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Simplicial Complexes

Let V be a finite set of vertices. Typically V = [n] = {1, 2, . . . , n}.

Definition
An (abstract) simplicial complex ∆ on V is a family of sets
∆ ⊆ 2V such that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. The elements
of ∆ are called faces or simplices.

I ∆ gives rise to a topological space (e.g., its standard
geometric realization in Rn)

I dimσ = |σ| − 1; dim ∆ = max{dimσ | σ ∈ ∆}
I Face poset F (∆): set of all faces, partially ordered by inclusion

I f -vector: enumerates faces by dimension
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Simplicial Complexes
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∆1 = 〈124, 23, 34〉 ∆2 = 〈12, 14, 23, 24, 34〉
dim ∆1 = 2 dim ∆2 = 1

f (∆1) = (1, 4, 5, 1) f (∆2) = (1, 4, 5)
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Simplicial Complexes in Combinatorics

1. Order complexes of posets.

The order complex ∆(P) of a finite poset P is the simplicial
complex on P whose faces are its chains, i.e., the sets

{C ⊆ P | every two elements of C are comparable.}
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Simplicial Complexes in Combinatorics

1. Order complexes of posets.

I Typical posets you’d want to do this with: lattice of flats of a
matroid, Bruhat order or weak order on a Coxeter group, . . .

I Often, combinatorics of P ⇐⇒ topology of ∆(P)

I Note: ∆(F (∆)) is the barycentric subdivision of ∆.
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Simplicial Complexes in Combinatorics

2. Polytopes.

A polytope P is the convex hull of a finite set of n points in Rd .

If n > d and the points are chosen generically, then ∂P is a
simplicial complex.

Problem: What are the possible f -vectors of simplicial polytopes?
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Simplicial Complexes in Combinatorics

3. Stanley-Reisner theory.

Let k be a base ring (typically Z or a field), R = k[x1, . . . , xn], and
I ⊆ R an ideal generated by square-free monomials.

Definition
The Stanley-Reisner complex of I is

∆(I ) =
{
σ ⊆ [n] :

∏
j∈σ xj 6∈ I

}
.

SR ideals also arise from simplicial fans (as in Volker’s talk).

Conversely, every complex ∆ on [n] has a Stanley-Reisner ring

k[∆] = R /
〈∏

j∈σ xj : σ a minimal nonface of ∆
〉
.
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The h-Vector

Definition
Suppose dim ∆ = d − 1 and f (∆) = (f−1, f0, . . . , fd−1).
The h-vector h(∆) = (h0, . . . , hd) is given by

hk =
k∑

i=0

(
d − i

k − i

)
(−1)k−i fi−1.

f = (1, 4, 5, 2)
h = (1, 1)

f = (1, 5, 6, 2)
h = (1, 2, −1)
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The h-Vector

• Knowing f (∆) is equivalent to knowing h(∆).
• The Stanley-Reisner ring S = k[∆] is graded:

S =
⊕
i≥0

Si =
⊕
i≥0

k〈monomials supported on a face of ∆〉

with Hilbert series∑
i≥0

(dimk Si )q
i =

h0 + h1q + · · ·+ hdq
d

(1− q)d
.

Example

If P ⊆ Rd is a simplicial polytope, then h(∂P) is strictly positive
and satisfies hi = hd−i (the Dehn-Sommerville equations).

Problem
What (if anything) do the h-numbers count?
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Shellable Complexes

Definition
A simplicial complex ∆ is shellable if its facets can be ordered
F1, . . . ,Fk such that for every i > 1, the face set

〈Fi 〉 \ 〈F1, . . . ,Fi−1〉

has a unique minimum element Ri .

Equivalently, the subcomplex of Fi along which it is attached, i.e.,

〈Fi 〉 ∩ 〈F1, . . . ,Fi−1〉,

is a pure, codimension-1 subcomplex of Fi .
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Shellable Complexes

Shellability is a strong property!

Topologically, shellable complexes are wedges of spheres.

Combinatorially, shellability provides a combinatorial interpretation
of the h-vector. In the simplest case where ∆ is pure, it is

hj = #{i : |Ri | = j}

and hd is the number of spheres in the wedge.

Theorem (Bruggesser–Mani)

Convex simplicial spheres are shellable.
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Example: The Octahedron
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[∅, 123]

So h(∆) = (1, 3, 3, 1).
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Example: The Octahedron
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∪ [4, 124]

So h(∆) = (1, 3, 3, 1).
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Example: The Octahedron
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[∅, 123]
∪ [4, 124]
∪ [5, 135]

So h(∆) = (1, 3, 3, 1).
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Example: The Octahedron
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Example: The Octahedron
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[∅, 123]
∪ [4, 124]
∪ [5, 135]
∪ [45, 145]
∪ [6, 246]

So h(∆) = (1, 3, 3, 1).
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Example: The Octahedron
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Example: The Octahedron

2

1

3

4 5

6

F3

F75F

F2

F4

F1

6F

[∅, 123]
∪ [4, 124]
∪ [5, 135]
∪ [45, 145]
∪ [6, 246]
∪ [36, 236]
∪ [56, 356]

So h(∆) = (1, 3, 3, 1).

Jeremy Martin (U. Kansas) Simplicial Complexes



Example: The Octahedron
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Cohen-Macaulay Complexes

Definition
Let k be a ring. An k-algebra A is Cohen-Macaulay (CM) over k
iff its Krull dimension equals its depth as an k-module. A simplicial
complex is Cohen-Macaulay iff its Stanley-Reisner ring is CM.

Theorem (Hochster 1972, Reisner 1976)

∆ is Cohen-Macaulay over k iff for every σ ∈ ∆,

H̃j(link∆(σ);k) = 0 ∀j < dim ∆− dimσ − 1.

where

link∆(σ) = {τ ∈ ∆ : τ ∩ σ = ∅ and τ ∪ σ ∈ ∆} .
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Cohen-Macaulay Complexes

I Shellable implies CM over any base ring,

I Reisner’s theorem means that checking CMness reduces to
computing links and homology — exponential, but easier than
shellability,

I ∆ CM =⇒ h(∆) nonnegative and gap-free.

I Constraints on CM h-vectors are the same as those on
shellable h-vectors.

I CMness is a topological condition [Munkres 1980].

Jeremy Martin (U. Kansas) Simplicial Complexes



Constructibility

Definition
A simplicial complex ∆ of dimension d − 1 is constructible if either

1. ∆ is a simplex; or

2. ∆ = ∆1 ∪∆2, where ∆1 and ∆2 are constructible of
dimension d − 1 and ∆1 ∩∆2 is constructible of
dimension d − 2.

I Shellable =⇒ constructible =⇒ Cohen-Macaulay

I Constructibility is a nightmare to check algorithmically!
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Partitionability

Definition
∆ is partitionable if its face poset (ordered by inclusion) can be
written as a disjoint union

k⋃
i=1

[Ri ,Fi ]

where the Fi ’s are the facets.

Like shellability, partitionability implies that

hj = #{i : |Ri | = j} ≥ 0 ∀j

but is a much weaker condition.
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Partitionability

Example (Björner)

6
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2

∆ = [∅, 156] ∪ [2, 123] ∪ [3, 134] ∪ [4, 124] ∪ [234, 234]

f (∆) = (1, 3, 0, 1) (has a gap – not Cohen-Macaulay)
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Testing Partitionability

Testing partitionability can be reduced to an integer programming
problem (Sage: use MixedIntegerLinearProgram).

1. (Optional) Check that h(∆) ≥ 0.

2. Create a MILP with
I a binary variable Xr ,f for each pair (r , f ), where f is a facet

and r ⊆ f ,
I constraints Xr ,f + Xr ′,f ′ ≤ 1 whenever [r , f ] ∩ [r ′, f ′] 6= ∅,
I and objective function∑

(r ,f )

2dim f−dim rXr ,f

3. Partitionability ⇐⇒ optimal value = total number of faces.
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Partitionability

I Shellable =⇒ partitionable: immediate from definition

I Shellable =⇒ Cohen-Macaulay: not too hard; easiest via
constructibility

I Converse is false (M.E. Rudin constructed a nonshellable 3-ball
in 1958; more recent, smaller examples due to Grünbaum,
Ziegler, others)

I Cohen-Macaulay does not imply partitionable
[Duval–Goeckner–Klivans–JLM 2015+], disproving a
conjecture of Stanley (1980), although some special cases
remain open
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Relative Simplicial Complexes

Definition
A relative simplicial complex is a set family Ω ⊆ 2[n] such that

τ, σ ∈ Ω, τ ⊆ ρ ⊆ σ =⇒ ρ ∈ Ω.

I The face poset F (Ω) is always of the form F (∆) \ F (Γ),
where Γ ⊆ ∆ are simplicial complexes.

I Geometrically, [Ω] = [∆]/[Γ].

I Many simplicial complex methods (link, deletion, f - and
h-vectors, shellability, CMness, partitionability, . . . ) extend
well to the relative case

I Behave better for some operations (e.g., quotients).
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Simplicial Complexes in Sage

I The SimplicialComplex class contains many of the methods
discussed, plus others (join, induced subcomplex, simplicial
(co)homology, . . . )

I Methods already tested/improved at Sage Days 74:
shellability, CMness

I Methods I have written and hope to push to the server later
today: partitionability (efficient), constructibility (horrible)

I What I’d like to see in the future: full support for relative
complexes (I have written a class but need to figure out how
to integrate it with existing Sage functionality)

Jeremy Martin (U. Kansas) Simplicial Complexes



Thank you!!
Merci beaucoup!!
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