New approaches to conjectures on decompositions of simplicial complexes

Art M. Duval (University of Texas, El Paso) Bennet Goeckner (University of Kansas) Caroline J. Klivans (Brown University) Jeremy L. Martin (University of Kansas)

AMS Western Sectional Meeting UNLV, April 19, 2015

Preprint: arXiv:1504.04279

Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in Stanley's Green Book as "a central combinatorial conjecture on Cohen-Macaulay complexes."

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in Stanley's Green Book as "a central combinatorial conjecture on Cohen-Macaulay complexes."

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM '15+)

The Partitionability Conjecture is false. We construct an explicit counterexample and describe a general method to construct more.

Partitionability

$X^{d}=$ pure simplicial complex of dimension d; facets F_{1}, \ldots, F_{n}

A partitioning of X is a decomposition

$$
X=\coprod_{j=1}^{n}\left[R_{j}, F_{j}\right] \quad \text { where } \quad[R, F] \stackrel{\text { def }}{=}\{\sigma \mid R \subseteq \sigma \subseteq F\}
$$

If X is partitionable, then its h-vector has the combinatorial interpretation

$$
h_{i}(X)=\#\left\{i \mid \# R_{i}=j\right\} .
$$

In particular, X partitionable $\Longrightarrow h(X) \geq 0$.

Partitionability and Shellability

- Every shelling order F_{1}, \ldots, F_{n} gives rise to a partitioning.
- Cohen-Macaulay complexes are an important class of simplicial complexes with the same h-vectors as shellable complexes.

$$
\begin{array}{|l|l|l|l|}
\hline \text { shellable } & \Longrightarrow \text { constructible } & \text { Cohen-Macaulay. } \\
\hline
\end{array}
$$

- The Partitionability Conjecture would have provided a combinatorial interpretation for the h-vectors of all Cohen-Macaulay complexes.
- Note: Our counterexample is constructible.

Algebraic Consequence: Stanley's Depth Conjecture

X is $\mathrm{CM} \Longleftrightarrow$ Stanley-Reisner ring $\mathbb{k}[X]$ is CM $\Longleftrightarrow \operatorname{dim} \mathbb{k}[X]=\operatorname{depth} \mathbb{k}[X]$.

Stanley depth (sdepth) is an analogous combinatorial invariant.
Depth Conjecture (Stanley 1982)
Let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be any monomial ideal. Then

$$
\text { sdepth } R \geq \text { depth } R \text {. }
$$

Theorem (Herzog-Jahan-Yassemi 2008)
The Depth Conjecture implies the Partitionability Conjecture.
Therefore, our construction disproves the Depth Conjecture.

Relative Simplicial Complexes

Definition

A relative simplicial complex Q on vertex set $[n]$ is a convex subset of the Boolean algebra $2^{[n]}$. That is,

$$
\sigma, \tau \in Q, \sigma \subseteq \rho \subseteq \tau \quad \Longrightarrow \quad \rho \in Q
$$

Every relative complex can be written as $(X, A)=X \backslash A$, where $A \subseteq X$ are simplicial complexes.

Reducing to the Relative Case

$$
\begin{array}{ll}
X=\mathrm{CM} \text { complex } & A \subset X: \text { induced, } \mathrm{CM}, \text { codim } 0 \text { or } 1 \\
Q=(X, A): \mathrm{CM} & N>\# \text { faces of } A
\end{array}
$$

Construct Ω by gluing N copies of X together along A.

- Ω is CM by Mayer-Vietoris. On the level of face posets,

$$
\Omega=Q_{1} \cup \cdots \cup Q_{N} \cup A, \quad Q_{i} \cong Q \quad \forall i .
$$

- If Ω has a partitioning \mathcal{P}, then by pigeonhole

$$
\exists \mathbf{Q}_{\mathbf{i}}: \quad[\mathbf{R}, \mathbf{F}] \in \mathcal{P}, \quad \mathbf{F} \in \mathbf{Q}_{\mathbf{i}} \quad \Longrightarrow \quad \mathbf{R} \notin \mathbf{A} .
$$

- Therefore, the partitioning of Ω induces a partitioning of Q.

Problem: Find a suitable Q.

Background: Unshellable Balls

Mary Ellen Rudin (1958) constructed a simplicial 3-ball that is not shellable, with f-vector $(1,14,66,94,41)$ and h-vector $(1,10,30)$.

Günter Ziegler (1998) constructed a smaller non-shellable simplicial 3 -ball \mathbf{Z}, with f-vector $(1,10,38,50,21)$ and h-vector $(1,6,14)$. Its facets are

0123	0125	0237	0256	0267	1234	1249
1256	1269	1347	1457	1458	1489	1569
1589	2348	2367	2368	3478	3678	4578

Our Counterexample

Theorem (DGKM 2015+)

Let Z be Ziegler's ball, and let $B=\left.Z\right|_{0,2,3,4,6,7,8}$.

1. B is a shellable, hence CM, simplicial 3-ball. It $f(B)=(1,7,18,19,7)$. So it is CM (in fact it is shellable).
2. $Q=(Z, B)$ is relative $C M$, and not partitionable. Its minimal faces are the three vertices $1,5,9$.
3. Therefore, the simplicial complex obtained by gluing $(1+7+18+19+7)+1=53$ copies of Z together along B is a counterexample to the Partitionability Conjecture.

Assertion (2) can be proved by elementary methods.

A Smaller Counterexample

- The complex $Q=(Z, B)$ can be expressed most efficiently as a relative complex (X, A) with

$$
f(X)=(1,10,31,36,14), \quad f(A)=(1,7,11,5) .
$$

- So a much smaller counterexample can be constructed by gluing together $(1+7+11+5)+1=25$ copies of Z along A.
- In fact, gluing three copies of X along A produces a counterexample Ω, with

$$
f(\Omega)=3 f(X)-2 f(A)=(1,16,71,98,42)
$$

- This is the smallest counterexample we know.

Open Questions

- Is there a smaller counterexample, perhaps in dimension 2?
- What is the "right" strengthening of constructibility that implies partitionability? ("Strongly constructible" complexes, as studied by Hachimori, are partitionable.)
- Is there a different combinatorial interpretation of the h-vectors of Cohen-Macaulay complexes?
- Are all simplicial balls partitionable? (Yes if they have a convex embedding.)
- Does the Partitionability Conjecture still hold for balanced simplicial complexes (as conjectured by Garsia)?
-What are the consequences for the theory of Stanley depth?

Thanks for listening!

Appendix A: Stanley Depth

Definition

Let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] ; \mu \in S$ a monomial; and $X \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. The corresponding Stanley space in S is the vector space

$$
\mu \cdot \mathbb{k}[X]=\mathbb{k}-\operatorname{span}\{\mu \nu \mid \operatorname{supp}(\nu) \subseteq X\}
$$

Let $I \subseteq S$ be a monomial ideal. A Stanley decomposition of S / I is a family of Stanley spaces

$$
\mathcal{D}=\left\{\mu_{1} \cdot \mathbb{k}\left[X_{1}\right], \ldots, \mu_{r} \cdot \mathbb{k}\left[X_{r}\right]\right\}
$$

such that

$$
S / I=\bigoplus_{i=1}^{r} \mu_{i} \cdot \mathbb{k}\left[X_{i}\right]
$$

Appendix A: Stanley Depth

Definition

The Stanley depth of S / I is

$$
\text { sdepth } S / I=\max _{\mathcal{D}} \min \left\{\left|X_{i}\right|\right\}
$$

where \mathcal{D} runs over all Stanley decompositions of S / I.

For a nice introduction, see M. Pournaki, S. Fakhari, M. Tousi and S. Yassemi, "What is Stanley depth?", Notices AMS 2009

Appendix B: A Small Relative Counterexample

There is a much smaller relative counterexample to the Partitionability Conjecture inside Ziegler's ball Z.

It is $Q^{\prime}=\left(X^{\prime}, A^{\prime}\right)$, where

$$
\begin{aligned}
X^{\prime} & =\langle 1589,1489,1458,1457,4578\rangle=\left.Z\right|_{145789} \\
A^{\prime} & =\langle 489,589,578,157\rangle
\end{aligned}
$$

- Q^{\prime} is CM (since X^{\prime}, A^{\prime} are shellable and $A^{\prime} \subset \partial X^{\prime}$)
- $f\left(Q^{\prime}\right)=(0,0,5,10,5)$.
- Minimal faces are edges rather than vertices, so Q^{\prime} cannot be expressed as (X, A) where A is an induced subcomplex.

Appendix B: A Small Relative Counterexample

Here's the face poset of Q^{\prime} :

A partitioning of Q^{\prime} would correspond to a decomposition of this poset into five pairwise-disjoint diamonds.

It is not hard to check by hand that no such decomposition exists.

