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Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in
Stanley’s Green Book as “a central combinatorial conjecture on
Cohen-Macaulay complexes.”

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM ’15+)

The Partitionability Conjecture is false. We construct an explicit
counterexample and describe a general method to construct more.
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Simplicial Complexes

Let V be a finite set of vertices.
A simplicial complex on V is a family X ⊆ 2V such that

F ∈ X , G ⊆ F =⇒ G ∈ X .

Equivalently, X is an order ideal in the boolean algebra on V .

I Dimension: dimF = |F | − 1; dimX = max{dimF : F ∈ X}.
I Maximal faces of X are called facets.

I X is pure if all facets have the same dimension.

I The complex generated by a list of face(t)s is
〈F1, . . . ,Fk〉 :=

⋃k
i=1 2Fi .
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The Stanley-Reisner ring

Let k be any field, and let X be a simplicial complex of dimension
d − 1 on vertices V = [n].

Associate each S ⊆ V with the monomial xS =
∏

i∈S xi .

The Stanley-Reisner ring of X over k is

k[X ] := k[x1, . . . , xn] / 〈xS | S 6∈ X 〉.

I Graded ring of Krull dimension d

I Algebraic properties of k[X ] ⇐⇒ combinatorial/topological
properties of X
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f - and h-vectors

Let X be a simplicial complex of dimension d − 1.

The f -vector is f (X ) = (f−1, . . . , fd−1), where

fi = #{faces of dimension i}.

The h-vector h(X ) = (h0, . . . , hd) is defined by

d∑
i=0

hix
i =

d∑
i=0

fi−1x
i (1− x)d−i .

The h-vector has algebraic significance (it is the numerator of the
Hilbert series of k[X ]), and is often positive (e.g., when k[X ] is
Cohen-Macaulay).
What is its combinatorial meaning?
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Shellability

A pure simplicial complex X is shellable if its facets can be ordered
F1, . . . ,Fn so that for each k , the set

〈F1, . . . ,Fk〉 \ 〈F1, . . . ,Fk−1〉

is an interval [Rk ,Fk ] in the boolean algebra 2V .

Proposition

If X is shellable, then hi (X ) = |{k ∈ [n] : |Rk | = i}|.

But what if h(X ) ≥ 0 but X is not shellable?
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Partitionability

Let X be a pure simplicial complex with facets F1, . . . ,Fn.

Definition
A partitioning of X is a decomposition into disjoint Boolean
intervals topped by facets:

X =
n∐

i=1

[Ri ,Fi ].

Note that a partitioning is weaker than a shelling. Nevertheless:

Proposition

If X is partitionable, then hi (X ) = |{k ∈ [n] : |Rk | = i}|.
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Cohen-Macaulay and Constructible Complexes

I X d is Cohen-Macaulay (CM) iff k[X ] is CM, i.e.,
dimk[X ] = depth k[X ].

I X d is constructible iff either it is a simplex, or the union of
two constructible d-dimensional complexes whose intersection
is constructible of dimension d − 1.

shellable =⇒ constructible =⇒ CM =⇒ h(X ) ≥ 0
⇓

partitionable
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The Partitionability and Constructibility Conjectures

Theorem (Reisner 1976)

X is Cohen-Macaulay iff for every face σ ∈ X,

H̃i (linkX (σ); Z) = 0 ∀i < dim linkX σ.

Theorem (Munkres 1984)

The CM condition is topological, i.e., it depends only on the
geometric realization |X |.

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Constructibility Conjecture (Hachimori 2000)

Every constructible simplicial complex is partitionable.
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Resolving the Conjectures

Theorem (DGKM 2015+)

The Partitionability and Constructibility Conjectures are false.

We exhibit an explicit simplicial complex Ω that is constructible,
hence Cohen-Macaulay, but not partitionable.

Ω is a contractible 3-dimensional complex (but not a ball) with

f (Ω) = (1, 16, 71, 98, 42), h(Ω) = (1, 12, 29).
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Stanley Decompositions and Stanley Depth

Definition

Let S = k[x1, . . . , xn]; µ ∈ S a monomial; and A ⊆ {x1, . . . , xn}.
The corresponding Stanley space in S is the vector space

µ · k[A] = k- span{µν | supp(ν) ⊆ A}.

Let I ⊆ S be a monomial ideal. A Stanley decomposition of S/I is
a family of Stanley spaces

D = {µ1 · k[A1], . . . , µr · k[Ar ]}

such that

S/I =
r⊕

i=1

µi · k[Ai ].
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Stanley Decompositions and Stanley Depth

Two Stanley decompositions of R = k[x , y ]/〈x2y〉:
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Stanley Decompositions and Stanley Depth

Definition
The Stanley depth of S/I is

sdepthS/I = max
D

min{|Ai |}.

where D runs over all Stanley decompositions of S/I .

For a nice introduction, see M. Pournaki, S. Fakhari, M. Tousi and
S. Yassemi, “What is Stanley depth?”, Notices AMS 2009
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Stanley’s Depth Conjecture

Depth Conjecture (Stanley 1982)

Let S = k[x1, . . . , xn] and I ⊂ S be any monomial ideal. Then

sdepthS/I ≥ depthS/I .

Theorem (Herzog, Jahan and Tassemi ’08)

The Depth Conjecture implies the Partitionability Conjecture

Corollary (DGKM ’15+)

The Depth Conjecture is false.
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Relative Simplicial Complexes

Definition
A relative simplicial complex Q on vertex set V is a convex subset
of the Boolean algebra 2V . That is,

F ,H ∈ Q, F ⊆ G ⊆ H =⇒ G ∈ Q.

Every relative complex can be written as (X ,A) = X \ A, where
A ⊆ X are simplicial complexes.

Combinatorics Geometry

X
Q

A
Q = (X, A)

A

2
1 3

3 X

1 2
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Relative Simplicial Complexes

Simplicial combinatorics (f - and h-vector, pure, shellable, CM,
partitionable, etc.) carries over nicely to the relative setting.

A pure relative simplicial complex Q is Cohen-Macaulay (CM) if a
relative version of Reisner’s criterion holds, and Q is partitionable if

Q =
n∐

k=1

[Rk ,Fk ]

where the Fk are the facets of Q.

I Shellable relative complexes are partitionable.

I If A ⊆ X are CM of the same dimension, then so is (X ,A).

A.M. Duval, B. Goeckner, C.J. Klivans, J.L. Martin A non-partitionable CM simplicial complex



Reducing to the Relative Case

X = CM complex A ⊂ X : induced, CM, codim 0 or 1
Q = (X ,A) N > # faces of A

Idea: Construct Ω by gluing N copies of X together along A.

I Ω is CM by Mayer-Vietoris. On the level of face posets,

Ω = Q1 ∪ · · · ∪ QN ∪ A, Qi
∼= Q ∀i .

I If Ω has a partitioning P, then by pigeonhole ∃ i such that

∃ i ∈ [n] : ∀ facets Fk ∈ Qi : Rk 6∈ A.

I Therefore, the partitioning of Ω induces a partitioning of Q.

Problem: Find a suitable Q.
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Background: Unshellable Balls

Mary Ellen Rudin (1958) constructed a simplicial 3-ball that is not
shellable, with f -vector (1, 14, 66, 94, 41) and h-vector (1, 10, 30).

Günter Ziegler (1998) constructed a smaller non-shellable simplicial
3-ball with f -vector (1, 10, 38, 50, 21) and h-vector (1, 6, 14). Its
facets are

0123 0125 0237 0256 0267 1234 1249
1256 1269 1347 1457 1458 1489 1569
1589 2348 2367 2368 3478 3678 4578
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Our Counterexample

Theorem (DGKM 2015+)

Let Z be Ziegler’s ball, and let B = Z |0,2,3,4,6,7,8.

1. B is a shellable, hence CM, simplicial 3-ball.

2. Q = (Z ,B) is not partitionable. Its minimal faces are the
three vertices 1, 5, 9.

3. Therefore, the simplicial complex obtained by gluing
|B|+ 1 = 53 copies of Z together along B is not partitionable.

Assertion (2) can be proved by elementary methods.
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A Smaller Counterexample

I Let X be the smallest simplicial complex containing Q.

Then Q = (Z ,B) = (X ,A), where

f (X ) = (1, 10, 31, 36, 14), f (A) = (1, 7, 11, 5).

I So a much smaller counterexample can be constructed by
gluing together (1 + 7 + 11 + 5) + 1 = 25 copies of X along A.

I In fact, gluing three copies of X along A produces a CM
nonpartitionable complex Ω, with

f (Ω) = 3f (X ) − 2f (A) = (1, 16, 71, 98, 42).

I This is the smallest such complex we know, but there may
well be smaller ones.
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A Much Smaller Relative Counterexample

There is a much smaller non-partitionable CM relative complex Q ′

inside Ziegler’s ball Z , with face poset

1345 1346 3456 2356 2456

135 134 345 136 346 356 236 456 256 246

13 34 36 56 26

A partitioning of Q ′ would correspond to a decomposition of this
poset into five pairwise-disjoint diamonds. It is not hard to check
by hand that no such decomposition exists.
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A Much Smaller Relative Counterexample

Construction: Q ′ = (X ′,A′), where

X ′ = 〈1589, 1489, 1458, 1457, 4578〉 = Z |145789,
A′ = 〈489, 589, 578, 157〉.

I Q ′ is CM (since X ′,A′ are shellable and A′ ⊂ ∂X ′)

I f (Q ′) = (0, 0, 5, 10, 5)

I Minimal faces are edges rather than vertices, so Q ′ cannot be
expressed as (X ,A) where A is an induced subcomplex.

I k[Q ′] is a small counterexample to the Depth Conjecture
[computation by Lukas Katthän]
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Open Questions

I Is there a smaller counterexample, perhaps in dimension 2?

I What is the “right” strengthening of constructibility that
implies partitionability? (“Strongly constructible” complexes,
as studied by Hachimori, are partitionable.)

I Is there a better combinatorial interpretation of the h-vectors
of Cohen-Macaulay complexes? (Duval–Zhang)

I Are all simplicial balls partitionable? (Yes if convex.)

I Does the Partitionability Conjecture hold for balanced
simplicial complexes, as conjectured by Garsia? (Bennet
Goeckner is working on this.)

I What are the consequences for Stanley depth? Does
sdepthM ≥ depthM − 1 (as conjectured by Lukas Katthän)?
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Thanks for listening!
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