraction G/e: Shrink e to a point

Theorem τ(G ) = τ(G − e) + τ(G/e).
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

This formula allows easy calculation of τ(G ) and some fun results:

G

τ(G ) 1 1 2 3 5 8 13

Unfortunately:

I “easy” does not mean “efficient”: 2|E | steps are required to
calculate τ(G ) this way.

I Useful only for graph families with recursive
deletion/contraction structure (not Kn, Km,n, Qn, etc.).
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The Matrix-Tree Theorem

Definition Let G be a connected graph with vertices
[n] = {1, . . . , n} and no loops. The Laplacian of G is the n × n
matrix L = [`ij ]:

`ij =

{
degG (i) if i = j ,

−(number of edges from i to j) if i 6= j .

I L is symmetric and positive semi-definite
I L = ∂∂T , where ∂ = signed vertex-edge incidence matrix

I rank L = n − 1

I ker L is spanned by the all-1’s vector
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The Matrix-Tree Theorem

Example

G =

1 2

3 4

L =


3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.

(2) Let 1 ≤ i ≤ n. Form the reduced Laplacian Li by deleting the
i th row and i th column of L. Then

τ(G ) = det Li .
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The Matrix-Tree Theorem: Proof Sketches

Proof Sketch #1: Use linear algebra and deletion/contraction.

Proof Sketch #2: (Dall–Pfeifle 2014) Dissect one polyhedron
with volume det Li and reassemble it into one with volume τ(G ).
(Ask Ken for details.)

Proof Sketch #3: Let ∂ be the signed vertex/edge incidence
matrix of G (so rank ∂ = n − 1).

I Note that L = ∂∂T and Li = ∂i ∂
T
i .

I Column bases of ∂ = spanning trees of G .

I Binet-Cauchy:

det(∂i ∂
T
i ) =

∑
A⊆E(T )
|A|=n−1

(det ∂A)2 =
∑

T∈T (G)

(±1)2 = τ(G ).
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The Matrix-Tree Theorem: Example

τ(G ) = 5G

21

3 4

∂ =


1 1 −1 0 0
−1 0 0 1 −1
0 −1 1 −1 0
0 0 0 0 1

 L =


3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1


Eigenvalues: 0, 1, 4, 5
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Hypercubes

The hypercube graph Qn has 2n vertices, labeled by strings of n
bits (0’s and 1’s), with two vertices adjacent if they agree in all but
one bit.

0 2 31
QQ Q Q

0

1

00 01

10 11

000 001

100 101

010 011

110 111

Theorem The eigenvalues of the Laplacian of Qn are
0, 2, 4, . . . , 2n, with 2k having multiplicity

(n
k

)
. Therefore,

τ(Qn) = 22n−n−1
n∏

k=2

k(nk).
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Threshold Graphs

A graph G with vertex set {1, 2, . . . , n} is a threshold graph if,
whenever ab is an edge, so is a′b′ for all a′ ≤ a and b′ ≤ b.

Equivalently, the edges of G form an order ideal under
componentwise order.
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Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns λ′j of the
partition λ = λ(G ) whose rows are the vertex degrees.

Corollary τ(G ) = λ′2λ
′
3 · · ·λ′n−1.
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Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns λ′j of the
partition λ = λ(G ) whose rows are the vertex degrees.
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′
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Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a
threshold graph G on vertices [n] are the columns λ′j of the
partition λ = λ(G ) whose rows are the vertex degrees.

Corollary τ(G ) = λ′2λ
′
3 · · ·λ′n−1.

Laplacian eigenvalues: 5, 5, 4, 2, 0τ= 5 x 4 x 2 = 40
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Weighted Counting

Theorem [Cayley–Prüfer]∑
T∈T (Kn)

x
degT (1)
1 · · · xdegT (n)

n = x1 · · · xn(x1 + · · ·+ xn)n−2

I Setting xi = 1 for all i recovers τ(Kn) = nn−2

I Can be proved either bijectively (Prüfer code) or by a
souped-up version of the Matrix-Tree Theorem

I Other weighted tree counting formulas:
I Via bijections: Fiedler-Sedláček (complete bipartite graphs),

Knuth, Kelmans, Remmel-Williamson, etc.

I Via MTT: JLM–Reiner (threshold graphs, hypercubes)
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Weighted Tree Counts for Threshold Graphs

Theorem [JLM–Reiner 2005] Let G be a threshold graph on
vertices [n] with degree sequence λ. Weight each edge e = ij with
i < j by xiyj . Then the bidegree generating function is

∑
T∈T (G)

∏
e:i<j

xiyj = x1yn

n−1∏
r=2

 λ′r∑
i=1

xmin(i ,r)ymax(i ,r)


and therefore (setting yi = xi ) the degree generating function is

∑
T∈T (G)

n∏
i=1

x
deg(i)
i = x1 · · · xn

n−1∏
r=2

 λ′r∑
i=1

xi
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Weighted Tree Counts for Threshold Graphs

1

3

2

4

5
4

2
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15

Bidegree generating function:

x1 y5 (x1y2 + x2y2 + x2y3 + x2y4 + x2y5)

× (x1y3 + x2y3 + x3y3 + x3y4)(x1y4 + x2y4)

Degree generating function:

x1 x2 x3 x4 x5 (x1 + x2 + x3 + x4 + x5)(x1 + x2 + x3 + x4)(x1 + x2)
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Simplicial Complexes

A d -simplex is the convex hull of d + 1 general points in Rd+1.

d = 0 d = 1 d = 2 d = 3

A simplicial complex is a space built (properly!) from simplices.
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Simplicial Complexes

Combinatorially, a simplicial complex is a set family ∆ ⊆ 2{1,2,...,n}

such that if σ ∈ ∆ and σ′ ⊆ σ, then σ′ ∈ ∆.

1 2 3

4 5

∆1 = 〈12, 14, 24, 24, 25, 35〉

1 2 3

4 5

∆2 = 〈124, 245, 35〉

I faces or simplices: elements of ∆

I dimension: dimσ = |σ| − 1

I facet: a maximal face

I pure complex: all facets have equal dimension

Jeremy Martin, KU Simplicial and cellular trees



Simplicial Spanning Trees

Definition Let ∆D be a simplicial complex of dimension d .

A subcomplex Υ ⊆ ∆ is a simplicial spanning tree (SST) if:

1. Υ contains all simplices of ∆ of dimension < d .

2. Υ is “acyclic” and “connected”.

I Technically: H̃d(Υ;Q) = H̃d−1(Υ;Q) = 0.

I Intuitively: Υ has no “bubbles” whose boundary is an
orientable d- or (d − 1)-manifold.

As before, we’ll write T (∆) for the set of SSTs of ∆.
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Examples of SSTs

I dim ∆ = 1: T (∆) = graph-theoretic spanning trees

I dim ∆ = 0: T (∆) = vertices of ∆

I If ∆ is contractible: it has only one SST, namely itself.
I Contractible complexes ≈ acyclic graphs
I Some noncontractible complexes also qualify, notably RP2

I If ∆ is a simplicial sphere: SSTs are ∆ \ {σ}, where σ ∈ ∆ is
any facet (maximal face)

I Simplicial spheres are analogous to cycle graphs

Jeremy Martin, KU Simplicial and cellular trees



Examples of SSTs

I dim ∆ = 1: T (∆) = graph-theoretic spanning trees

I dim ∆ = 0: T (∆) = vertices of ∆

I If ∆ is contractible: it has only one SST, namely itself.
I Contractible complexes ≈ acyclic graphs
I Some noncontractible complexes also qualify, notably RP2

I If ∆ is a simplicial sphere: SSTs are ∆ \ {σ}, where σ ∈ ∆ is
any facet (maximal face)

I Simplicial spheres are analogous to cycle graphs

Jeremy Martin, KU Simplicial and cellular trees



Examples of SSTs

I dim ∆ = 1: T (∆) = graph-theoretic spanning trees

I dim ∆ = 0: T (∆) = vertices of ∆

I If ∆ is contractible: it has only one SST, namely itself.
I Contractible complexes ≈ acyclic graphs
I Some noncontractible complexes also qualify, notably RP2

I If ∆ is a simplicial sphere: SSTs are ∆ \ {σ}, where σ ∈ ∆ is
any facet (maximal face)

I Simplicial spheres are analogous to cycle graphs

Jeremy Martin, KU Simplicial and cellular trees



Examples of SSTs

I dim ∆ = 1: T (∆) = graph-theoretic spanning trees

I dim ∆ = 0: T (∆) = vertices of ∆

I If ∆ is contractible: it has only one SST, namely itself.
I Contractible complexes ≈ acyclic graphs
I Some noncontractible complexes also qualify, notably RP2

I If ∆ is a simplicial sphere: SSTs are ∆ \ {σ}, where σ ∈ ∆ is
any facet (maximal face)

I Simplicial spheres are analogous to cycle graphs

Jeremy Martin, KU Simplicial and cellular trees



Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid
∆ = 〈123, 124, 134, 234, 125, 135, 235〉 have?

1

2

3

4

5

Solution: 15.

125

124

235

234

135

123

134

• Either remove triangle 123 and any other triangle (6 SSTs). . .
• . . . or one each “northern” and “southern” triangle (9 SSTs).
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Simplicial Boundary Maps and Homology

Let ∆ be a simplicial complex on vertices [n].
Write ∆k for the set of k-dimensional faces.

The kth simplicial boundary matrix of ∆ is is

∂k = ∂k(∆) = [dρ,σ]ρ∈∆k−1, σ∈∆k

where

dρ,σ =

{
(−1) j if σ = {v0 < v1 < · · · < vk} and ρ = σ \ vj
0 if ρ 6⊆ σ

Note: ∂1 is the signed incidence matrix of the 1-skeleton of ∆.

Fact: ker ∂k ⊇ im ∂k+1 for all k . (Check it!)
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Simplicial Boundary Maps and Homology

Fact: ker ∂k ⊇ im ∂k+1 for all k. In other words, the sequence

· · · → R∆k+1

∂k+1−−−→ R∆k
∂k−→ R∆k−1 → · · ·

is a chain complex for any ring R. (Default in this talk: R = Z.)

The homology groups of ∆ are

H̃k(∆;R) = ker ∂k / im ∂k+1.

These are topological invariants of ∆.

I H̃0(∆) = 0 ⇐⇒ ∆ is connected

I H̃1(∆) = 0 ⇐⇒ ∆ is simply connected (essentially)

I If ∆ is contractible then H̃k(∆) = 0 for all k
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Simplicial Laplacians

The kth (updown) Laplacian matrix of a simplicial complex ∆ is

Ludk−1(∆) = ∂k∂
T
k .

I Lud0 (∆) is the usual graph Laplacian.

I Ludk−1(∆) is a square matrix with entries

`ρ, π =


#{σ ∈ ∆k | σ ⊇ ρ} if ρ = π,

±1 if ρ, π lie in a common k-face,

0 otherwise

for ρ, π ∈ ∆k−1.
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The Simplicial Matrix-Tree Theorem (Roughly)

Simplicial Matrix-Tree Theorem
(Bolker, Kalai, Adin, Duval–Klivans–JLM, . . . )

Let ∆d be a simplicial complex.

Form a reduced Laplacian LT (∆) from L(∆) by deleting the rows
and columns corresponding to a (d − 1)-dimensional SST T ⊆ ∆.

Then the “number” of spanning trees of ∆ is det LT , divided by a
correction factor given by T .

Jeremy Martin, KU Simplicial and cellular trees



The Simplicial Matrix-Tree Theorem (Precisely)

The torsion of a spanning tree Υ ∈ T (∆) is∣∣H̃d−1(Υ;Z)
∣∣ =

∣∣ker ∂d−1(Υ) / im ∂d(Υ)
∣∣

(which must be finite).

I This number is 1 if dim ∆ ≤ 1.

I Torsion ≈ non-orientability: e.g., H̃1(RP2) = Z/2Z.

Simplicial Matrix-Tree Theorem

τ(∆)
def
=

∑
Υ∈T (∆)

|H̃d−1(Υ;Z)|2 =
|H̃d−2(∆)|
|H̃d−2(T )|

det L̂T

If d = 1 then all summands are 1.
In many natural cases, the correction factor is trivial.
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Kalai’s Theorem

Simplicial generalization of the complete graph:

Kn,d = {F ⊆ {1, . . . , n} | dimF ≤ d}

Theorem [Kalai 1983]

τ(Kn,d) = n

(n−2
d

)
.

More generally,

∑
Υ∈T (K)

|H̃d−1(Υ;Z)|2
n∏

i=1

x
degΥ(i)
i = (x1 · · · xn)(n−2

d−1)(x1+· · ·+xn)(n−2
d ).

Jeremy Martin, KU Simplicial and cellular trees



Kalai’s Theorem

Simplicial generalization of the complete graph:

Kn,d = {F ⊆ {1, . . . , n} | dimF ≤ d}

Theorem [Kalai 1983]

τ(Kn,d) = n

(n−2
d

)
.

More generally,

∑
Υ∈T (K)

|H̃d−1(Υ;Z)|2
n∏

i=1

x
degΥ(i)
i = (x1 · · · xn)(n−2

d−1)(x1+· · ·+xn)(n−2
d ).

Jeremy Martin, KU Simplicial and cellular trees



Kalai’s Theorem

I Kalai’s theorem reduces to τ(Kn) = nn−2 when d = 1, and
the weighted version reduces to Cayley-Prüfer.

I Bolker (1976): Observed that n

(n−2
d

)
is an exact count of

trees for small n, d , but fails for n = 6, d = 2.
I The problem is torsion — RP2 requires six vertices to

triangulate

I Adin (1992): Analogous formula for complete colorful
complexes, generalizing τ(Kn,m) = nm−1mn−1
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Shifted Simplicial Complexes

A simplicial complex ∆ with vertex set {1, 2, . . . , n} is shifted if
whenever a1a2 · · · ak ∈ ∆ and bi ≤ ai for all i , then
b1b2 · · · bk ∈ ∆.

(So one-dimensional shifted complexes are just threshold graphs.)

Theorem [Duval–Reiner 2002]

Let λi = number of max-dim faces containing i .
Then eigenvalues of L(∆) = column lengths of λ.
(Generalization of Merris’ Theorem)

Theorem [Duval–Klivans–JLM 2009]

Factorization of multidegree g.f. for spanning trees of a shifted
complex. (Generalization of JLM–Reiner formula)
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Further Directions

I Theory of SSTs and the Matrix-Tree Theorem generalize
easily from simplicial complexes to cell complexes

I Cubes and their skeletons [Duval–Klivans–JLM 2011],
[Aalipour–Duval–Kook–Lee–JLM 2017+]

I Cellular MTT discovered independently in contexts of
probability [Lyons 2009] and mathematical physics
[Catanzaro–Chernyak–Klein 2015]

I Simplicial/cell complexes that have integer Laplacian
eigenvalues “should” have factorizable weighted tree g.f.’s

I Matroid complexes; others?

I Critical groups:
I Complex ∆ ⇒ abelian group K (∆) of size τ(∆)
I Cuts, flows, sandpile theory, “algebraic geometry on graphs”
I Group structure very mysterious
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