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Cell complexes and combinatorial Laplacians

Throughout, X d is a finite cell (CW) complex of dimension d .

Acyclization1 of X : (d + 1)-dimensional complex Ω such that
H̃d+1(Ω;Q) = H̃d(Ω;Q) = 0 and X = d-skeleton of Ω

Augmented cellular chain complex of Ω (over Z):

· · · //
Ci+1oo

∂i+1 //
Ci

∂i //

∂∗
i+1

oo Ci−1
∂∗
i

oo
// · · ·oo

(identifying each i-cell with its characteristic function in C i ).

Combinatorial Laplacians (updown and downup):

Lud
i = ∂i∂

∗
i : Ci−1 → Ci−1 Ldu

i = ∂∗i+1∂i+1 : Ci+1 → Ci+1

1Not every complex has an acyclization, but many interesting ones do.



Critical and cocritical groups

Notation: T(G ) = torsion summand of a f.g. abelian group G .

Critical groups of X :

Ki−1(X ) := T(coker Lud
i : Ci−1 → Ci−1)

Cocritical groups of X :

K ∗
i+1(X ) := T(coker Ldu

i+1 : Ci+1 → Ci+1)

I Shorthand: K (X ) = Kd−1(X ) and K ∗(X ) = K ∗
d+1(X )

I Ki+1(X ) is independent of the choice of acyclization Ω.

I To compute K and K ∗, find Smith normal forms of Laplacians.

I X connected graph =⇒ K (X ) = usual critical group
(cardinality = number of spanning trees).



Critical groups and cut and flow lattices

Let n = number of i-cells, so Ci (X ,Z) ∼= Zn.

Cut lattice: Ci = Im ∂∗i ⊆ Zn

Flow lattice: Fi = ker ∂i ⊆ Zn

Dual of a lattice L ⊆ Zn:

L] := {v ∈ L ⊗ Rn : 〈v ,w〉 ∈ Z ∀w ∈ L} ∼= HomZ(L,Z).

Theorem (DKM 12)

K (X ) ∼= C]/C and K ∗(X ) ∼= F ]/F .
Moreover, there are short exact sequences

0 → Zn/(C ⊕ F) → K (X ) → T(H̃d−1(X ; Z)) → 0,

0 → T(H̃d−1(X ; Z)) → Zn/(C ⊕ F) → K ∗(X ) → 0.



Critical groups and cut and flow lattices

Theorem (DKM 12)

K (X ) ∼= C]/C and K ∗(X ) ∼= F ]/F .
Moreover, there are short exact sequences

0 → Zn/(C ⊕ F) → K (X ) → T(H̃d−1(X ; Z)) → 0,

0 → T(H̃d−1(X ; Z)) → Zn/(C ⊕ F) → K ∗(X ) → 0.

I If H̃d−1(X ; Z) is torsion-free (for example, if X is a graph)
then K (X ) ∼= K ∗(X ).

I Graph case (and motivation for present work):
Bacher–de La Harpe–Nagnibeda 1997

I “Torsion makes K (X ) bigger and K ∗(X ) smaller.”



Example 1

X 2

3 4

1

2

3 4

Ω

1

∂2(Ω) =



123 124

12 1 1
13 −1 0
23 1 0
14 0 −1
24 0 1


Ldu

2 = ∂∗2∂2 =

(
3 1
1 3

)
Cokernel: Z/8Z ∼= K (X )



Example 2
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Ldu
2 (Ω) =


R S T

R 3 −1 0
S −1 4 −1
T 0 −1 3





Example 2 and Planar Duality

*X X
4

2

1

3

4
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6

2
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3

5

6

Ldu(Ω) =

 3 −1 0
−1 4 −1
0 −1 3

 = reduced Laplacian of planar dual X ∗

Corollary [Cori–Rossin 2000]: If X is a planar graph and X ∗ is
any planar dual then K (X ) ∼= K ∗(X ) ∼= K (X ∗).



Enumerating Cellular Spanning Trees

Recall that when X is a connected graph, |K (X )| = number of
spanning trees. More generally

|K (X )| = τd(X ) :=
∑

Υ

|T(H̃d−1(Υ; Z))|2

where Υ ranges over all cellular spanning forests in X :
subcomplexes with complete (d − 1)-skeleton such that

I H̃d(Υ; Z) = 0 (“acyclic”) and

I |H̃d−1(Υ; Q) = H̃d−1(X ; Q) (“connected”).

(Lyons, DKM, Catanzaro–Chernyak–Klein)



Enumerating Cellular Spanning Trees

Theorem (Lyons 09, DKM 11, Catanzaro–Chernyak–Klein 12)

The critical group counts forests by torsion homology:

|K (X )| = τd(X ) :=
∑

forests Υ⊆X

|T(H̃d−1(Υ; Z))|2

Theorem (DKM 12)

The cocritical group counts forests by relative torsion homology:

|K ∗(X )| = τ∗d (X ) :=
∑

forests Υ⊆X

|H̃d(X ,Υ; Z)|2



Cellular Spheres

Theorem (DKM 11)

Let X be a cellular sphere with n facets (e.g., the boundary of a
convex polytope). Then K (X ) ∼= Z/nZ.

Our original proof: Blah blah blah.

New proof: K (X ) ∼= K ∗(X ) (since H̃d−1(X ;Z) = 0). Form an
acyclization Ω by attaching one (d + 1)-cell whose boundary is a
signed sum of the d-cells. Therefore

K ∗(X ) ∼= coker Ldu
d+1(Ω) = coker

[
n
]

= Z/nZ.



More Applications

Question: Are there other complexes for which it is easier to
compute the cocritical group than the critical group, or at least to
count spanning trees?



More Applications

Example 1: X = octahedron subdivided into eight tetrahedra;
f (X ) = (1, 7, 18, 20, 8).

How many spanning 2-trees does X have?

I Lud
1 (X ) = ∂2∂

∗
2 = some 18× 18 matrix

I Ldu
3 (X ) = ∂∗3∂3 = I + L(Q3) (Q3 = cube graph)

I Eigenvalues of L(Q3): 0, 2, 2, 2, 4, 4, 4, 6

I Eigenvalues of I + L(Q3): 1, 3, 3, 3, 5, 5, 5, 7

τ2(X) = 33 · 53 · 7.

(Note: Lud
1 has integer eigenvalues.)



More Applications

Example 1: X = octahedron subdivided into eight tetrahedra

Example 2: Y = polyhedral cell complex from X obtained by
“puffing up” each tetrahedron into a bipyramid.

I Ldu
3 (Y ) = ∂∗3∂3 = 3I + L(Q3)

I Eigenvalues of L(Q3): 0, 2, 2, 2, 4, 4, 4, 6

I Eigenvalues of 3I + L(Q3): 3, 5, 5, 5, 7, 7, 7, 9

τ2(Y) = 3 · 53 · 73 · 9.

I Lud
1 (Y ) does not have integer eigenvalues.



Some Questions

1. For some small complexes, Lud
i−1 and Ldu

i+1 are simultaneously
Laplacian integral. Is this a coincidence or is there some
connection between their spectra?

2. Are there (families of) complexes other than spheres for which
the structure of K ∗(X ) can easily be determined?

3. Generalization: (co)critical groups of arbitrary chain
complexes — it is still the case that Ki−1 = K ∗

i+1 if there is
no torsion homology

Thanks for listening!
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