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Le Menu

1 Appetizer: Graphs

The incidence and Laplacian matrices
The matrix-tree theorem
The chip-firing game
The critical group

2 Main Course: Simplicial Complexes

Crash course in algebraic topology
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Simplicial critical groups

Main course is joint work with Art Duval (U. of Texas,
El Paso) and Caroline Klivans (U. of Chicago)
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Appetizer: Graphs
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Spanning Trees

Definition A spanning tree of a graph G = (V ,E ) is a set of
edges T (or, equivalently, a subgraph (V ,T )) such that:

1 (V ,T ) is connected: every pair of vertices is joined by a path

2 (V ,T ) is acyclic: there are no cycles

3 |T | = |V | − 1.

Any two of these conditions together imply the third.
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Counting Spanning Trees

τ(G ) = number of spanning trees of G

τ(tree) = 1

τ(n-cycle) = n

Complete graph: τ(Kn) = nn−2 (Cayley’s formula)

Complete bipartite graph: τ(Kn,m) = nm−1mn−1

Many other enumeration formulas for nice graphs
(threshold graphs, hypercubes, . . . )
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The Incidence Matrix

Definition (Signed) incidence matrix ∂ of G

Rows indexed by vertices; columns indexed by edges

Each column has one 1 and one −1 corresponding to its
endpoints, and 0s elsewhere.
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The Incidence Matrix

Definition (Signed) incidence matrix ∂ of G

Rows indexed by vertices; columns indexed by edges

Each column has one 1 and one −1 corresponding to its
endpoints, and 0s elsewhere.

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1
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The Incidence Matrix

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1
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The Incidence Matrix

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1













A set of edges is a spanning tree of G iff the corresponding
set of columns of ∂ is a basis for the column space.
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The Incidence Matrix

A set of edges is a spanning tree of G iff the corresponding
set of columns of ∂ is a basis for the column space.
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The Incidence Matrix

A set of edges is a spanning tree of G iff the corresponding
set of columns of ∂ is a basis for the column space.

(Exercise: Translate “cycle”, “acyclic”, “dimension”, other
graph-theoretic and linear-algebraic terms across this
correspondence. This amounts to describing the graphic
matroid of G .)
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The Incidence Matrix

A set of edges is a spanning tree of G iff the corresponding
set of columns of ∂ is a basis for the column space.

(Exercise: Translate “cycle”, “acyclic”, “dimension”, other
graph-theoretic and linear-algebraic terms across this
correspondence. This amounts to describing the graphic
matroid of G .)

If we can count column bases, we can count spanning trees.
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The Laplacian Matrix

Definition The Laplacian matrix of G is L = ∂∂T .

Entries of L are scalar products of rows of ∂:

L(i ,j) =

{

degG (i) if i = j ,

−(# of edges joining i and j) otherwise.

rankL = rank∂ = # vertices − # components.
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The Laplacian Matrix

1 2

3 4

∂ =









1 1 −1 0 0
−1 0 0 −1 1
0 −1 1 1 0
0 0 0 0 −1









L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.

(2) Let 1 ≤ i ≤ n. Form the reduced Laplacian L̃ by deleting the
i th row and i th column of L. Then

τ(G ) = det L̃ .
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The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

det L̃ = det ∂̃∂̃T =
∑

A⊆E
|A|=n−1

(det ∂̃A)2 (∂̃: delete a row from ∂)
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The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

det L̃ = det ∂̃∂̃T =
∑

A⊆E
|A|=n−1

(det ∂̃A)2 (∂̃: delete a row from ∂)

=
∑

A

{

1 if A is a column basis for ∂

0 if it isn’t
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The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

det L̃ = det ∂̃∂̃T =
∑

A⊆E
|A|=n−1

(det ∂̃A)2 (∂̃: delete a row from ∂)

=
∑

A

{

1 if A is a column basis for ∂

0 if it isn’t

= number of column bases of ∂
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The Matrix-Tree Theorem

Sketch of proof: By the Binet-Cauchy formula from linear algebra,

det L̃ = det ∂̃∂̃T =
∑

A⊆E
|A|=n−1

(det ∂̃A)2 (∂̃: delete a row from ∂)

=
∑

A

{

1 if A is a column basis for ∂

0 if it isn’t

= number of column bases of ∂

= number of spanning trees!
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The Matrix-Tree Theorem

Example G =

1 2

3 4

L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1









L̃ =





3 −1 −1
−1 3 0
−1 0 1





Eigenvalues: 0, 1, 4, 5 det L̃ = 5

(1 · 4 · 5)/4 = 5
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The Matrix-Tree Theorem

Example G = Kn (complete graph on n vertices)

L(Kn) =











n − 1 −1 . . . −1
−1 n − 1 . . . −1
...

...
...

−1 −1 . . . n− 1











Eigenvalues: 0 (multiplicity 1), n (multiplicity n − 1)

τ(Kn) = nn−1/n = nn−2.
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Example: The Hypercube

G = Qn = 1-skeleton of n-dimensional hypercube

Eigenvalues of L: 0, 2, 4, . . . , 2n, with multiplicities
(

n
0

)

,
(

n
1

)

,
(

n
2

)

, . . . ,
(

n
n

)

=⇒ τ(Qn) =

n
∏

k=2

(2k)

(

n
k

)

.
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Example: The Hypercube

G = Qn = 1-skeleton of n-dimensional hypercube

Eigenvalues of L: 0, 2, 4, . . . , 2n, with multiplicities
(

n
0

)

,
(

n
1

)

,
(

n
2

)

, . . . ,
(

n
n

)

=⇒ τ(Qn) =

n
∏

k=2

(2k)

(

n
k

)

.

Open Problem Find a bijective proof of this formula.
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The Chip-Firing Game
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The Chip-Firing Game
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The Chip-Firing Game
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The Chip-Firing Game
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The Chip-Firing Game

G : graph with vertex set {1, 2, . . . , n}

Each vertex i < n has a finite number ci of poker chips

A vertex fires by giving one chip to each of its neighbors

Vertex n, the bank, only fires if no other vertex can fire

Vertices other than the bank cannot go into debt

Chip configuration = vector c = (c1, . . . , cn−1) ∈ N
n−1
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The Chip-Firing Game

Theorem (Biggs, Dhar?, Björner–Lovász–Shor)
Every initial chip configuration determines a unique critical
configuration, regardless of the order of firing.
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The Chip-Firing Game

Theorem (Biggs, Dhar?, Björner–Lovász–Shor)
Every initial chip configuration determines a unique critical
configuration, regardless of the order of firing.

Recall that the Laplacian matrix of G is L = [ℓij ]1≤i ,j≤n where

ℓij =

{

degG (i) if i = j

−(# of edges joining i and j) otherwise.

• Firing vertex i ←→ subtracting i th column of L from c.
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The Chip-Firing Game

Firing keeps c in the same coset of colspace(L) ⊂ Z
n.
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The Chip-Firing Game

Firing keeps c in the same coset of colspace(L) ⊂ Z
n.

I.e., each chip configuration determines an element of the quotient
group Z

n/ colspace(L). . .
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The Chip-Firing Game

Firing keeps c in the same coset of colspace(L) ⊂ Z
n.

I.e., each chip configuration determines an element of the quotient
group Z

n/ colspace(L). . .

. . . or, if we ignore the bank, an element of Z
n−1/ colspace(L̃).
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The Chip-Firing Game

Firing keeps c in the same coset of colspace(L) ⊂ Z
n.

I.e., each chip configuration determines an element of the quotient
group Z

n/ colspace(L). . .

. . . or, if we ignore the bank, an element of Z
n−1/ colspace(L̃).

Definition The critical group of G is

K (G ) = Z
n−1/ colspace(L̃).

|K (G )| = τ(G ) by Matrix-Tree Theorem

Critical configurations are a system of coset representatives
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Cuts and Flows

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1
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Cuts and Flows

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1













Cut space C = colspace(∂T ) (generated by edge cuts)
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Cuts and Flows

G =

1 2

3 4

∂ =













12 13 13 23 24

1 1 1 −1 0 0

2 −1 0 0 −1 1

3 0 −1 1 1 0

4 0 0 0 0 −1













Cut space C = colspace(∂T ) (generated by edge cuts)

Flow space F = ker(∂) = C⊥ (generated by cycles)
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Cuts and Flows

Cut space C = colspace(∂T )

Flow space F = ker(∂) = C⊥
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Cuts and Flows

Cut space C = colspace(∂T )

Flow space F = ker(∂) = C⊥

Theorem [Bacher, de la Harpe, Nagnibeda 1997]

K (G ) = Z
n−1/ colspace L̃ ∼= Z

E/(C ⊕ F).
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Main Course: Simplicial Complexes
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Simplicial Complexes

Definition A simplicial complex is a family
∆ ⊆ powerset({1, 2, . . . , n}) such that

if σ ∈ ∆ and σ′ ⊆ σ, then σ′ ∈ ∆.

Think of a simplicial complex as a higher-dimensional
generalization of a graph.

Elements of ∆ are called faces or simplices.

dimσ = |σ| − 1

dim∆ = max{dimσ | σ ∈ ∆}

fi(∆) = number of i -dimensional faces of ∆
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Simplicial Complexes

Definition A simplicial complex is a family
∆ ⊆ powerset({1, 2, . . . , n}) such that

if σ ∈ ∆ and σ′ ⊆ σ, then σ′ ∈ ∆.

Simplicial polytopes (minus geometry)

Every “reasonable” topological space can be represented as a
simplicial complex

Graphs = 1-dimensional simplicial complexes

Simplicial complexes arise frequently in combinatorics: e.g.,
order complexes of posets
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A Crash Course in Algebraic Topology

For i ∈ N, the i-dimensional boundary matrix ∂i of ∆ records
which (i − 1)-simplices are contained in which i -simplices.
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A Crash Course in Algebraic Topology

For i ∈ N, the i-dimensional boundary matrix ∂i of ∆ records
which (i − 1)-simplices are contained in which i -simplices.

(E.g., ∂1 = signed incidence matrix of 1-skeleton of ∆ — records
which vertices are contained in which edges.)
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A Crash Course in Algebraic Topology

For i ∈ N, the i-dimensional boundary matrix ∂i of ∆ records
which (i − 1)-simplices are contained in which i -simplices.

(E.g., ∂1 = signed incidence matrix of 1-skeleton of ∆ — records
which vertices are contained in which edges.)

Fact ∂i∂i+1 = 0. Equivalently, im(∂i+1) ⊆ ker(∂i ).
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A Crash Course in Algebraic Topology

For i ∈ N, the i-dimensional boundary matrix ∂i of ∆ records
which (i − 1)-simplices are contained in which i -simplices.

(E.g., ∂1 = signed incidence matrix of 1-skeleton of ∆ — records
which vertices are contained in which edges.)

Fact ∂i∂i+1 = 0. Equivalently, im(∂i+1) ⊆ ker(∂i ).

Definition The ith (reduced) homology group of ∆ is

H̃i (∆) = ker(∂i ) / im(∂i+1)

∼= Z
β̃i (∆) ⊕ finite “torsion” group
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A Crash Course in Algebraic Topology

For i ∈ N, the i-dimensional boundary matrix ∂i of ∆ records
which (i − 1)-simplices are contained in which i -simplices.

(E.g., ∂1 = signed incidence matrix of 1-skeleton of ∆ — records
which vertices are contained in which edges.)

Fact ∂i∂i+1 = 0. Equivalently, im(∂i+1) ⊆ ker(∂i ).

Definition The ith (reduced) homology group of ∆ is

H̃i (∆) = ker(∂i ) / im(∂i+1)

∼= Z
β̃i (∆) ⊕ finite “torsion” group

(If you’re new at this: Don’t worry about the twiddles!)
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Why Should You Care About Homology?

H̃i (∆) measures holes (β̃i ) and nonorientability (torsion)
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Why Should You Care About Homology?

H̃i (∆) measures holes (β̃i ) and nonorientability (torsion)

For any complex ∆, H̃0(∆) = Z
# connected cpts−1

H̃0(∆) = 0 ⇐⇒ ∆ is connected.
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Why Should You Care About Homology?

H̃i (∆) measures holes (β̃i ) and nonorientability (torsion)

For any complex ∆, H̃0(∆) = Z
# connected cpts−1

H̃0(∆) = 0 ⇐⇒ ∆ is connected.

If ∆ is a connected graph, then H̃1(∆) = Z
e−v+1

H̃1(∆) = 0 ⇐⇒ ∆ is acyclic.
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Why Should You Care About Homology?

H̃i (∆) measures holes (β̃i ) and nonorientability (torsion)

For any complex ∆, H̃0(∆) = Z
# connected cpts−1

H̃0(∆) = 0 ⇐⇒ ∆ is connected.

If ∆ is a connected graph, then H̃1(∆) = Z
e−v+1

H̃1(∆) = 0 ⇐⇒ ∆ is acyclic.

If ∆ is a d-sphere, then

H̃i (∆) =

{

Z for i = d ,

0 for i < d .
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Why Should You Care About Homology?

What happens to the homology of ∆ when you delete a
d-dimensional facet?

Spanning Trees of Simplicial Complexes



Why Should You Care About Homology?

What happens to the homology of ∆ when you delete a
d-dimensional facet?

Case 1 : Pop a d-dimensional bubble: β̃d drops by 1
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Why Should You Care About Homology?

What happens to the homology of ∆ when you delete a
d-dimensional facet?

Case 1 : Pop a d-dimensional bubble: β̃d drops by 1

Case 2: Tear a (d − 1)-dimensional hole: β̃d−1 increases by 1

Spanning Trees of Simplicial Complexes



Why Should You Care About Homology?

What happens to the homology of ∆ when you delete a
d-dimensional facet?

Case 1 : Pop a d-dimensional bubble: β̃d drops by 1

Case 2: Tear a (d − 1)-dimensional hole: β̃d−1 increases by 1

Fact The (reduced) Euler characteristic of ∆ is

χ̃(∆) =
∑

i

(−1)i fi(∆) =
∑

i

(−1)i β̃i (∆).
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Simplicial Spanning Trees

Definition Let ∆ be a simplicial complex of dimension d .

A simplicial spanning tree (SST) is a subcomplex Υ ⊂ ∆, with
Υ(d−1) = ∆(d−1), such that

1. H̃d(Υ; Z) = 0;

2. H̃d−1(Υ; Z) is a finite group;

3. fd(Υ) = fd−1(∆)− β̃d(∆) + β̃d−1(∆).
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Simplicial Spanning Trees

Definition Let ∆ be a simplicial complex of dimension d .

A simplicial spanning tree (SST) is a subcomplex Υ ⊂ ∆, with
Υ(d−1) = ∆(d−1), such that

1. H̃d(Υ; Z) = 0;

2. H̃d−1(Υ; Z) is a finite group;

3. fd(Υ) = fd−1(∆)− β̃d(∆) + β̃d−1(∆).

When d = 1, this is just the usual graph-theoretic definition
of a spanning tree.
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Simplicial Spanning Trees

Definition Let ∆ be a simplicial complex of dimension d .

A simplicial spanning tree (SST) is a subcomplex Υ ⊂ ∆, with
Υ(d−1) = ∆(d−1), such that

1. H̃d(Υ; Z) = 0;

2. H̃d−1(Υ; Z) is a finite group;

3. fd(Υ) = fd−1(∆)− β̃d(∆) + β̃d−1(∆).

When d = 1, this is just the usual graph-theoretic definition
of a spanning tree.

Any two of conditions 1,2,3 together imply the third (just as
for graphs).
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Examples of SSTs

What if ∆ is a simplicial d-sphere?

Recall that H̃d(∆) = Z. To make H̃d (Υ) = 0, “pop the
bubble” by deleting a single facet from ∆. (But don’t delete
more than one or H̃d−1 will become nonzero.)

In particular, # of SSTs = # facets = fd(∆). (Analogous to
the statement that the spanning trees of a cycle graph are
formed by deleting a single edge.)
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Kalai’s Theorem

Let Kd
n be the d-skeleton of the n-vertex simplex, i.e.,

Kd
n =

{

F ⊆ {1, 2, . . . , n} | dimF ≤ d
}

and let T (∆) denote the set of SSTs of ∆.
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Kalai’s Theorem

Let Kd
n be the d-skeleton of the n-vertex simplex, i.e.,

Kd
n =

{

F ⊆ {1, 2, . . . , n} | dimF ≤ d
}

and let T (∆) denote the set of SSTs of ∆.

Theorem [Kalai 1983]

∑

Υ∈T (Kd
n )

|H̃d−1(Υ; Z)|2 = n

(

n−2
d

)

.

Setting d = 1 recovers Cayley’s formula τ(Kn) = nn−2.
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Counting Simplicial Spanning Trees

∆ = d-dim’l simplicial complex with |H̃i (∆)| <∞ ∀i < d

L = ∂d∂T
d (simplicial Laplacian)

τk(∆) =
∑

Υ∈T (∆(k))

|H̃k−1(Υ)|2 (“number” of k-dim’l trees”)

Simplicial Matrix-Tree Theorem I [Duval–Klivans–JLM 2007]

τd(∆) = |H̃d−2(∆)|2 ·
product of nonzero eigenvalues of L

τd−1(∆)
.
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Counting Simplicial Spanning Trees

τk(∆) =
∑

Υ∈T (∆(k))

|H̃k−1(Υ)|2

Γ = simplicial spanning tree of ∆(d−1)

LΓ = reduced Laplacian obtained from L = ∂d∂T
d by deleting Γ

Simplicial Matrix-Tree Theorem II

τd(∆) =
|H̃d−2(∆)|2

|H̃d−2(Γ)|2
det L.
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Counting Simplicial Spanning Trees

The Punchline: You can count the spanning trees of a simplicial
complex using Laplacians, just as you can for a graph. . .
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Counting Simplicial Spanning Trees

The Punchline: You can count the spanning trees of a simplicial
complex using Laplacians, just as you can for a graph. . .

. . . but some trees may be more equal than others.
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An Example: The Equatorial Bipyramid B
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1

5

2

4

3
Facets: 123 (“equator”)
124, 134, 234 (“northern”)
125, 135, 235 (“southern”)

f (∆) = (5, 9, 7)

H̃0(∆) = 0
H̃1(∆) = 0
H̃2(∆) = Z

2
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Example 1: The Equatorial Bipyramid

To make an SST of B , we need to pop two bubbles.
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Example 1: The Equatorial Bipyramid

To make an SST of B , we need to pop two bubbles.

Delete equator and any other triangle: 6 SSTs

Delete one northern and one southern triangle: 3× 3=9 SSTs

Total: τ2(B) = 15.

Spanning Trees of Simplicial Complexes



Example 1: The Equatorial Bipyramid

To make an SST of B , we need to pop two bubbles.

Delete equator and any other triangle: 6 SSTs
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Total: τ2(B) = 15.

Meanwhile, τ1(B) = τ1(K5 minus an edge) = 75.

SMTT-I: Eigenvalues of L are 5,5,5, 3,3, 0,0,0,0
τ2 = (product of NZEs)/τ1 = 5332/75 = 15.
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Example 1: The Equatorial Bipyramid

To make an SST of B , we need to pop two bubbles.

Delete equator and any other triangle: 6 SSTs

Delete one northern and one southern triangle: 3× 3=9 SSTs

Total: τ2(B) = 15.

Meanwhile, τ1(B) = τ1(K5 minus an edge) = 75.

SMTT-I: Eigenvalues of L are 5,5,5, 3,3, 0,0,0,0
τ2 = (product of NZEs)/τ1 = 5332/75 = 15.

SMTT-II: Take Γ = {12, 13, 14, 15}; then det LΓ = 15.
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Some Open Problems

Pick your favorite simplicial (or even cell) complex and count its
spanning trees!

It helps if the complex is Laplacian integral (i.e., the Laplacian
matrix has integer eigenvalues).

Complete colorful complexes: Adin ’92

Shifted complexes: Duval–Reiner ’03, weighted DKM ’07

Skeletons of cubes: DKM ’10

Matroid complexes: Kook–Reiner–Stanton ’01; weighted?

Matching and chessboard complexes?
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Critical Groups of Simplicial Complexes

Critical group of a graph G :

K (G ) = coker L̃ = coker(∂̃∂̃T ) = Z
|E |/(C ⊕ F)

where ∂ = incidence matrix; C = colspace ∂T ; F = ker ∂.
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Critical group of a graph G :

K (G ) = coker L̃ = coker(∂̃∂̃T ) = Z
|E |/(C ⊕ F)

where ∂ = incidence matrix; C = colspace ∂T ; F = ker ∂.

Definition The (i − 1)th critical group of a complex ∆ is

Ki−1(∆) = coker L̃ud
i−1 = coker(∂̃i ∂̃

T
i ) = Z

fi (∆)/(Ci ⊕Fi )

where Ci = colspace(∂T
i ), Fi = ker(∂i ).
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Critical Groups of Simplicial Complexes

Definition The (i − 1)th critical group of a complex ∆ is

Ki−1(∆) = coker L̃ud
i−1 = coker(∂̃i ∂̃

T
i ) = Z

fi (∆)/(Ci ⊕Fi )

where Ci = colspace(∂T
i ), Fi = ker(∂i ).

Theorem [DKM’10] |Ki−1(∆)| = τi(∆) for all i .
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Simplicial Chip-Firing?

Open Problem

Develop a simplicial analogue of the chip-firing game whose critical
configurations correspond to elements of the simplicial critical
group.
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