The uniqueness problem for chromatic symmetric functions of trees

Jeremy L. Martin (University of Kansas)

AMS Western Sectional Meeting UNLV, April 18, 2015

Colorings and the Chromatic Polynomial

Throughout, $G=(V, E)$ will be a simple graph with $|V|=n$.
A coloring of G is a function $f: V \rightarrow \mathbb{N}$ such that

$$
v w \in E \quad \Longrightarrow \quad f(v) \neq f(w)
$$

The chromatic function is $\chi_{G}(k)=\#$ colorings $V \rightarrow\{1, \ldots, k\}$.
Well-known facts:

- $\chi_{G}(k)$ is a polynomial in k.
- If G is a tree then $\chi_{G}(k)=k(k-1)^{n-1}$.

Colorings and the Chromatic Polynomial

Throughout, $G=(V, E)$ will be a simple graph with $|V|=n$.
A coloring of G is a function $f: V \rightarrow \mathbb{N}$ such that

$$
v w \in E \quad \Longrightarrow \quad f(v) \neq f(w)
$$

The chromatic function is $\chi_{G}(k)=\#$ colorings $V \rightarrow\{1, \ldots, k\}$.
Well-known facts:

- $\chi_{G}(k)$ is a polynomial in k.
- If G is a tree then $\chi_{G}(k)=k(k-1)^{n-1}$.
- Therefore, the chromatic polynomial of a tree contains no information about it other than the number of vertices.

Symmetric Functions

Definition

A symmetric function is a formal power series $F \in \mathbb{Q}\left[\left[x_{1}, x_{2}, \ldots\right]\right]$ that is invariant with respect to all permutations of the variables.

Definition

Let $\lambda=\left(\lambda_{1} \ldots \lambda_{\ell}\right) \vdash n$. The monomial symmetric function is

$$
m_{\lambda}=\text { sum of all monomials of the form } x_{i_{1}}^{\lambda_{1}} \cdots x_{i_{\ell}}^{\lambda^{\ell}} \text {. }
$$

Example

$$
m_{n}=\sum_{i=1}^{\infty} x_{i}^{n} \quad m_{11 \cdots 1}=\sum_{i_{1}<\cdots<i_{n}} x_{i_{1}} \cdots x_{i_{n}}
$$

The Chromatic Symmetric Function

Let f be a coloring of $G=(V, E)$.

Record the number of times each color is used by a monomial:

$$
\mathbf{x}^{f} \stackrel{\text { def }}{=} \prod_{v \in V} x_{f(v)}
$$

The chromatic symmetric function of G is the formal power series

$$
X(G)=X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\text {colorings } f} \mathbf{x}^{f}
$$

It was introduced by Stanley in 1995.

The Chromatic Symmetric Function

- $X(G)$ is a well-defined formal power series, because there are only finitely many colorings with a given "palette".
- $X(G)$ is a symmetric function because permuting the colors does not change whether a coloring is proper.
- $X(G)$ is homogeneous of degree $n=|V(G)|$.
- The chromatic function $\chi_{G}(k)$ can be recovered from $X(G)$: set $x_{1}=\cdots=x_{k}=1$, and $x_{i}=0$ for all $i>k$.

Examples

1. $X\left(K_{n}\right)=n!\cdot m_{11 \cdots 1}=$ sum of all squarefree monomials (= elementary symmetric function e_{n})
2. $X\left(\overline{K_{n}}\right)=m_{1}^{n}$. In general $X(G+H)=X(G) X(H)$.
3. These graphs have the same chromatic symmetric function:

4. These two don't:

Chromatic Symmetric Functions of Trees

For the two trees on 4 vertices...

$$
\begin{aligned}
& X\left(P_{4}\right)=24 m_{1111}+6 m_{211}+2 m_{22} \\
& X\left(S_{4}\right)=24 m_{1111}+6 m_{211}+m_{31}
\end{aligned}
$$

Question (Stanley)
Do there exist two non-isomorphic trees with the same CSF?

Power-Sum Symmetric Functions

The power-sum symmetric functions are

$$
p_{n}=\sum_{i=1}^{\infty} x_{i}^{n}, \quad p_{\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)}=\prod_{j=1}^{\ell} p_{\lambda_{j}}
$$

Fact: The set $\left\{p_{\lambda}: \lambda \vdash n\right\}$ is a vector space basis for $\mathbf{S y m}_{n}$.
For $S \subseteq E(G)$, let type $(S)=$ partition whose parts are the sizes of the connected components of the subgraph $(V, S) \subseteq G$.

Example:

$$
\text { type }=(3,3,2,1,1)
$$

Power-Sum Coefficients of the CSF

Theorem (Stanley '95)

$$
X_{G}=\sum_{S \subseteq E}(-1)^{|S|} p_{\text {type }(S)}
$$

- There is cancellation in Stanley's formula iff G has cycles.

Corollary
If G is a tree and $X(G)$ is written in the basis $\left\{p_{\lambda}\right\}$, then

$$
\text { coefficient of } p_{\lambda}=(-1)^{n-\ell(\lambda)} \#\{A \subseteq E: \text { type }(A)=\lambda\}
$$

The Subtree Polynomial

Definition

The subtree polynomial of a tree T is

$$
S_{T}(q, r)=\sum_{U} q^{|E(U)|} r^{|L(U)|}=\sum_{i, j} \sigma_{i, j}(T) q^{i} r^{j}
$$

where U ranges over all subtrees of T with at least one edge, and $L(U)$ is the set of leaf edges.

The Subtree Polynomial

Definition

The subtree polynomial of a tree T is

$$
S_{T}(q, r)=\sum_{U} q^{|E(U)|} r^{|L(U)|}=\sum_{i, j} \sigma_{i, j}(T) q^{i} r^{j}
$$

where U ranges over all subtrees of T with at least one edge, and $L(U)$ is the set of leaf edges.

Theorem (JLM-Matthew Morin-Jennifer Wagner '06)
The numbers $\sigma_{i, j}(T)$ are linear combinations of the $c_{\lambda}(T)$, with coefficients that depend only on n (not on T).

In particular, $X(T)$ determines $S_{T}(q, r)$.

Degree and Distance

Corollary

The degree sequence and distance sequence of T are determined by its chromatic symmetric function.

Proof sketch.
Observe that

$$
\begin{aligned}
\sigma_{i, i} & =\text { number of } i \text {-edge stars in } T \\
\sigma_{i, 2} & =\text { number of } i \text {-edge paths in } T
\end{aligned}
$$

Now use inclusion/exclusion to obtain number of vertices with degree i, and number of pairs of vertices at distance i.

Does This Help Answer Stanley's Question?

This result is enough to prove that some very special classes of trees (e.g., spiders) are determined by their CSFs.

The smallest non-isomorphic trees with the same subtree polynomial have 11 vertices:

A Heroic Computation

Theorem (Keeler Russell, 2013)
Every tree with $n \leq 25$ vertices is determined up to isomorphism by its chromatic symmetric function.

Keeler's proof was entirely a brute-force computation, but with several wrinkles.

- How do you generate all $\approx 10^{8}$ trees on 25 vertices? (Hint: Do not use the Prüfer code followed by isomorphism testing.)
- Trick 1: Classify trees by degree sequence and parallelize
- Trick 2: Compute and compare one coefficient at a time instead of the entire CSF

The Modular Relation

The chromatic symmetric function does not obey a deletioncontraction recurrence, but it does satisfy the modular relation:

Theorem (Guay-Paquet '13+; Orellana-Scott '14)
Suppose that $e, e^{\prime}, e^{\prime \prime}$ form a triangle in G. Then

$$
X(G)+X\left(G-e-e^{\prime}\right)=X(G-e)+X\left(G-e^{\prime}\right)
$$

Question

Are there other linear relations between the chromatic symmetric functions of trees (or graphs)?

The theory of combinatorial Hopf algebras may be useful. . .

Thanks for listening!

Appendix A: Explicit Formula for the Subtree Polynomial

Subtree polynomial:

$$
S_{T}(q, r)=\sum_{U} q^{|E(U)|} r^{|L(U)|}=\sum_{i, j} \sigma_{i, j}(T) q^{i} r^{j}
$$

Formula [JLM, Morin, Wagner]:

$$
\sigma_{i, j}=\sum_{\lambda \vdash n}(-1)^{i+j}\binom{\ell-1}{\ell-n+i} \sum_{d=1}^{j}\binom{i-d}{j-d} \sum_{k=1}^{\ell}\binom{\lambda_{k}-1}{d} c_{\lambda}(T)
$$

where $\ell=$ length of λ and $c_{\lambda}(T)=$ coefficient of p_{λ} in $X(T)$.
(Are you happy you asked?)

