A non-partitionable Cohen-Macaulay simplicial complex

Art M. Duval (University of Texas, El Paso)
 Bennet Goeckner (University of Kansas) Caroline J. Klivans (Brown University) Jeremy L. Martin (University of Kansas)

Kansas State University, February 17, 2016

> Preprint: arXiv:1504.04279

Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in Stanley's Green Book as "a central combinatorial conjecture on Cohen-Macaulay complexes."

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Overview: The Partitionability Conjecture

The focus of this talk is the following conjecture, described in Stanley's Green Book as "a central combinatorial conjecture on Cohen-Macaulay complexes."

Partitionability Conjecture (Stanley 1979)

Every Cohen-Macaulay simplicial complex is partitionable.

Theorem (DGKM '15+)

The Partitionability Conjecture is false. We construct an explicit counterexample and describe a general method to construct more.

Simplicial Complexes

Let V be a finite set of vertices.
A simplicial complex on V is a family $X \subseteq 2^{V}$ such that

$$
F \in X, G \subseteq F \quad \Longrightarrow \quad G \in X
$$

Equivalently, X is an order ideal in the boolean algebra on V.

- Dimension: $\operatorname{dim} F=|F|-1 ; \operatorname{dim} X=\max \{\operatorname{dim} F: F \in X\}$.
- Maximal faces of X are called facets.
- X is pure if all facets have the same dimension.
- The complex generated by a list of face $(\mathrm{t}) \mathrm{s}$ is

$$
\left\langle F_{1}, \ldots, F_{k}\right\rangle:=\bigcup_{i=1}^{k} 2^{F_{i}}
$$

The Stanley-Reisner ring

Let \mathbb{k} be any field, and let X be a simplicial complex of dimension $d-1$ on vertices $V=[n]$.

Associate each $S \subseteq V$ with the monomial $x_{S}=\prod_{i \in S} x_{i}$.
The Stanley-Reisner ring of X over \mathbb{k} is

$$
\mathbb{k}[X]:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] /\left\langle x_{S} \mid S \notin X\right\rangle .
$$

- Graded ring of Krull dimension d
- Algebraic properties of $\mathbb{k}[X] \Longleftrightarrow$ combinatorial/topological properties of X

f - and h-vectors

Let X be a simplicial complex of dimension $d-1$.
The f-vector is $f(X)=\left(f_{-1}, \ldots, f_{d-1}\right)$, where

$$
f_{i}=\#\{\text { faces of dimension } i\} .
$$

The h-vector $h(X)=\left(h_{0}, \ldots, h_{d}\right)$ is defined by

$$
\sum_{i=0}^{d} h_{i} x^{i}=\sum_{i=0}^{d} f_{i-1} x^{i}(1-x)^{d-i}
$$

The h-vector has algebraic significance (it is the numerator of the Hilbert series of $\mathbb{k}[X]$), and is often positive (e.g., when $\mathbb{k}[X]$ is Cohen-Macaulay).
What is its combinatorial meaning?

Shellability

A pure simplicial complex X is shellable if its facets can be ordered F_{1}, \ldots, F_{n} so that for each k, the set

$$
\left\langle F_{1}, \ldots, F_{k}\right\rangle \backslash\left\langle F_{1}, \ldots, F_{k-1}\right\rangle
$$

is an interval $\left[R_{k}, F_{k}\right]$ in the boolean algebra 2^{V}.

Proposition

If X is shellable, then $h_{i}(X)=\left|\left\{k \in[n]:\left|R_{k}\right|=i\right\}\right|$.

But what if $h(X) \geq 0$ but X is not shellable?

Partitionability

Let X be a pure simplicial complex with facets F_{1}, \ldots, F_{n}.

Definition

A partitioning of X is a decomposition into disjoint Boolean intervals topped by facets:

$$
X=\coprod_{i=1}^{n}\left[R_{i}, F_{i}\right]
$$

Note that a partitioning is weaker than a shelling. Nevertheless:
Proposition
If X is partitionable, then $h_{i}(X)=\left|\left\{k \in[n]:\left|R_{k}\right|=i\right\}\right|$.

Cohen-Macaulay and Constructible Complexes

- X^{d} is Cohen-Macaulay (CM) iff $\mathbb{k}[X]$ is $C M$, i.e., $\operatorname{dim} \mathbb{k}[X]=\operatorname{depth} \mathbb{k}[X]$.
- X^{d} is constructible iff either it is a simplex, or the union of two constructible d-dimensional complexes whose intersection is constructible of dimension $d-1$.

$$
\begin{gathered}
\underset{\substack{\text { shellable } \\
\Downarrow \\
\text { partitionable }}}{ } \Longrightarrow \text { constructible } \Longrightarrow \mathrm{CM} \Longrightarrow h(X) \geq 0
\end{gathered}
$$

The Partitionability and Constructibility Conjectures

Theorem (Reisner 1976)
X is Cohen-Macaulay iff for every face $\sigma \in X$,

$$
\tilde{H}_{i}\left(\operatorname{link}_{X}(\sigma) ; \mathbb{Z}\right)=0 \quad \forall i<\operatorname{dim}^{\text {link}} x \sigma
$$

Theorem (Munkres 1984)
The CM condition is topological, i.e., it depends only on the geometric realization $|X|$.

Partitionability Conjecture (Stanley 1979)
Every Cohen-Macaulay simplicial complex is partitionable.
Constructibility Conjecture (Hachimori 2000)
Every constructible simplicial complex is partitionable.

Resolving the Conjectures

Theorem (DGKM 2015+)
The Partitionability and Constructibility Conjectures are false.

We exhibit an explicit simplicial complex Ω that is constructible, hence Cohen-Macaulay, but not partitionable.
Ω is a contractible 3-dimensional complex (but not a ball) with

$$
f(\Omega)=(1,16,71,98,42), \quad h(\Omega)=(1,12,29) .
$$

Stanley Decompositions and Stanley Depth

Definition

Let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] ; \mu \in S$ a monomial; and $A \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$. The corresponding Stanley space in S is the vector space

$$
\mu \cdot \mathbb{k}[A]=\mathbb{k}-\operatorname{span}\{\mu \nu \mid \operatorname{supp}(\nu) \subseteq A\}
$$

Let $I \subseteq S$ be a monomial ideal. A Stanley decomposition of S / I is a family of Stanley spaces

$$
\mathcal{D}=\left\{\mu_{1} \cdot \mathbb{k}\left[A_{1}\right], \ldots, \mu_{r} \cdot \mathbb{k}\left[A_{r}\right]\right\}
$$

such that

$$
S / I=\bigoplus_{i=1}^{r} \mu_{i} \cdot \mathbb{k}\left[A_{i}\right]
$$

Stanley Decompositions and Stanley Depth

Two Stanley decompositions of $R=\mathbb{k}[x, y] /\left\langle x^{2} y\right\rangle$:

Stanley Decompositions and Stanley Depth

Definition

The Stanley depth of S / I is

$$
\text { sdepth } S / I=\max _{\mathcal{D}} \min \left\{\left|A_{i}\right|\right\}
$$

where \mathcal{D} runs over all Stanley decompositions of S / I.

For a nice introduction, see M. Pournaki, S. Fakhari, M. Tousi and S. Yassemi, "What is Stanley depth?", Notices AMS 2009

Stanley's Depth Conjecture

Depth Conjecture (Stanley 1982)

Let $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $I \subset S$ be any monomial ideal. Then sdepth $S / I \geq$ depth S / I.

Theorem (Herzog, Jahan and Tassemi '08)
The Depth Conjecture implies the Partitionability Conjecture

Corollary (DGKM '15+)
The Depth Conjecture is false.

Relative Simplicial Complexes

Definition

A relative simplicial complex Q on vertex set V is a convex subset of the Boolean algebra 2^{V}. That is,

$$
F, H \in Q, F \subseteq G \subseteq H \quad \Longrightarrow \quad G \in Q
$$

Every relative complex can be written as $(X, A)=X \backslash A$, where $A \subseteq X$ are simplicial complexes.

Relative Simplicial Complexes

Simplicial combinatorics (f - and h-vector, pure, shellable, CM, partitionable, etc.) carries over nicely to the relative setting.

A pure relative simplicial complex Q is Cohen-Macaulay (CM) if a relative version of Reisner's criterion holds, and Q is partitionable if

$$
Q=\coprod_{k=1}^{n}\left[R_{k}, F_{k}\right]
$$

where the F_{k} are the facets of Q.

- Shellable relative complexes are partitionable.
- If $A \subseteq X$ are CM of the same dimension, then so is (X, A).

Reducing to the Relative Case

$$
\begin{array}{ll}
X=C M \text { complex } & A \subset X: \text { induced, CM, codim } 0 \text { or } 1 \\
Q=(X, A) & N>\# \text { faces of } A
\end{array}
$$

Idea: Construct Ω by gluing N copies of X together along A.

- Ω is CM by Mayer-Vietoris. On the level of face posets,

$$
\Omega=Q_{1} \cup \cdots \cup Q_{N} \cup A, \quad Q_{i} \cong Q \quad \forall i .
$$

- If Ω has a partitioning \mathcal{P}, then by pigeonhole $\exists i$ such that

$$
\exists i \in[n]: \quad \forall \text { facets } F_{k} \in Q_{i}: \quad R_{k} \notin A
$$

- Therefore, the partitioning of Ω induces a partitioning of Q.

Problem: Find a suitable Q.

Background: Unshellable Balls

Mary Ellen Rudin (1958) constructed a simplicial 3-ball that is not shellable, with f-vector $(1,14,66,94,41)$ and h-vector $(1,10,30)$.

Günter Ziegler (1998) constructed a smaller non-shellable simplicial 3 -ball with f-vector $(1,10,38,50,21)$ and h-vector $(1,6,14)$. Its facets are

0123	$012 \underline{5}$	0237	$02 \underline{5} 6$	0267	$\underline{1234}$	$\underline{1} 24 \underline{9}$
$\underline{1256}$	$\underline{1269}$	$\underline{1347}$	$\underline{145}$	$14 \underline{14}$	$\underline{1489}$	$\underline{15} 9 \underline{9}$
$\underline{1589}$	2348	2367	2368	3478	3678	$4 \underline{5} 78$

Our Counterexample

Theorem (DGKM 2015+)

Let Z be Ziegler's ball, and let $B=\left.Z\right|_{0,2,3,4,6,7,8}$.

1. B is a shellable, hence CM, simplicial 3-ball.
2. $Q=(Z, B)$ is not partitionable. Its minimal faces are the three vertices $1,5,9$.
3. Therefore, the simplicial complex obtained by gluing $|B|+1=53$ copies of Z together along B is not partitionable.

Assertion (2) can be proved by elementary methods.

A Smaller Counterexample

- Let X be the smallest simplicial complex containing Q. Then $Q=(Z, B)=(X, A)$, where

$$
f(X)=(1,10,31,36,14), \quad f(A)=(1,7,11,5)
$$

- So a much smaller counterexample can be constructed by gluing together $(1+7+11+5)+1=25$ copies of X along A.
- In fact, gluing three copies of X along A produces a CM nonpartitionable complex Ω, with

$$
f(\Omega)=3 f(X)-2 f(A)=(1,16,71,98,42)
$$

- This is the smallest such complex we know, but there may well be smaller ones.

A Much Smaller Relative Counterexample

There is a much smaller non-partitionable CM relative complex Q^{\prime} inside Ziegler's ball Z, with face poset

A partitioning of Q^{\prime} would correspond to a decomposition of this poset into five pairwise-disjoint diamonds. It is not hard to check by hand that no such decomposition exists.

A Much Smaller Relative Counterexample

Construction: $Q^{\prime}=\left(X^{\prime}, A^{\prime}\right)$, where

$$
\begin{aligned}
X^{\prime} & =\langle 1589,1489,1458,1457,4578\rangle=\left.Z\right|_{145789} \\
A^{\prime} & =\langle 489,589,578,157\rangle
\end{aligned}
$$

- Q^{\prime} is CM (since X^{\prime}, A^{\prime} are shellable and $A^{\prime} \subset \partial X^{\prime}$)
- $f\left(Q^{\prime}\right)=(0,0,5,10,5)$
- Minimal faces are edges rather than vertices, so Q^{\prime} cannot be expressed as (X, A) where A is an induced subcomplex.
- $\mathbb{k}\left[Q^{\prime}\right]$ is a small counterexample to the Depth Conjecture [computation by Lukas Katthän]

Open Questions

- Is there a smaller counterexample, perhaps in dimension 2?
- What is the "right" strengthening of constructibility that implies partitionability? ("Strongly constructible" complexes, as studied by Hachimori, are partitionable.)
- Is there a better combinatorial interpretation of the h-vectors of Cohen-Macaulay complexes? (Duval-Zhang)
- Are all simplicial balls partitionable? (Yes if convex.)
- Does the Partitionability Conjecture hold for balanced simplicial complexes, as conjectured by Garsia? (Bennet Goeckner is working on this.)
- What are the consequences for Stanley depth? Does sdepth $M \geq$ depth $M-1$ (as conjectured by Lukas Katthän)?

Thanks for listening!

