Spanning Trees of Simplicial Complexes

Jeremy Martin University of Kansas

RMMC 2011 University of Wyoming

Spanning Trees of Simplicial Complexes

・ 同・ ・ ヨ・ ・ ヨ・

Le Menu

Spanning Trees of Simplicial Complexes

Le Menu

1 Appetizer: Graphs

- The incidence and Laplacian matrices
- The matrix-tree theorem
- The chip-firing game
- The critical group

(4回) (日) (日)

Le Menu

1 Appetizer: Graphs

- The incidence and Laplacian matrices
- The matrix-tree theorem
- The chip-firing game
- The critical group
- 2 Main Course: Simplicial Complexes
 - Crash course in algebraic topology
 - Simplicial spanning trees
 - Simplicial matrix-tree theorems
 - Simplicial critical groups
- Main course is joint work with Art Duval (U. of Texas, El Paso) and Caroline Klivans (U. of Chicago)

Appetizer: Graphs

Spanning Trees of Simplicial Complexes

Definition A spanning tree of a graph G = (V, E) is a set of edges T (or, equivalently, a subgraph (V, T)) such that:

(V, T) is connected: every pair of vertices is joined by a path
(V, T) is acyclic: there are no cycles
|T| = |V| - 1.

Any two of these conditions together imply the third.

- 本部 とくき とくき とうき

Spanning Trees

G

Spanning Trees of Simplicial Complexes

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

Spanning Trees

Spanning Trees of Simplicial Complexes

Spanning Trees

Spanning Trees of Simplicial Complexes

Counting Spanning Trees

$$\tau(G) =$$
 number of spanning trees of G

•
$$\tau(\text{tree}) = 1$$

•
$$\tau(n$$
-cycle) = n

- Complete graph: $\tau(K_n) = n^{n-2}$ (Cayley's formula)
- Complete bipartite graph: $\tau(K_{n,m}) = n^{m-1}m^{n-1}$
- Many other enumeration formulas for nice graphs (threshold graphs, hypercubes, ...)

伺下 イヨト イヨト

Definition (Signed) incidence matrix ∂ of G

- Rows indexed by vertices; columns indexed by edges
- Each column has one 1 and one −1 corresponding to its endpoints, and 0s elsewhere.

向下 イヨト イヨト

Definition (Signed) incidence matrix ∂ of G

- Rows indexed by vertices; columns indexed by edges
- Each column has one 1 and one −1 corresponding to its endpoints, and 0s elsewhere.

Spanning Trees of Simplicial Complexes

■ A set of edges is a spanning tree of *G* iff the corresponding set of columns of *∂* is a basis for the column space.

■ A set of edges is a spanning tree of *G* **iff** the corresponding set of columns of *∂* is a basis for the column space.

向下 イヨト イヨト

- A set of edges is a spanning tree of G iff the corresponding set of columns of ∂ is a basis for the column space.
- (Exercise: Translate "cycle", "acyclic", "dimension", other graph-theoretic and linear-algebraic terms across this correspondence. This amounts to describing the graphic matroid of G.)

白 ト イヨ ト イヨト

- A set of edges is a spanning tree of *G* iff the corresponding set of columns of *∂* is a basis for the column space.
- (Exercise: Translate "cycle", "acyclic", "dimension", other graph-theoretic and linear-algebraic terms across this correspondence. This amounts to describing the graphic matroid of G.)
- If we can count column bases, we can count spanning trees.

向下 イヨト イヨト

Definition The Laplacian matrix of G is $L = \partial \partial^T$.

Entries of *L* are scalar products of rows of ∂ :

$$L_{(i,j)} = \begin{cases} \deg_G(i) & \text{if } i = j, \\ -(\# \text{ of edges joining } i \text{ and } j) & \text{otherwise.} \end{cases}$$

rank $L = \operatorname{rank} \partial = \#$ vertices - # components.

Spanning Trees of Simplicial Complexes

・ 同 ト ・ ヨ ト ・ ヨ ト

The Laplacian Matrix

・回 ・ ・ ヨ ・ ・ ヨ ・ …

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G)=\frac{\lambda_1\lambda_2\cdots\lambda_{n-1}}{n}$$

(2) Let $1 \le i \le n$. Form the *reduced Laplacian* \tilde{L} by deleting the i^{th} row and i^{th} column of L. Then

$$\tau(G) = \det \tilde{L}$$
 .

回 と く ヨ と く ヨ と

$$\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^{\mathcal{T}} = \sum_{\substack{A \subseteq E \\ |A|=n-1}} (\det \tilde{\partial}_A)^2 \qquad (\tilde{\partial}: \text{ delete a row from } \partial)$$

回 と く ヨ と く ヨ と

$$\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^{T} = \sum_{\substack{A \subseteq E \\ |A|=n-1}} (\det \tilde{\partial}_{A})^{2} \qquad (\tilde{\partial}: \text{ delete a row from } \partial)$$

$$= \sum_{A} \begin{cases} 1 & \text{if } A \text{ is a column basis for } \partial \\ 0 & \text{if it isn't} \end{cases}$$

回 と く ヨ と く ヨ と

$$\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^{T} = \sum_{\substack{A \subseteq E \\ |A|=n-1}} (\det \tilde{\partial}_{A})^{2} \qquad (\tilde{\partial}: \text{ delete a row from } \partial)$$

$$= \sum_{A} \begin{cases} 1 & \text{if } A \text{ is a column basis for } \partial \\ 0 & \text{if it isn't} \end{cases}$$

= number of column bases of ∂

御 と く ヨ と く ヨ と …

$$\det \tilde{\mathbf{L}} = \det \tilde{\partial} \tilde{\partial}^{\mathcal{T}} = \sum_{\substack{A \subseteq E \\ |A|=n-1}} (\det \tilde{\partial}_A)^2 \qquad (\tilde{\partial}: \text{ delete a row from } \partial)$$

$$= \sum_{A} \begin{cases} 1 & \text{if } A \text{ is a column basis for } \partial \\ 0 & \text{if it isn't} \end{cases}$$

= number of column bases of ∂

= number of spanning trees!

• 3 3

- - E - F

The Matrix-Tree Theorem

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example $G = K_n$ (complete graph on *n* vertices)

$$L(K_n) = \begin{bmatrix} n-1 & -1 & \dots & -1 \\ -1 & n-1 & \dots & -1 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \dots & n-1 \end{bmatrix}$$

Eigenvalues: 0 (multiplicity 1), n (multiplicity n-1)

$$\tau(K_n) = n^{n-1}/n = \mathbf{n}^{n-2}$$

(ロ) (同) (E) (E) (E)

Example: The Hypercube

- $G = Q_n = 1$ -skeleton of *n*-dimensional hypercube
- Eigenvalues of L: 0, 2, 4, ..., 2n, with multiplicities $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$

$$\implies \tau(Q_n) = \prod_{k=2}^n (2k)^{\binom{n}{k}}.$$

・回 ・ ・ ヨ ・ ・ ヨ ・

Example: The Hypercube

- $G = Q_n = 1$ -skeleton of *n*-dimensional hypercube
- Eigenvalues of L: 0, 2, 4, ..., 2n, with multiplicities $\binom{n}{0}, \binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$

$$\implies \quad \tau(Q_n) = \prod_{k=2}^n (2k)^{\binom{n}{k}}.$$

Open Problem Find a bijective proof of this formula.

(4月) (4日) (4日)

Spanning Trees of Simplicial Complexes

(本部) (本語) (本語)

Spanning Trees of Simplicial Complexes

< 🗇 >

- < ≣ →

< ∃⇒

Spanning Trees of Simplicial Complexes

< 🗇 >

- < ≣ →

< ∃⇒

Spanning Trees of Simplicial Complexes

< 🗇 >

- < ≣ →

< ∃⇒

Spanning Trees of Simplicial Complexes

< 🗇 >

< ∃ >

< ∃⇒

▲ □ → ▲ 三

문 🕨 문
The Chip-Firing Game

Spanning Trees of Simplicial Complexes

< 🗇 >

< ≣⇒

< ∃⇒

æ

The Chip-Firing Game

Spanning Trees of Simplicial Complexes

< 🗇 >

- < ≣ →

< ∃⇒

æ

- G: graph with vertex set $\{1, 2, \ldots, n\}$
- Each vertex i < n has a finite number c_i of poker chips
- A vertex fires by giving one chip to each of its neighbors
- Vertex n, the bank, only fires if no other vertex can fire
- Vertices other than the bank cannot go into debt
- Chip configuration = vector $\mathbf{c} = (c_1, \dots, c_{n-1}) \in \mathbb{N}^{n-1}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Biggs, Dhar?, Björner–Lovász–Shor) Every initial chip configuration determines a unique critical configuration, regardless of the order of firing.

伺 と く き と く き と

Theorem (Biggs, Dhar?, Björner–Lovász–Shor) Every initial chip configuration determines a unique critical configuration, regardless of the order of firing.

Recall that the Laplacian matrix of G is $L = [\ell_{ij}]_{1 \le i,j \le n}$ where

$$\ell_{ij} = \begin{cases} \deg_G(i) & \text{if } i = j \\ -(\# \text{ of edges joining } i \text{ and } j) & \text{otherwise.} \end{cases}$$

Firing vertex i ↔ subtracting ith column of L from c.

(日本) (日本) (日本)

The Chip-Firing Game

Firing keeps **c** in the same coset of $colspace(L) \subset \mathbb{Z}^n$.

Spanning Trees of Simplicial Complexes

伺 と く ヨ と く ヨ と

Firing keeps **c** in the same coset of $colspace(L) \subset \mathbb{Z}^n$.

I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n/\operatorname{colspace}(L)$...

A > < 3 > < 3 > -

Firing keeps **c** in the same coset of $colspace(L) \subset \mathbb{Z}^n$.

I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n/\operatorname{colspace}(L)$...

... or, if we ignore the bank, an element of $\mathbb{Z}^{n-1}/\operatorname{colspace}(\tilde{L})$.

伺下 イヨト イヨト

Firing keeps **c** in the same coset of $colspace(L) \subset \mathbb{Z}^n$.

I.e., each chip configuration determines an element of the quotient group $\mathbb{Z}^n/\operatorname{colspace}(L)$...

... or, if we ignore the bank, an element of $\mathbb{Z}^{n-1}/\operatorname{colspace}(\widetilde{L})$.

Definition The **critical group** of *G* is

$$K(G) = \mathbb{Z}^{n-1}/\operatorname{colspace}(\tilde{L}).$$

- $|K(G)| = \tau(G)$ by Matrix-Tree Theorem
- Critical configurations are a system of coset representatives

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cuts and Flows

Spanning Trees of Simplicial Complexes

A ■

★ 문 → ★ 문 →

3

Cuts and Flows

Cut space $C = \text{colspace}(\partial^T)$ (generated by edge cuts)

Spanning Trees of Simplicial Complexes

Cuts and Flows

Cut space $\mathcal{C} = colspace(\partial^T)$ (generated by edge cuts)Flow space $\mathcal{F} = ker(\partial) = \mathcal{C}^{\perp}$ (generated by cycles)

Cut space
$$C = \text{colspace}(\partial^T)$$

Flow space $\mathcal{F} = \ker(\partial) = \mathcal{C}^{\perp}$

æ

- **Cut space** $C = \text{colspace}(\partial^T)$
- **Flow space** $\mathcal{F} = \ker(\partial) = \mathcal{C}^{\perp}$

Theorem [Bacher, de la Harpe, Nagnibeda 1997]

$$\mathcal{K}(G) = \mathbb{Z}^{n-1}/\operatorname{colspace} \tilde{\mathcal{L}} \cong \mathbb{Z}^{\mathcal{E}}/(\mathcal{C} \oplus \mathcal{F}).$$

Image: A image: A

Main Course: Simplicial Complexes

Spanning Trees of Simplicial Complexes

回 と く ヨ と く ヨ と

æ

Definition A simplicial complex is a family $\Delta \subseteq powerset(\{1, 2, ..., n\})$ such that

$$\text{if } \sigma \in \Delta \text{ and } \sigma' \subseteq \sigma, \text{ then } \sigma' \in \Delta.$$

- Think of a simplicial complex as a higher-dimensional generalization of a graph.
- Elements of Δ are called *faces* or *simplices*.
- dim $\sigma = |\sigma| 1$
- $\dim \Delta = \max \{\dim \sigma \mid \sigma \in \Delta \}$
- $f_i(\Delta)$ = number of *i*-dimensional faces of Δ

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition A simplicial complex is a family $\Delta \subseteq powerset(\{1, 2, ..., n\})$ such that

$$\text{if } \sigma \in \Delta \text{ and } \sigma' \subseteq \sigma, \text{ then } \sigma' \in \Delta.$$

- Simplicial polytopes (minus geometry)
- Every "reasonable" topological space can be represented as a simplicial complex
- Graphs = 1-dimensional simplicial complexes
- Simplicial complexes arise frequently in combinatorics: e.g., order complexes of posets

・ 同 ト ・ ヨ ト ・ ヨ ト

Spanning Trees of Simplicial Complexes

伺い イヨン イヨン

(E.g., ∂_1 = signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

(E.g., ∂_1 = signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact $\partial_i \partial_{i+1} = 0$. Equivalently, $\operatorname{im}(\partial_{i+1}) \subseteq \operatorname{ker}(\partial_i)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

(E.g., ∂_1 = signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact $\partial_i \partial_{i+1} = 0$. Equivalently, $im(\partial_{i+1}) \subseteq ker(\partial_i)$.

Definition The ith (reduced) homology group of Δ is

 $\widetilde{H}_i(\Delta) = \ker(\partial_i) / \operatorname{im}(\partial_{i+1})$ $\cong \mathbb{Z}^{\widetilde{\beta}_i(\Delta)} \oplus \text{ finite "torsion" group}$

(E.g., ∂_1 = signed incidence matrix of 1-skeleton of Δ — records which vertices are contained in which edges.)

Fact $\partial_i \partial_{i+1} = 0$. Equivalently, $\operatorname{im}(\partial_{i+1}) \subseteq \operatorname{ker}(\partial_i)$.

Definition The ith (reduced) homology group of Δ is

 $\widetilde{H}_i(\Delta) = \ker(\partial_i) / \operatorname{im}(\partial_{i+1})$ $\cong \mathbb{Z}^{\widetilde{\beta}_i(\Delta)} \oplus \text{ finite "torsion" group}$

(If you're new at this: Don't worry about the twiddles!)

(本間) (本語) (本語) (語)

• $\tilde{H}_i(\Delta)$ measures holes $(\tilde{\beta}_i)$ and nonorientability (torsion)

・ 回 と ・ ヨ と ・ ヨ と …

• $\tilde{H}_i(\Delta)$ measures holes $(\tilde{\beta}_i)$ and nonorientability (torsion)

For any complex Δ , $\tilde{H}_0(\Delta) = \mathbb{Z}^{\# \text{ connected cpts}-1}$ $\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected.}$

伺い イヨン イヨン

- $\tilde{H}_i(\Delta)$ measures holes $(\tilde{\beta}_i)$ and nonorientability (torsion)
- For any complex Δ , $\tilde{H}_0(\Delta) = \mathbb{Z}^{\# \text{ connected cpts}-1}$ $\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected.}$
- If Δ is a connected graph, then $\tilde{H}_1(\Delta) = \mathbb{Z}^{e-\nu+1}$ $\tilde{H}_1(\Delta) = 0 \iff \Delta$ is acyclic.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- $\tilde{H}_i(\Delta)$ measures holes $(\tilde{\beta}_i)$ and nonorientability (torsion)
- For any complex Δ , $\tilde{H}_0(\Delta) = \mathbb{Z}^{\# \text{ connected cpts}-1}$ $\tilde{H}_0(\Delta) = 0 \iff \Delta \text{ is connected.}$
- If Δ is a connected graph, then $\tilde{H}_1(\Delta) = \mathbb{Z}^{e-\nu+1}$ $\tilde{H}_1(\Delta) = 0 \iff \Delta$ is acyclic.
- If Δ is a *d*-sphere, then

$$ilde{H}_i(\Delta) = egin{cases} \mathbb{Z} & ext{ for } i = d, \ 0 & ext{ for } i < d. \end{cases}$$

回 と く ヨ と く ヨ と

個 と く ヨ と く ヨ と

• Case 1: Pop a d-dimensional bubble: $\tilde{\beta}_d$ drops by 1

伺い イヨト イヨト

- **Case 1**: Pop a *d*-dimensional bubble: $\tilde{\beta}_d$ drops by 1
- **Case 2:** Tear a (d-1)-dimensional hole: $\tilde{\beta}_{d-1}$ increases by 1

向下 イヨト イヨト

- **•** Case 1: Pop a *d*-dimensional bubble: $\tilde{\beta}_d$ drops by 1
- **Case 2:** Tear a (d-1)-dimensional hole: $\tilde{\beta}_{d-1}$ increases by 1

Fact The (reduced) Euler characteristic of Δ is

$$\widetilde{\chi}(\Delta) = \sum_{i} (-1)^{i} f_{i}(\Delta) = \sum_{i} (-1)^{i} \widetilde{\beta}_{i}(\Delta).$$

向下 イヨト イヨト

Definition Let Δ be a simplicial complex of dimension *d*.

A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0;$$

2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta).$

伺い イヨン イヨン

Definition Let Δ be a simplicial complex of dimension *d*.

A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0;$$

2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta).$

When d = 1, this is just the usual graph-theoretic definition of a spanning tree.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition Let Δ be a simplicial complex of dimension *d*.

A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$, with $\Upsilon_{(d-1)} = \Delta_{(d-1)}$, such that

1.
$$\tilde{H}_d(\Upsilon; \mathbb{Z}) = 0;$$

2. $\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})$ is a finite group;
3. $f_d(\Upsilon) = f_{d-1}(\Delta) - \tilde{\beta}_d(\Delta) + \tilde{\beta}_{d-1}(\Delta).$

- When d = 1, this is just the usual graph-theoretic definition of a spanning tree.
- Any two of conditions 1,2,3 together imply the third (just as for graphs).

(日本) (日本) (日本)

What if Δ is a simplicial *d*-sphere?

- Recall that H
 _d(Δ) = Z. To make H
 _d(Υ) = 0, "pop the bubble" by deleting a single facet from Δ. (But don't delete more than one or H
 _{d-1} will become nonzero.)
- In particular, # of SSTs = # facets = f_d(Δ). (Analogous to the statement that the spanning trees of a cycle graph are formed by deleting a single edge.)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Kalai's Theorem

Let K_n^d be the *d*-skeleton of the *n*-vertex simplex, i.e.,

$$K_n^d = \left\{ F \subseteq \{1, 2, \dots, n\} \mid \dim F \leq d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ .

向下 イヨト イヨト

Kalai's Theorem

Let K_n^d be the *d*-skeleton of the *n*-vertex simplex, i.e.,

$$K_n^d = \left\{ F \subseteq \{1, 2, \dots, n\} \mid \dim F \le d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ .

Theorem [Kalai 1983]

$$\sum_{\Upsilon \in \mathcal{T}(K_n^d)} |\tilde{H}_{d-1}(\Upsilon; \mathbb{Z})|^2 = n^{\binom{n-2}{d}}.$$

• Setting d = 1 recovers Cayley's formula $\tau(K_n) = n^{n-2}$.

伺下 イヨト イヨト
$\Delta = d$ -dim'l simplicial complex with $|\tilde{H}_i(\Delta)| < \infty \ \forall i < d$

$$L = \partial_d \partial_d^T \text{ (simplicial Laplacian)}$$

$$\tau_k(\Delta) = \sum_{\Upsilon \in \mathcal{T}(\Delta_{(k)})} |\tilde{H}_{k-1}(\Upsilon)|^2 \quad (\text{``number'' of }k\text{-dim'l trees''})$$

Simplicial Matrix-Tree Theorem I [Duval-Klivans-JLM 2007]

 $\tau_d(\Delta) = |\tilde{H}_{d-2}(\Delta)|^2 \cdot \frac{\text{product of nonzero eigenvalues of }L}{\tau_{d-1}(\Delta)}.$

マボン イヨン イヨン 二日

Counting Simplicial Spanning Trees

$$\begin{split} \tau_k(\Delta) &= \sum_{\Upsilon \in \mathcal{T}(\Delta_{(k)})} |\tilde{H}_{k-1}(\Upsilon)|^2 \\ \Gamma &= \text{simplicial spanning tree of } \Delta_{(d-1)} \\ L_{\Gamma} &= \text{reduced Laplacian obtained from } L = \partial_d \partial_d^T \text{ by deleting } \Gamma \end{split}$$

Simplicial Matrix-Tree Theorem II

$$\tau_d(\Delta) = \frac{|\tilde{H}_{d-2}(\Delta)|^2}{|\tilde{H}_{d-2}(\Gamma)|^2} \det L.$$

Spanning Trees of Simplicial Complexes

同 と く ヨ と く ヨ と

3

The Punchline: You can count the spanning trees of a simplicial complex using Laplacians, just as you can for a graph...

伺下 イヨト イヨト

The Punchline: You can count the spanning trees of a simplicial complex using Laplacians, just as you can for a graph...

... but some trees may be more equal than others.

向下 イヨト イヨト

Facets: 123 ("equator") 124, 134, 234 ("northern") 125, 135, 235 ("southern")

$$f(\Delta)=(5,9,7)$$

$$egin{array}{l} \widetilde{H}_0(\Delta) = 0 \ \widetilde{H}_1(\Delta) = 0 \ \widetilde{H}_2(\Delta) = \mathbb{Z}^2 \end{array}$$

→ < ∃ >

To make an SST of B, we need to pop two bubbles.

個 と く ヨ と く ヨ と

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- **Delete** one northern and one southern triangle: $3 \times 3=9$ SSTs
- Total: $\tau_2(B) = 15$.

・ 同 ト ・ ヨ ト ・ ヨ ト

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- **Delete** one northern and one southern triangle: $3 \times 3=9$ SSTs
- Total: $\tau_2(B) = 15$.
- Meanwhile, $\tau_1(B) = \tau_1(K_5 \text{ minus an edge}) = 75$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- **Delete** one northern and one southern triangle: $3 \times 3=9$ SSTs

• Total:
$$\tau_2(B) = 15$$
.

• Meanwhile, $\tau_1(B) = \tau_1(K_5 \text{ minus an edge}) = 75$.

SMTT-I: Eigenvalues of *L* are 5,5,5, 3,3, 0,0,0,0 $\tau_2 = (\text{product of NZEs})/\tau_1 = 5^3 3^2/75 = 15.$

・ 同 ト ・ ヨ ト ・ ヨ ト

To make an SST of B, we need to pop two bubbles.

- Delete equator and any other triangle: 6 SSTs
- **Delete** one northern and one southern triangle: $3 \times 3=9$ SSTs

• Total:
$$\tau_2(B) = 15$$
.

• Meanwhile, $\tau_1(B) = \tau_1(K_5 \text{ minus an edge}) = 75$.

SMTT-I: Eigenvalues of *L* are 5,5,5, 3,3, 0,0,0,0 $\tau_2 = (\text{product of NZEs})/\tau_1 = 5^3 3^2/75 = 15.$

SMTT-II: Take $\Gamma = \{12, 13, 14, 15\}$; then det $L_{\Gamma} = 15$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Pick your favorite simplicial (or even cell) complex and count its spanning trees!

It helps if the complex is *Laplacian integral* (i.e., the Laplacian matrix has integer eigenvalues).

- Complete colorful complexes: Adin '92
- Shifted complexes: Duval-Reiner '03, weighted DKM '07
- Skeletons of cubes: DKM '10
- Matroid complexes: Kook–Reiner–Stanton '01; weighted?
- Matching and chessboard complexes?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Critical group of a graph G:

$$\mathcal{K}(\mathcal{G}) = \operatorname{coker} \tilde{\mathcal{L}} = \operatorname{coker}(\tilde{\partial}\tilde{\partial}^{\mathsf{T}}) = \mathbb{Z}^{|\mathcal{E}|}/(\mathcal{C}\oplus\mathcal{F})$$

where ∂ = incidence matrix; C = colspace ∂^T ; $\mathcal{F} = \ker \partial$.

∃ >

Critical group of a graph G:

$$\mathcal{K}(\mathcal{G}) = \operatorname{coker} \tilde{\mathcal{L}} = \operatorname{coker} (\tilde{\partial} \tilde{\partial}^{\mathsf{T}}) = \mathbb{Z}^{|\mathcal{E}|} / (\mathcal{C} \oplus \mathcal{F})$$

where ∂ = incidence matrix; C = colspace ∂^T ; $\mathcal{F} = \ker \partial$.

Definition The (i - 1)th critical group of a complex Δ is

 $\mathcal{K}_{i-1}(\Delta) = \operatorname{coker} \tilde{L}_{i-1}^{ud} = \operatorname{coker} (\tilde{\partial}_i \tilde{\partial}_i^{\mathsf{T}}) = \mathbb{Z}^{f_i(\Delta)} / (\mathcal{C}_i \oplus \mathcal{F}_i)$

where $C_i = \text{colspace}(\partial_i^T)$, $\mathcal{F}_i = \text{ker}(\partial_i)$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Definition The (i - 1)th critical group of a complex Δ is $\mathcal{K}_{i-1}(\Delta) = \operatorname{coker} \tilde{L}_{i-1}^{ud} = \operatorname{coker}(\tilde{\partial}_i \tilde{\partial}_i^T) = \mathbb{Z}^{f_i(\Delta)} / (\mathcal{C}_i \oplus \mathcal{F}_i)$ where $\mathcal{C}_i = \operatorname{colspace}(\partial_i^T)$, $\mathcal{F}_i = \operatorname{ker}(\partial_i)$.

Definition The (i - 1)th critical group of a complex Δ is $\mathcal{K}_{i-1}(\Delta) = \operatorname{coker} \tilde{L}_{i-1}^{ud} = \operatorname{coker}(\tilde{\partial}_i \tilde{\partial}_i^T) = \mathbb{Z}^{f_i(\Delta)} / (\mathcal{C}_i \oplus \mathcal{F}_i)$ where $\mathcal{C}_i = \operatorname{colspace}(\partial_i^T)$, $\mathcal{F}_i = \operatorname{ker}(\partial_i)$.

Theorem [DKM'10] $|K_{i-1}(\Delta)| = \tau_i(\Delta)$ for all *i*.

Spanning Trees of Simplicial Complexes

- 사례가 사용가 사용가 드용

Open Problem

Develop a simplicial analogue of the chip-firing game whose critical configurations correspond to elements of the simplicial critical group.

回 と く ヨ と く ヨ と

æ