Trees and How to Count Them

Jeremy L. Martin
Department of Mathematics
University of Kansas

The Frank S. Brenneman Lectures
Tabor College
March 28, 2017

Graphs

A graph is a pair $G=(V, E)$, where

- V is a set of vertices, and
- E is a set of edges, each joining two vertices (its endpoints).

The degree of a vertex is the number of edges incident to it.

Graphs

A graph is a pair $G=(V, E)$, where

- V is a set of vertices, and
- E is a set of edges, each joining two vertices (its endpoints).

The degree of a vertex is the number of edges incident to it.

Cycle graph C_{8}

Cube graph Q_{3}

Complete graph K_{6}

Complete bipartite graph $K_{5,3}$

G

The Brenneman Lectures, Tabor College, March 2017

Why study graphs?

- Real-world applications
- Combinatorial optimization (routing, scheduling. . .)
- Computer science (data structures, sorting, searching. . .)
- Biology (evolutionary descent. . .)
- Chemistry (molecular structure. . .)
- Engineering (roads, rigidity...)
- Network models (social networks, the Internet. . .)
- Pure mathematics
- Combinatorics (ubiquitous!)
- Discrete dynamical systems (chip-firing game...)
- Algebra (quivers, Cayley graphs...)
- Discrete geometry (polytopes, sphere packing...)

Spanning Trees

Definition A spanning tree of a graph G is a set of edges T (or a subgraph $(V, T))$ such that:

1. (V, T) is connected: every pair of vertices is joined by a path
2. (V, T) is acyclic: there are no cycles
3. $|T|=|V|-1$.

Any two of these conditions together imply the third.

Spanning Trees

G

Spanning Trees

G
T_{1}

Spanning Trees

G
 T_{2}

Counting Spanning Trees

$\mathscr{T}(G)=$ set of spanning trees of G $\tau(G)=$ number of spanning trees of G

- $\tau($ tree $)=1$
- $\tau\left(C_{n}\right)=n$
- $\tau\left(K_{n}\right)=n^{n-2}$ (Cayley's formula; highly nontrivial!)
- $\tau\left(K_{m, n}\right)=n^{m-1} m^{n-1}$
- Many other enumeration formulas for nice graphs

Deletion and Contraction

Let $e \in E(G)$.

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion Gie: Remove e
- Contraction G / e : Shrink e to a point

G

.

GIe

Deletion and Contraction

Let $e \in E(G)$.

- Deletion $G-e$: Remove e
- Contraction G / e : Shrink e to a point

G
G

GIe

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.
This formula allows easy calculation of $\tau(G)$ and some fun results:
G

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

This formula allows easy calculation of $\tau(G)$ and some fun results:

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

This formula allows easy calculation of $\tau(G)$ and some fun results:
G
$\tau(G)$

1
1

8
13

Unfortunately:

- "easy" does not mean "efficient": $2^{|E|}$ steps are required to calculate $\tau(G)$ this way.
- Useful only for graph families with recursive deletion/contraction structure (not $K_{n}, K_{m, n}, Q_{n}$, etc.).

The Matrix-Tree Theorem

Definition Let G be a connected graph with vertices $1, \ldots, n$ and no loops. The Laplacian of G is the $n \times n$ matrix $L=\left[\ell_{i j}\right]$:

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -(\text { number of edges from } i \text { to } j) & \text { if } i \neq j\end{cases}
$$

- L is symmetric and positive semi-definite
- $L=\partial \partial^{T}$, where $\partial=$ signed vertex-edge incidence matrix
- $\operatorname{rank} L=n-1$
- $\operatorname{ker} L$ is spanned by the all-1's vector

The Matrix-Tree Theorem

Example

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

(2) Let $1 \leq i \leq n$. Form the reduced Laplacian L_{i} by deleting the $i^{\text {th }}$ row and $i^{t h}$ column of L. Then

$$
\tau(G)=\operatorname{det} L_{i}
$$

The Matrix-Tree Theorem: Example

$$
\tau(G)=5
$$

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

$$
L_{1}=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Eigenvalues: 0, 1, 4, 5

$$
\operatorname{det} L_{1}=5
$$

$$
(1 \cdot 4 \cdot 5) / 4=5
$$

Hypercubes

The hypercube graph Q_{n} has 2^{n} vertices, labeled by strings of n bits (0 's and 1 's), with two vertices adjacent if they agree in all but one bit.

Theorem The eigenvalues of the Laplacian of Q_{n} are $0,2,4, \ldots, 2 n$, with $2 k$ having multiplicity $\binom{n}{k}$. Therefore,

$$
\tau\left(Q_{n}\right)=2^{2^{n}-n-1} \prod_{k=2}^{n} k\binom{n}{k} .
$$

Threshold Graphs

A graph with vertex set $\{1,2, \ldots, n\}$ is a threshold graph if, whenever $a b$ is an edge, so is $a^{\prime} b^{\prime}$ for all $a^{\prime} \leq a$ and $b^{\prime} \leq b$.

Threshold Graphs

A graph with vertex set $\{1,2, \ldots, n\}$ is a threshold graph if, whenever $a b$ is an edge, so is $a^{\prime} b^{\prime}$ for all $a^{\prime} \leq a$ and $b^{\prime} \leq b$.

Threshold Graphs

A graph with vertex set $\{1,2, \ldots, n\}$ is a threshold graph if, whenever $a b$ is an edge, so is $a^{\prime} b^{\prime}$ for all $a^{\prime} \leq a$ and $b^{\prime} \leq b$.

Threshold Graphs

A graph with vertex set $\{1,2, \ldots, n\}$ is a threshold graph if, whenever $a b$ is an edge, so is $a^{\prime} b^{\prime}$ for all $a^{\prime} \leq a$ and $b^{\prime} \leq b$.

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\quad \tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Laplacian eigenvalues: 5, 5, 4, 2, 0

Threshold Graphs

Theorem [Merris 1994] The eigenvalues of the Laplacian of a threshold graph G on vertices $1, \ldots, n$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

$$
\tau=5 \times 4 \times 2=40 \quad \text { Laplacian eigenvalues: } 5,5,4,2,0
$$

Weighted Counting

Theorem [Cayley-Prüfer]

$$
\sum_{T \in \mathscr{T}\left(K_{n}\right)} x_{1}^{\operatorname{deg}_{T}(1)} \cdots x_{n}^{\operatorname{deg}_{T}(n)}=x_{1} \cdots x_{n}\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

- Setting $x_{i}=1$ for all i recovers $\tau\left(K_{n}\right)=n^{n-2}$
- Can be proved either bijectively (Prüfer code) or by a souped-up version of the Matrix-Tree Theorem
- Other weighted tree counting formulas:
- Via bijections: Fiedler-Sedláček (complete bipartite graphs), Knuth, Kelmans, Remmel-Williamson, etc.
- Via MTT: JLM-Reiner (threshold graphs, hypercubes)

Weighted Tree Counts for Threshold Graphs

Theorem [JLM-Reiner 2005] Let G be a threshold graph on vertices $1, \ldots, n$ with degree sequence λ. Weight each edge $e=i j$ with $i<j$ by $x_{i} y_{j}$. Then the bidegree generating function is

$$
\sum_{T \in \mathscr{T}(G)} \prod_{e: i<j} x_{i} y_{j}=x_{1} y_{n} \prod_{r=2}^{n-1}\left(\sum_{i=1}^{\lambda_{r}^{\prime}} x_{\min (i, r)} y_{\max (i, r)}\right)
$$

and therefore (setting $y_{i}=x_{i}$) the degree generating function is

$$
\sum_{T \in \mathscr{T}(G)} \prod_{i=1}^{n} x_{i}^{\operatorname{deg}(i)}=x_{1} \cdots x_{n} \prod_{r=2}^{n-1}\left(\sum_{i=1}^{\lambda_{r}^{\prime}} x_{i}\right)
$$

Weighted Tree Counts for Threshold Graphs

Bidegree generating function:

$$
\begin{aligned}
& x_{1} y_{5}\left(x_{1} y_{2}+x_{2} y_{2}+x_{2} y_{3}+x_{2} y_{4}+x_{2} y_{5}\right) \\
& \quad \times \quad\left(x_{1} y_{3}+x_{2} y_{3}+x_{3} y_{3}+x_{3} y_{4}\right)\left(x_{1} y_{4}+x_{2} y_{4}\right)
\end{aligned}
$$

Degree generating function:

$$
x_{1} x_{2} x_{3} x_{4} x_{5}\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}\right)
$$

Simplicial Complexes

A d-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

Simplicial Complexes

A d-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

Simplicial Complexes

A d-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

A simplicial complex is a space built (properly!) from simplices.

Simplicial Complexes

A d-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

A simplicial complex is a space built (properly!) from simplices.

Simplicial Complexes

A d-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

A simplicial complex is a space built (properly!) from simplices.

Simplicial Complexes

Combinatorially, a simplicial complex is a set family $\Delta \subseteq 2^{\{1,2, \ldots, n\}}$ such that if $\sigma \in \Delta$ and $\sigma^{\prime} \subseteq \sigma$, then $\sigma^{\prime} \in \Delta$.

$$
\Delta_{1}=\langle 12,14,24,24,25,35\rangle
$$

$\Delta_{2}=\langle 124,245,35\rangle$

- faces or simplices: elements of Δ
- dimension: $\operatorname{dim} \sigma=|\sigma|-1$
- facet: a maximal face
- pure complex: all facets have equal dimension

Simplicial Spanning Trees

Definition Let Δ be a simplicial complex of dimension d.
A subcomplex $\Upsilon \subseteq \Delta$ is a simplicial spanning tree (SST) if:

1. Υ contains all simplices of Δ of dimension $<d$.
2. Υ is "acyclic" and "connected".

- Technically: $\tilde{H}_{d}(\Upsilon ; \mathbb{Q})=\tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=0$.
- Intuitively: Υ has no "bubbles" whose boundary is an orientable d - or ($d-1$)-manifold.

As before, we'll write $\mathscr{T}(\Delta)$ for the set of SSTs of Δ.

Examples of SSTs

- $\operatorname{dim} \Delta=1: \mathscr{T}(\Delta)=$ graph-theoretic spanning trees

Examples of SSTs

- $\operatorname{dim} \Delta=1: \mathscr{T}(\Delta)=$ graph-theoretic spanning trees
- $\operatorname{dim} \Delta=0: \mathscr{T}(\Delta)=$ vertices of Δ

Examples of SSTs

- $\operatorname{dim} \Delta=1: \mathscr{T}(\Delta)=$ graph-theoretic spanning trees
- $\operatorname{dim} \Delta=0: \mathscr{T}(\Delta)=$ vertices of Δ
- If Δ is contractible: it has only one SST, namely itself.
- Contractible complexes \approx acyclic graphs
- Some noncontractible complexes also qualify, notably $\mathbb{R P}^{2}$

Examples of SSTs

- $\operatorname{dim} \Delta=1: \mathscr{T}(\Delta)=$ graph-theoretic spanning trees
- $\operatorname{dim} \Delta=0: \mathscr{T}(\Delta)=$ vertices of Δ
- If Δ is contractible: it has only one SST, namely itself.
- Contractible complexes \approx acyclic graphs
- Some noncontractible complexes also qualify, notably $\mathbb{R P}^{2}$
- If Δ is a simplicial sphere: SSTs are $\Delta \backslash\{\sigma\}$, where $\sigma \in \Delta$ is any facet (maximal face)
- Simplicial spheres are analogous to cycle graphs

Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Solution: 15.

Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Solution: 15.

- Either remove triangle 123 and any other triangle (6 SSTs)...

Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Solution: 15.

- Either remove triangle 123 and any other triangle (6SSTs)...
- ... or one each "northern" and "southern" triangle (9 SSTs).

Examples of SSTs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

- Either remove triangle 123 and any other triangle (6SSTs)...
- ... or one each "northern" and "southern" triangle (9 SSTs).

Counting SSTs: The Good News

Every simplicial complex Δ of dimension d has a Laplacian matrix $L=L(\Delta)=\left[\ell_{i j}\right]$ with

- rows and columns indexed by $(d-1)$-faces (ridges) of Δ
- $\ell_{i i}=$ number of facets containing i
- $\ell_{i j}= \pm 1$ if ridges i, j lie in a common facet, 0 otherwise

Counting SSTs: The Good News

Simplicial Matrix-Tree Theorem

(Bolker, Kalai, Adin, Duval-Klivans-JLM, ...)

Let Δ be a simplicial complex of dimension d.
Form a reduced Laplacian $L_{T}(\Delta)$ from $L(\Delta)$ by deleting the rows and columns corresponding to a $(d-1)$-dimensional SST $T \subseteq \Delta$.

Then the "number" of spanning trees of Δ is $\operatorname{det} L_{T}$, divided by a correction factor given by T.

Counting SSTs: The Bad News

In dimension $d \geq 2$, spanning trees can have torsion.

- Technically: Torsion of $\Upsilon \in \mathscr{T}(\Delta)=\left|\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})\right|$
- Intuitively: Some piece of Υ is twisted in a funny way (e.g., a non-orientable d-manifold)

Simplicial Matrix-Tree Theorem

$$
\tau(\Delta) \stackrel{\text { def }}{=} \sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2}=\text { (correction factor) } \times \operatorname{det} \hat{L}_{T}
$$

- If $d=1$ then all summands are 1 !
- In many natural cases, the correction factor is 1 as well.

Kalai's Theorem

Simplicial generalization of the complete graph:

$$
K_{n, d}=\{F \subseteq\{1, \ldots, n\} \quad \mid \quad \operatorname{dim} F \leq d\}
$$

Kalai's Theorem

Simplicial generalization of the complete graph:

$$
K_{n, d}=\{F \subseteq\{1, \ldots, n\} \quad \mid \quad \operatorname{dim} F \leq d\}
$$

Theorem [Kalai 1983]

$$
\tau\left(K_{n, d}\right)=n^{\binom{n-2}{d}}
$$

More generally,
$\sum_{\Upsilon \in \mathscr{T}(K)}\left|\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{i=1}^{n} x_{i}^{\operatorname{deg}_{\Upsilon}(i)}=\left(x_{1} \cdots x_{n}\right)^{\binom{n-2}{d-1}}\left(x_{1}+\cdots+x_{n}\right)^{\binom{n-2}{d}}$.

Kalai's Theorem

- Kalai's theorem reduces to $\tau\left(K_{n}\right)=n^{n-2}$ when $d=1$, and the weighted version reduces to Cayley-Prüfer.
- Bolker (1976): Observed that $n\binom{n-2}{d}$ is an exact count of trees for small n, d, but fails for $n=6, d=2$.
- The problem is torsion - $\mathbb{R P}^{2}$ requires six vertices to triangulate
- Adin (1992): Analogous formula for complete colorful complexes, generalizing $\tau\left(K_{n, m}\right)=n^{m-1} m^{n-1}$

Shifted Simplicial Complexes

A simplicial complex Δ with vertex set $\{1,2, \ldots, n\}$ is shifted if whenever $a_{1} a_{2} \cdots a_{k} \in \Delta$ and $b_{i} \leq a_{i}$ for all i, then $b_{1} b_{2} \cdots b_{k} \in \Delta$.
(So one-dimensional shifted complexes are just threshold graphs.)
Theorem [Duval-Reiner 2002]
Let $\lambda_{i}=$ number of max-dim faces containing i.
Then eigenvalues of $L(\Delta)=$ column lengths of λ.
(Generalization of Merris' Theorem)
Theorem [Duval-Klivans-JLM 2009]
Factorization of multidegree g.f. for spanning trees of a shifted complex. (Generalization of JLM-Reiner formula)

Further Directions

- Theory of SSTs and the Matrix-Tree Theorem generalize easily from simplicial complexes to cell complexes
- Cubes and their skeletons [Duval-Klivans-JLM 2011], [Aalipour-Duval-Kook-Lee-JLM 2017+ ${ }^{+}$
- Cellular MTT discovered independently in contexts of probability [Lyons 2009] and mathematical physics [Catanzaro-Chernyak-Klein 2015]
- Simplicial/cell complexes that have integer Laplacian eigenvalues "should" have factorizable weighted tree g.f.'s
- Matroid complexes; others?
- Critical groups:
- Complex $\Delta \Rightarrow$ abelian group $K(\Delta)$ of size $\tau(\Delta)$
- Cuts, flows, sandpile theory, "algebraic geometry on graphs"
- Group structure very mysterious

