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Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in
Stanley’s Green Book as “a central combinatorial conjecture on
Cohen-Macaulay complexes.”

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM ’15+)

The Partitionability Conjecture is false. We construct an explicit
counterexample and describe a general method to construct more.
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Partitionability

X d = pure simplicial complex of dimension d ; facets F1, . . . ,Fn

A partitioning of X is a decomposition

X =
n∐

j=1

[Rj , Fj ] where [R,F ]
def
= {σ | R ⊆ σ ⊆ F}.

If X is partitionable, then its h-vector has the combinatorial
interpretation

hi (X ) = #{i | #Ri = j}.

In particular, X partitionable =⇒ h(X ) ≥ 0.
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Partitionability and Shellability

I Every shelling order F1, . . . ,Fn gives rise to a partitioning.

I Cohen-Macaulay complexes are an important class of
simplicial complexes with the same h-vectors as shellable
complexes.

shellable =⇒ constructible =⇒ Cohen-Macaulay.

I The Partitionability Conjecture would have provided a
combinatorial interpretation for the h-vectors of all
Cohen-Macaulay complexes.

I Note: Our counterexample is constructible.
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Algebraic Consequence: Stanley’s Depth Conjecture

X is CM ⇐⇒ Stanley-Reisner ring k[X ] is CM
⇐⇒ dimk[X ] = depth k[X ].

Stanley depth (sdepth) is an analogous combinatorial invariant.

Depth Conjecture (Stanley 1982)

Let S = k[x1, . . . , xn] and I ⊂ S be any monomial ideal. Then

sdepthR ≥ depthR.

Theorem (Herzog–Jahan–Yassemi 2008)

The Depth Conjecture implies the Partitionability Conjecture.

Therefore, our construction disproves the Depth Conjecture.
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Relative Simplicial Complexes

Definition
A relative simplicial complex Q on vertex set [n] is a convex subset
of the Boolean algebra 2[n]. That is,

σ, τ ∈ Q, σ ⊆ ρ ⊆ τ =⇒ ρ ∈ Q.

Every relative complex can be written as (X ,A) = X \ A, where
A ⊆ X are simplicial complexes.

Combinatorics Geometry

X
Q

A
Q = (X, A)

A

2
1 3

3 X

1 2
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Reducing to the Relative Case

X = CM complex A ⊂ X : induced, CM, codim 0 or 1
Q = (X ,A): CM N > # faces of A

Construct Ω by gluing N copies of X together along A.

I Ω is CM by Mayer-Vietoris. On the level of face posets,

Ω = Q1 ∪ · · · ∪ QN ∪ A, Qi
∼= Q ∀i .

I If Ω has a partitioning P, then by pigeonhole

∃Qi : [R, F ] ∈ P, F ∈ Qi =⇒ R 6∈ A.

I Therefore, the partitioning of Ω induces a partitioning of Q.

Problem: Find a suitable Q.
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Background: Unshellable Balls

Mary Ellen Rudin (1958) constructed a simplicial 3-ball that is not
shellable, with f -vector (1, 14, 66, 94, 41) and h-vector (1, 10, 30).

Günter Ziegler (1998) constructed a smaller non-shellable simplicial
3-ball Z, with f -vector (1, 10, 38, 50, 21) and h-vector (1, 6, 14). Its
facets are

0123 0125 0237 0256 0267 1234 1249
1256 1269 1347 1457 1458 1489 1569
1589 2348 2367 2368 3478 3678 4578
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Our Counterexample

Theorem (DGKM 2015+)

Let Z be Ziegler’s ball, and let B = Z |0,2,3,4,6,7,8.

1. B is a shellable, hence CM, simplicial 3-ball. It
f (B) = (1, 7, 18, 19, 7). So it is CM (in fact it is shellable).

2. Q = (Z ,B) is relative CM, and not partitionable. Its minimal
faces are the three vertices 1, 5, 9.

3. Therefore, the simplicial complex obtained by gluing
(1 + 7 + 18 + 19 + 7) + 1 = 53 copies of Z together along B
is a counterexample to the Partitionability Conjecture.

Assertion (2) can be proved by elementary methods.
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A Smaller Counterexample

I The complex Q = (Z ,B) can be expressed most efficiently as
a relative complex (X ,A) with

f (X ) = (1, 10, 31, 36, 14), f (A) = (1, 7, 11, 5).

I So a much smaller counterexample can be constructed by
gluing together (1 + 7 + 11 + 5) + 1 = 25 copies of Z along A.

I In fact, gluing three copies of X along A produces a
counterexample Ω, with

f (Ω) = 3f (X )− 2f (A) = (1, 16, 71, 98, 42).

I This is the smallest counterexample we know.
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Some Open Questions

I Is there a smaller counterexample, perhaps in dimension 2?

I What is the “right” strengthening of constructibility that
implies partitionability? (“Strongly constructible” complexes,
as studied by Hachimori, are partitionable.)

I Is there a different combinatorial interpretation of the
h-vectors of Cohen-Macaulay complexes? (Yes; it’s coming.)

I Are all simplicial balls partitionable? (Yes if they have a
convex embedding.)

I What are the further consequences for the theory of Stanley
depth? (Katthän conjectures that sdepthR ≥ depthR − 1.)
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Garsia’s Conjecture

Conjecture (Garsia 1979)

Let P be a Cohen-Macaulay poset (i.e., a ranked poset whose order
complex ∆(P) is Cohen-Macaulay). Then ∆(P) is partitionable.

This conjecture remains open, as our counterexample is not even
balanced, let alone an order complex.
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Duval and Zhang’s Interpretation of h(∆)

Theorem (Duval–Zhang 2001)

If ∆ is Cohen-Macaulay, then its face poset admits a
decomposition into Boolean trees whose tops are facets and whose
bottoms are enumerated by h(∆).

rank 0 rank 1 rank 2 rank 3
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A Colorful Duval-Zhang-type Conjecture

Recall that a (pure) simplicial complex ∆d−1 is balanced if its
vertex set can be colored with d colors so that no face contains
more than one vertex of any color.

The flag f -vector of a balanced complex has entries

αS(∆) = #{σ ∈ ∆ | color(σ) = S}, S ⊆ [d ]

and the flag h-vector has entries

βS(∆) =
∑
T⊆S

(−1)|S|−|T |αS(∆).

If ∆ is balanced and CM then the flag h-vector is nonnegative.
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A Colorful Duval-Zhang-type Conjecture

Conjecture

If ∆ is balanced and Cohen-Macaulay, then its face poset admits a
decomposition into balanced Boolean trees whose tops are facets
and whose bottoms are enumerated by the flag h-vector.

abd

ab ac

a

abd

ab ac

a
Balanced Not balanced

Goeckner is currently working on extending the Duval-Zhang
argument to prove this conjecture.
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Thanks for listening!
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Appendix A: Stanley Depth

Definition

Let S = k[x1, . . . , xn]; µ ∈ S a monomial; and X ⊆ {x1, . . . , xn}.
The corresponding Stanley space in S is the vector space

µ · k[X ] = k- span{µν | supp(ν) ⊆ X}.

Let I ⊆ S be a monomial ideal. A Stanley decomposition of S/I is
a family of Stanley spaces

D = {µ1 · k[X1], . . . , µr · k[Xr ]}

such that

S/I =
r⊕

i=1

µi · k[Xi ].
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Appendix A: Stanley Depth

Definition
The Stanley depth of S/I is

sdepthS/I = max
D

min{|Xi |}.

where D runs over all Stanley decompositions of S/I .

For a nice introduction, see M. Pournaki, S. Fakhari, M. Tousi and
S. Yassemi, “What is Stanley depth?”, Notices AMS 2009
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Appendix B: A Small Relative Counterexample

There is a much smaller relative counterexample to the
Partitionability Conjecture inside Ziegler’s ball Z .

It is Q ′ = (X ′,A′), where

X ′ = 〈1589, 1489, 1458, 1457, 4578〉 = Z |145789,
A′ = 〈489, 589, 578, 157〉.

I Q ′ is CM (since X ′,A′ are shellable and A′ ⊂ ∂X ′)
I f (Q ′) = (0, 0, 5, 10, 5).

I Minimal faces are edges rather than vertices, so Q ′ cannot be
expressed as (X ,A) where A is an induced subcomplex.
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Appendix B: A Small Relative Counterexample

Here’s the face poset of Q ′:

1345 1346 3456 2356 2456

135 134 345 136 346 356 236 456 256 246

13 34 36 56 26

A partitioning of Q ′ would correspond to a decomposition of this
poset into five pairwise-disjoint diamonds.

It is not hard to check by hand that no such decomposition exists.
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