The uniqueness problem for chromatic symmetric

functions of trees

Jeremy L. Martin (University of Kansas)

AMS Western Sectional Meeting
UNLV, April 18, 2015



Colorings and the Chromatic Polynomial

Throughout, G = (V, E) will be a simple graph with |V| = n.
A coloring of G is a function f : V — N such that
w e E = f(v)# f(w).
The chromatic function is xg(k) = # colorings V — {1,..., k}.

Well-known facts:
» xc(k) is a polynomial in k.
» If G is a tree then xg(k) = k(k — 1)1
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A coloring of G is a function f : V — N such that
w e E = f(v)# f(w).
The chromatic function is xg(k) = # colorings V — {1,..., k}.

Well-known facts:
» xc(k) is a polynomial in k.
» If G is a tree then xg(k) = k(k — 1)1

» Therefore, the chromatic polynomial of a tree contains no
information about it other than the number of vertices.



Symmetric Functions

Definition
A symmetric function is a formal power series F € Q[[x1, x2, .. .]]
that is invariant with respect to all permutations of the variables.

Definition
Let A = (A1...)\¢) F n. The monomial symmetric function is
— ; A1 A
my = sum of all monomials of the form x* - -- x .
Example
[ee]
mp = ZX,-” mii...1 = Z Xip + 0 Xi,
i=1 1< <in



The Chromatic Symmetric Function

Let f be a coloring of G = (V, E).

Record the number of times each color is used by a monomial:
f o def
R | R0
veV

The chromatic symmetric function of G is the formal power series

X(G) = Xe(x,x,...) = Y %\

colorings f

It was introduced by Stanley in 1995.



The Chromatic Symmetric Function

» X(G) is a well-defined formal power series, because there are
only finitely many colorings with a given “palette”.

» X(G) is a symmetric function because permuting the colors
does not change whether a coloring is proper.

» X(G) is homogeneous of degree n = |V(G)].

» The chromatic function x (k) can be recovered from X(G):
set x1 =---=x, =1, and x; =0 for all i > k.



1. X(K,) = n!'- my1..1 = sum of all squarefree monomials
(= elementary symmetric function e,)

2. X(K,) = mf. In general X(G + H) = X(G)X(H).

3. These graphs have the same chromatic symmetric function:

>l <P

4. These two don't:

O




Chromatic Symmetric Functions of Trees

For the two trees on 4 vertices. . .

*o—o  —0 o
P, :: S,

X(Pa) = 24m1111 + 6mo11 + 2mao
X(S4) = 24mq111 + 6mo11 + M3y

Question (Stanley)
Do there exist two non-isomorphic trees with the same CSF?



Power-Sum Symmetric Functions

The power-sum symmetric functions are

4

[o.¢]
Pn=Y X' Pogn) = L] Py
i—1 j=1

Fact: The set {pn: A+ n} is a vector space basis for Sym,,.

For S C E(G), let type(S) = partition whose parts are the sizes of
the connected components of the subgraph (V,S) C G.

Example: -4 '/'/ﬂ type = (3,3,2,1,1)
[ N J




Power-Sum Coefficients of the CSF

Theorem (Stanley '95)

X6 = Z (_1)‘S|ptype(5)-
SCE

» There is cancellation in Stanley’s formula iff G has cycles.

Corollary
If G is a tree and X(G) is written in the basis {py}, then

coefficient of py = (—1)”_6()‘)#{/4 C E: type(A) = A}




The Subtree Polynomial

Definition
The subtree polynomial of a tree T is

U i

where U ranges over all subtrees of T with at least one edge, and
L(U) is the set of leaf edges.



The Subtree Polynomial

Definition
The subtree polynomial of a tree T is

U i

where U ranges over all subtrees of T with at least one edge, and
L(U) is the set of leaf edges.

Theorem (JLM-Matthew Morin—Jennifer Wagner '06)

The numbers o; j(T) are linear combinations of the cx(T), with
coefficients that depend only on n (not on T ).

In particular, X(T) determines St(q,r).



Degree and Distance

Corollary

The degree sequence and distance sequence of T are determined
by its chromatic symmetric function.

Proof sketch.
Observe that

oji = number of j-edge stars in T

oi> = number of j-edge paths in T

Now use inclusion/exclusion to obtain number of vertices with
degree i, and number of pairs of vertices at distance i. O



Does This Help Answer Stanley’'s Question?

This result is enough to prove that some very special classes of
trees (e.g., spiders) are determined by their CSFs.

The smallest non-isomorphic trees with the same subtree
polynomial have 11 vertices:



A Heroic Computation

Theorem (Keeler Russell, 2013)

Every tree with n < 25 vertices is determined up to isomorphism
by its chromatic symmetric function.

Keeler's proof was entirely a brute-force computation, but with
several wrinkles.

» How do you generate all ~ 102 trees on 25 vertices? (Hint:
Do not use the Priifer code followed by isomorphism testing.)

» Trick 1: Classify trees by degree sequence and parallelize

» Trick 2: Compute and compare one coefficient at a time
instead of the entire CSF



The Modular Relation

The chromatic symmetric function does not obey a deletion-
contraction recurrence, but it does satisfy the modular relation:

Theorem (Guay-Paquet '13+; Orellana—Scott '14)
Suppose that e, €', €"” form a triangle in G. Then

X(G)+X(G—e—-¢€) = X(G—e)+X(G-¢).

Question
Are there other linear relations between the chromatic symmetric
functions of trees (or graphs)?

The theory of combinatorial Hopf algebras may be useful. ..



Thanks for listening!



Appendix A: Explicit Formula for the Subtree Polynomial

Subtree polynomial:
Z g EWIALO) Z o (T)g'r
7 .

Formula [JLM, Morin, Wagner]:

o SRR R e

AbFn

where ¢ = length of \ and ¢)(T) = coefficient of py in X(T).

(Are you happy you asked?)



