Planes, Hyperplanes, and Beyond: Understanding Higher-Dimensional Spaces

Jeremy L. Martin
University of Kansas

Missouri MAA Sectional Meeting
Drury University
April 7, 2018

Blatant Shill

Please come to the 2018 Kansas MAA Sectional Meeting!
Where:
Johnson County Community College, Overland Park, Kansas
When:
April 20-21
Who:
Invited speakers Matt Boelkins (Grand Valley State; Chair, MAA
Congress) and Mark Yannotta (Clackamas CC, Oregon)
Web:
http://www.jccc.edu/conferences/math-conference/index.html

Part 1: How Many Pieces of Cake?

The Cake-Cutting Problem

What is the greatest number of pieces that a cake can be cut into with a given number of cuts?

- The cuts must be straight lines and must go all the way through the cake.
- The sizes and shapes of the pieces don't matter.
- For the moment, we'll focus on 2-dimensional cakes (think of them as pancakes).

Solutions with 2, 3 or 4 Cuts

Let's write $P_{2}(N)$ for the maximum number of pieces obtainable using N cuts. (The 2 stands for dimension.)

2 cuts:

$$
P_{2}(2)=4
$$

3 cuts:

$$
P_{2}(3)=7
$$

4 cuts:
$P_{2}(4)=11$

Solutions with N Cuts

Cuts N	Pieces $P_{2}(N)$
1	2
2	4
3	7
4	11
5	16
6	22

Cuts N	Pieces $P_{2}(N)$
7	29
8	37
9	46
10	56
\ldots	\ldots
100	5051

Do you see the pattern?

The Pattern

N	$P_{2}(N)$	
0	1	
1	2	$=1+1$
2	4	$=2+2=1+1+2$
3	7	$=4+3=1+1+2+3$
4	11	$=7+4=1+1+2+3+4$
5	16	$=11+5=1+1+2+3+4+5$
\cdots	\cdots	\cdots

- How do we prove that the pattern works for every N ?
- What does $1+2+\cdots+N$ equal anyway?

How Many Pieces of Cake?
Symmetric Cake-Cutting Cars, Trees, and Keeping Score

Dimension 2
Dimension 3
...And Beyond

The Staircase Theorem

How Many Pieces of Cake?
Symmetric Cake-Cutting Cars, Trees, and Keeping Score

Dimension 2
Dimension 3
...And Beyond

The Staircase Theorem

How Many Pieces of Cake?

The Staircase Theorem

$\mathrm{N}+1$

The Staircase Theorem

$$
1+2+\ldots .+N=N(N+1) / 2
$$

The Pattern

N	$P_{2}(N)$	
0	1	
1	2	$=1+1$
2	4	$=2+2=1+1+2$
3	7	$=4+3=1+1+2+3$
4	11	$=7+4=1+1+2+3+4$
5	16	$=11+5=1+1+2+3+4+5$

By the Staircase Theorem, we can conjecture that

$$
P_{2}(N)=1+(1+2+\cdots+N)=1+\frac{N(N+1)}{2} .
$$

How Many Pieces of Cake?
Symmetric Cake-Cutting Cars, Trees, and Keeping Score

Maximizing the Number of Pieces

How can we ensure obtaining as many pieces as possible?

Maximizing the Number of Pieces

How can we ensure obtaining as many pieces as possible?

- First cut the pancake into $P_{2}(N-1)$ pieces using $N-1$ cuts.

Maximizing the Number of Pieces

How can we ensure obtaining as many pieces as possible?

- First cut the pancake into $P_{2}(N-1)$ pieces using $N-1$ cuts.
- Now make the N th cut, hitting as many pieces as possible.

Maximizing the Number of Pieces

How can we ensure obtaining as many pieces as possible?

- First cut the pancake into $P_{2}(N-1)$ pieces using $N-1$ cuts.
- Now make the N th cut, hitting as many pieces as possible.

Maximizing the Number of Pieces

Key observation: The number of pieces subdivided by the Nth cut equals one more than the number of previous cuts it meets.

Maximizing the Number of Pieces

Key observation: The number of pieces subdivided by the Nth cut equals one more than the number of previous cuts it meets.

Maximizing the Number of Pieces

Key observation: The number of pieces subdivided by the Nth cut equals one more than the number of previous cuts it meets.

Maximizing the Number of Pieces

Key observation: The number of pieces subdivided by the Nth cut equals one more than the number of previous cuts it meets.

Maximizing the Number of Pieces

Key observation: The number of pieces subdivided by the Nth cut equals one more than the number of previous cuts it meets.

Maximizing the Number of Pieces

If we make sure that

- every pair of cuts meets in some point, and
- no more than two cuts meet at any point, then the $N^{\text {th }}$ cut will meet each of the previous $N-1$ cuts, and therefore will account for N new pieces.

Since the original pancake had one piece, we have proved that

$$
P_{2}(N)=1+(1+2+\cdots+N)=1+\frac{N(N+1)}{2}
$$

From 2D to 3D

What about 3-dimensional cakes?

A cut in 3-dimensional space means a plane, not a line.

From 2D to 3D

Let's write $P_{3}(N)$ for the maximum number of pieces obtainable from a 3-dimensional cake with N cuts.

$P_{3}(1)=2$
$P_{3}(2)=4$
$P_{3}(3)=8$

Compare 2D: $P(1)=2, P(2)=4, P(3)=7$.
$P_{3}(4)=15$
With four planes, we can make 15 pieces (though only 14 are visible from the outside).

From 2D to 3D

N	0	1	2	3	4	5	6	7	8
$P_{2}(N)$	1	2	4	7	11	16	22	29	37
$P_{3}(N)$	1	2	4	8	15	26	42	64	93

Do you see the pattern?

From 2D to 3D

N	0	1	2	3	4	5	6	7	8
$P_{2}(N)$	1	2	4	7	$\mathbf{1 1}$	16	22	29	37
$P_{3}(N)$	1	2	4	8	$\mathbf{1 5}$	$\mathbf{2 6}$	42	64	93

The pattern is

$$
P_{3}(N)=P_{3}(N-1)+P_{2}(N-1)
$$

From 2D to 3D

N	0	1	2	3	4	5	6	7	8
$P_{2}(N)$	1	2	4	7	$\mathbf{1 1}$	16	22	29	37
$P_{3}(N)$	1	2	4	8	15	26	42	64	93

The pattern is

$$
P_{3}(N)=P_{3}(N-1)+P_{2}(N-1)
$$

(In fact $P_{3}(N)=\frac{N^{3}+5 N+6}{6}$. But the pattern is more important than the formula!)

How Many Pieces of Cake?
Symmetric Cake-Cutting Cars, Trees, and Keeping Score

Pancakes, Cakes and Hypercakes

How about four-dimensional pancakes?

Pancakes, Cakes and Hypercakes

How about four-dimensional pancakes?
(Never mind whether they actually exist!)

Pancakes, Cakes and Hypercakes

How about four-dimensional pancakes?
(Never mind whether they actually exist!)

General question: How many pieces can you produce from a d-dimensional cake by making N cuts? Call this number $P_{d}(N)$.

- We already know the answers for $d=2$ and $d=3$.
- For $d=1$: N cuts give $N+1$ pieces.
- For any d : 0 cuts give 1 piece, 1 cut gives 2 pieces.

Pancakes, Cakes and Beyond

- Each number is the sum of the numbers immediately "west" (\leftarrow) and "northwest" (\nwarrow).
- Formula: $P_{d}(N)=P_{d}(N-1)+P_{d-1}(N-1)$.

			N						
	0	1	2	3	4	5	6	7	8
$P_{1}(N)$	1	2	3	4	5	6	7	8	9
$P_{2}(N)$	1	2	4	7	11	16	22	29	37
$P_{3}(N)$	1	2	4	8	15	26	42	64	93
$P_{4}(N)$	1	2	4	8	16	31	57	99	163
$P_{5}(N)$	1	2	4	8	16	32	63	120	219
\cdots	\cdots								

How Many Pieces of Cake?

Pancakes, Cakes and Beyond

Theme: Understanding patterns in dimensions we can see enables us to understand dimensions we can't see.

Part 2: Symmetric Cake-Cutting

Symmetric Cake-Cutting

What are the possible ways to cut a perfectly round cake so that all pieces are congruent (i.e., geometrically the same)?

Symmetric Cake-Cutting

What are the possible ways to cut a perfectly round cake so that all pieces are congruent (i.e., geometrically the same)?

Refresher: N-Dimensional Algebra

Lines in 2-dimensional space \mathbb{R}^{2} have equations like

$$
x=y \quad x=0 \quad x+2 y=4
$$

Refresher: N-Dimensional Algebra

Lines in 2-dimensional space \mathbb{R}^{2} have equations like

$$
x=y \quad x=0 \quad x+2 y=4
$$

Planes in 3-dimensional space \mathbb{R}^{3} have equations like

$$
x=y \quad x=z \quad x=0 \quad x+3 y+2 z=1
$$

Refresher: N-Dimensional Algebra

Lines in 2-dimensional space \mathbb{R}^{2} have equations like

$$
x=y \quad x=0 \quad x+2 y=4
$$

Planes in 3-dimensional space \mathbb{R}^{3} have equations like

$$
x=y \quad x=z \quad x=0 \quad x+3 y+2 z=1
$$

Hyperplanes in 4-dimensional space \mathbb{R}^{4} have equations like

$$
x+y=z \quad w=0 \quad 3 w-2 x+7 y+2 z=2018
$$

Refresher: N-Dimensional Algebra

Lines in 2-dimensional space \mathbb{R}^{2} have equations like

$$
x=y \quad x=0 \quad x+2 y=4
$$

Planes in 3-dimensional space \mathbb{R}^{3} have equations like

$$
x=y \quad x=z \quad x=0 \quad x+3 y+2 z=1
$$

Hyperplanes in 4-dimensional space \mathbb{R}^{4} have equations like

$$
x+y=z \quad w=0 \quad 3 w-2 x+7 y+2 z=2018
$$

In general, the term "hyperplane" refers to the subspace of \mathbb{R}^{n} defined by a single linear equation.

Hyperplanes and Arrangements

A hyperplane is a subspace of \mathbb{R}^{n} defined by one linear equation.

Hyperplanes and Arrangements

A hyperplane is a subspace of \mathbb{R}^{n} defined by one linear equation.
The two sides of a hyperplane are described by linear inequalities. For example, the plane $x=z$ separates 3D-space into the side where $x<z$ and the side where $x>z$.

Hyperplanes and Arrangements

A hyperplane is a subspace of \mathbb{R}^{n} defined by one linear equation.
The two sides of a hyperplane are described by linear inequalities. For example, the plane $x=z$ separates 3D-space into the side where $x<z$ and the side where $x>z$.

Hyperplane arrangement: a family of hyperplanes that divides \mathbb{R}^{n} into regions. Each region is described by a system of linear inequalities.

Hyperplanes and Arrangements

A hyperplane is a subspace of \mathbb{R}^{n} defined by one linear equation.
The two sides of a hyperplane are described by linear inequalities. For example, the plane $x=z$ separates 3D-space into the side where $x<z$ and the side where $x>z$.

Hyperplane arrangement: a family of hyperplanes that divides \mathbb{R}^{n} into regions. Each region is described by a system of linear inequalities.

Canonical example: quadrants in \mathbb{R}^{2}, octants in \mathbb{R}^{3}, orthants in \mathbb{R}^{n}, \ldots

Symmetric Cake-Cutting

Three planes:
$x=0, y=0, z=0$

Three planes:
$x=y, x=z, y=z$

Symmetric Cake-Cutting in Higher Dimensions

We can cut up a 3-dimensional sphere into congruent pieces using the planes defined by the equations

$$
x=0, y=0, z=0 \quad \text { or } \quad x=y, x=z, y=z
$$

to produce 8 or 6 regions respectively.

Symmetric Cake-Cutting in Higher Dimensions

We can cut up a 3-dimensional sphere into congruent pieces using the planes defined by the equations

$$
x=0, y=0, z=0 \quad \text { or } \quad x=y, x=z, y=z
$$

to produce 8 or 6 regions respectively.
Question: Suppose we cut up a 4-dimensional sphere into pieces using the hyperplanes

$$
\begin{array}{ll}
w=0 & x=0 \\
y=0 & z=0 \tag{or}
\end{array}
$$

$$
\begin{array}{lll}
w=x & w=y & w=z \\
x=y & x=z & y=z
\end{array}
$$

How many regions will result?

Symmetric Cake-Cutting in Higher Dimensions

Some tools for visualizing 4-dimensional space:

- Work by analogy: understanding low-dimensional space can help us understand higher dimensions
- Project into lower dimension to make visualization easier
- Reexpress high-dimensional problems mathematically

The Braid Arrangement

The arrangement of planes $x=y, x=z, y=z$ is called the 3-dimensional braid arrangement (Braid3 for short).

Projecting from 3D to 2D makes the diagrams simpler, and preserves the geometry (and number!) of the regions.

Regions Between The Planes of Braid3

Each region of Braid3 lies on one side of each of the planes $x=y$, $x=z, y=z$. Therefore,

- either $x<y$ or $y<x$;
- either $x<z$ or $z<x$;
- either $y<z$ or $z<y$.

So every region can be specified by the order of x, y, z.
There are six possibilities:

$$
\begin{array}{lll}
x<y<z & y<x<z & z<x<y \\
x<z<y & y<z<x & z<y<x
\end{array}
$$

Regions of Braid3

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

Why "Braid"?

Crossing a border corresponds to reversing one inequality.

The 2-Dimensional Braid Arrangement

Braid2

Projection into 1D

Note that there are 2 regions.

The 4-Dimensional Braid Arrangement

The arrangement Braid4 consists of the hyperplanes defined by the equations

$$
w=x, \quad w=y, \quad w=z, \quad x=y, \quad x=z, \quad y=z
$$

in four-dimensional space.

Key observation: We can project Braid2 from 2D to 1D, and Braid3 from 3D to 2D, so...
by analogy, we should be able to project Braid4 from 4D to 3D.

A Technical Interlude

- The six equations

$$
w=x, \quad w=y, \quad w=z, \quad x=y, \quad x=z, \quad y=z
$$

are all satisfied if $w=x=y=z$.

- That is, the six hyperplanes of Braid4 intersect in a line L.
- As in the previous cases, we can "squash" (or project) 4D along L to reduce to 3D.
- The hyperplane perpendicular to L is defined by $w+x+y+z=0$.
- To make the pictures that follow, I gave my computer the equations for Braid4 and added the equation $w+x+y+z=0$, i.e., $w=-x-y-z$.

Here's what Braid4 looks like!

Suppose we put a dot in each region and connect adjacent dots...

Suppose we put a dot in each region and connect adjacent dots...

... and then remove the hyperplanes, leaving only the dots.

Regions of Braid4

The regions of Braid4 correspond to the orderings of the four coordinates w, x, y, z :

$w x y z$	$w x z y$	$w y x z$	$w y z x$	$w z x y$	$w z y x$
$x w y z$	$x w z y$	$x y w z$	$x y z w$	$x z w y$	$x z y w$
$y w x z$	$y w z x$	$y x w z$	$y x z w$	$y z w x$	$y z x w$
$z w x y$	$z w y x$	$z x w y$	$z x y w$	$z y w x$	$z y x w$

- There are 4 possibilities for the first letter;
- 3 possibilities for the second, once the first is determined;
- 2 possibilities for the third, once the first two are determined;
- only 1 possibility for the last letter.

Total: $4 \times 3 \times 2 \times 1=24$ orderings $=24$ regions.

Regions of Braid4

- We have just seen that Braid4 has 24 regions.
- The regions correspond to permutations of w, x, y, z.
- Each region has exactly 3 neighboring regions.
- If two regions are neighbors, then the corresponding permutations differ by a single flip:

$$
\text { x z w y } \quad \longleftrightarrow \quad x \text { w z y }
$$

Beyond the Fourth Dimension

The n-dimensional braid arrangement consists of the hyperplanes defined by the equations

$$
\begin{aligned}
& x_{1}=x_{2}, \\
& x_{1}=x_{3}, \quad x_{2}=x_{3}, \\
& \cdots \\
& x_{1}=x_{n}, \quad x_{2}=x_{n}, \quad \ldots, \quad x_{n-1}=x_{n}
\end{aligned}
$$

- There are $n(n-1) / 2$ hyperplanes (by the staircase formula!)
- The regions correspond to the possible orderings of the coordinates x_{1}, \ldots, x_{n}.
- The number of regions is $n \times(n-1) \times(n-2) \cdots \times 3 \times 2 \times 1$ (also known as n factorial and written $n!$).
- Each region has $n-1$ neighboring regions.

Part 3: Cars, Trees and Keeping Score

Parking Cars

- A group of cars enter a parking lot, one by one.

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces = \# of cars (say n).

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces $=\#$ of cars (say n).
- The parking spaces are arranged along a one-way road.

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces = \# of cars (say n).
- The parking spaces are arranged along a one-way road.
- Each car has a preferred parking space that it drives to first. If that spot is not available, it continues to the first empty space.

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces = \# of cars (say n).
- The parking spaces are arranged along a one-way road.
- Each car has a preferred parking space that it drives to first. If that spot is not available, it continues to the first empty space.
- If there is no empty space, too bad!

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces = \# of cars (say n).
- The parking spaces are arranged along a one-way road.
- Each car has a preferred parking space that it drives to first. If that spot is not available, it continues to the first empty space.
- If there is no empty space, too bad!
- A parking function is a list of preferences such that all cars are able to park successfully.

Parking Cars

- A group of cars enter a parking lot, one by one.
- \# of parking spaces = \# of cars (say n).
- The parking spaces are arranged along a one-way road.
- Each car has a preferred parking space that it drives to first. If that spot is not available, it continues to the first empty space.
- If there is no empty space, too bad!
- A parking function is a list of preferences such that all cars are able to park successfully.
- Applications: database indexing, hash tables)

Parking Functions

Parking Functions

Therefore
(1) 4 (1) 4
is a parking function. What about
(1) 4 (4) 4 ?

Parking Functions

Parking Two Cars

There are $4=2^{2}$ possible lists of preferred spots. 3 of them successfully park both cars.
(1) (1) OK
(1) (2) OK
(2) (1) OK
(2) (2) Not OK

Parking Three Cars

There are $27=3^{3}$ possible lists of preferred spots.
16 of them successfully park all three cars.
Parking functions (the ones that work):

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

Non-parking functions (the ones that don't work):

133	222	223	233	333
313		232	323	
331		322	332	

Parking n Cars

Observation \#1: Whether or not all the cars can park depends on what their preferred spaces are, but not on the order in which they enter the parking lot.

For example, if there are 6 cars and the preference list includes two 5 's and one 6, not all cars will be able to park.

Also, every parking function must include at least one 1. (What are some other conditions that must be satisfied?)

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.

Number of cars (n) Number of parking functions
1
1
2
3
3
16

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.

Number of cars (n) Number of parking functions
1
1
2 3
3
16
4
125

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.
Number of cars (n) Number of parking functions
$1 \quad 1$
$2 \quad 3$
316
$4 \quad 125$
$5 \quad 1296$

Do you see the pattern?

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.

Number of cars (n) Number of parking functions

1	1	$=2^{0}$
2	3	$=3^{1}$
3	16	$=4^{2}$
4	125	$=5^{3}$
5	1296	$=6^{4}$

Parking n Cars

Observation \#2: 3 cars $\Longrightarrow 16$ parking functions.

Number of cars (n) Number of parking functions

1	1	$=2^{0}$
2	3	$=3^{1}$
3	16	$=4^{2}$
4	125	$=5^{3}$
5	1296	$=6^{4}$

Conjecture: n cars $\Longrightarrow(n+1)^{n-1}$ parking functions.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

Connecting Points

Problem: Connect n points with as few links as possible.

- It doesn't matter where the points are or how you draw the links - just which pairs of points are linked.

Connecting Points

Problem: Connect n points with as few links as possible.

- It doesn't matter where the points are or how you draw the links - just which pairs of points are linked.
- These structures are called trees.

How Many Trees?

1 point:

1 tree

How Many Trees?

1 point:

(1)

1 tree

1 tree

How Many Trees?

1 point:
1 tree
2 points:

1 tree
3 points:

3 trees

How Many Trees?

1 point:
(1)

1 tree

2 points:

1 tree

3 points:

3 trees

Trees and Cars

\# Cars	\# Parking Functions		\# Points	\# Trees
1	1		1	1
2	3		2	1
3	16		36	
4	125		16	
5	1296			125
\cdots		\cdots		
N	$(N+1)^{N-1}$	N	N^{N-2}	

The Shi Arrangement

The n-dimensional Shi arrangement consists of the $n(n-1)$ hyperplanes defined by the equations

$$
\begin{array}{llll}
x_{1}=x_{2} & x_{1}=x_{3} & \cdots & x_{1}=x_{n} \\
x_{1}=x_{2}+1 & x_{1}=x_{3}+1 & \cdots & x_{1}=x_{n}+1 \\
& x_{2}=x_{3} & \cdots & x_{2}=x_{n} \\
& x_{2}=x_{3}+1 & \cdots & x_{2}=x_{n}+1 \\
& & & \vdots \\
& & & x_{n-1}=x_{n} \\
& & & x_{n-1}=x_{n}+1
\end{array}
$$

("Take the braid arrangement, make a copy of it, and push the copy a little bit.")

The 2D Shi Arrangement

The 2D Shi Arrangement

The 3D Shi Arrangement

The 3D Shi Arrangement

The 3D Shi Arrangement

Scoring with a Handicap

- A group of marathon runners are ranked 1 through n.

Scoring with a Handicap

- A group of marathon runners are ranked 1 through n.
- You score one point for each higher-ranked runner you beat head-to-head.

Scoring with a Handicap

- A group of marathon runners are ranked 1 through n.
- You score one point for each higher-ranked runner you beat head-to-head.
- In order to score a point against a lower-ranked runner, you must beat him/her by at least one minute.

Scoring with a Handicap

- A group of marathon runners are ranked 1 through n.
- You score one point for each higher-ranked runner you beat head-to-head.
- In order to score a point against a lower-ranked runner, you must beat him/her by at least one minute.
- The possible final scores correspond to regions of the Shi arrangement.

Slicing n-Dimensional Space

$$
(n+1)^{n-1}=\text { number of regions of the Shi arrangement }
$$

Slicing n-Dimensional Space

$$
\begin{aligned}
(n+1)^{n-1} & =\text { number of regions of the Shi arrangement } \\
& =\text { number of handicapped-scoring outcomes }
\end{aligned}
$$

Slicing n-Dimensional Space

$(n+1)^{n-1}=$ number of regions of the Shi arrangement
$=$ number of handicapped-scoring outcomes
$=$ number of trees on $n+1$ points

Slicing n-Dimensional Space

$(n+1)^{n-1}=$ number of regions of the Shi arrangement
$=$ number of handicapped-scoring outcomes
$=$ number of trees on $n+1$ points
$=$ number of ways to park n cars

Slicing n-Dimensional Space

$(n+1)^{n-1}=$ number of regions of the Shi arrangement
$=$ number of handicapped-scoring outcomes
$=$ number of trees on $n+1$ points
$=$ number of ways to park n cars

Why are all these numbers the same?

Thank you!

