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Background

The chromatic polynomial of a graph

G = (V, E): graph (loops, multiple edges OK) with arbitrary
orientation
n=|V|, m=|E|, keN

Proper k-coloring: f:V — [k] with vw € E = f(v) # f(w)
Chromatic polynomial x (k) = # proper k-colorings of G

» Xc(k) = polynomial in k = k" — mk"™1 + ...

» Deletion-contraction: x (k) = x¢_.(k) — XG/e(k)

» Specialization of Tutte polynomial
» Stanley reciprocity theorem: comb. interp. for x(—k)



Background

Flows and tensions

Orient G arbitrarily; O = signed incidence/boundary matrix

1 2 1 -1 1 0 0 0 O
1 0 0 -1 -1 0 O
o 1 0 0 0 1 -1
3 4 o 0 -1 1 1 -1 1

Flow: (fe)ece orthogonal to all rows of 9
Tension: (te)ecke orthogonal to all flows
Proper coloring: row vector ¢ = (¢,)yecv with cO nowhere-zero

Flows/colorings/tensions can be modular (values in Z/kZ) or
integral (values in {—k+1,—k+2,... . k—1} C Z)
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Background

Modular vs. integral

Modular k-flows/k-tensions
» Flows and tensions form Z-modules [Tutte '47]
» Counted by polynomials in k; specializations of Tutte poly

» Same for any abelian group of cardinality k

Integral k-flows/k-tensions
» Sign vectors correspond to orientations
» Counting functions are polynomials in k [Kochol '02]
» Lattice points in inside-out polytopes [Beck—Zaslavsky '05]
» Reciprocity for flows [Breuer—Sanyal '12]



Background

Cell Complexes

Goal: Extend theory of colorings/cuts/flows from graphs to
cell complexes.

X = d-dimensional cell complex
F = facets (d-dimensional faces)
R = ridges ((d — 1)-dimensional faces)

9 = cellular boundary matrix € ZR*F
0* = cellular coboundary matrix € ZF*R
0f = 0QZL/KZL



Background

Cellular colorings, flows and tensions

X = pure CW complex F, R = facets, ridges
K=[-k+1,k-1CZ 0 = dx € ZIRIxIF|

Thingamajig

Definition

Enumeration

Modular coloring
Modular flows
Modular tensions

Integral coloring
Integral flows
Integral tensions

¢ € (Z)R s.t. cO nowhere-zero
im(9;)"

im(9]) -

c € KR s.t. cO nowhere-zero
Im(9*)+ N KF

Im(0*)++ N KF

Xx (k)
©x (k)
x (k)
Xx(2k - 1)
@x(zk —-1)
T (2k — 1)



Background

Cellular orientations and compatibility

Definition
An orientation of X is a sign vector ¢ € {1, —1}F.

An orientation ¢ and tension/flow x € ZF are compatible if
erxg > 0 for every f.

€ is acyclic if it is not compatible with any nonzero flow.

¢ is totally cyclic if for every facet f, there is a e-compatible flow x
with x> 0.



Theorems

Properties of the modular chromatic function x5 (k)

1. Deletion/contraction for facet/ridge pairs with degree 1

2. Closed formula:

k() = 3" (1) AY(X; 2z k")
JCF

3. Quasipolynomial in k; bound on period
4. All 95 unimodular = polynomial in k, T-G invariant

» Generalizes chromatic polynomial of a graph

» Comparable theorems for tension/flow polynomials
(simplicial case: Beck—Kemper)



Theorems

Integral coloring reciprocity

Theorem

» Acyclic orientations of X «— regions of hyperplane
arrangement Hx with normals = columns of 0

> (—1)"xx(—2k — 1) = # compatible pairs (e, c)
c integral k-coloring, € orientation

> |xx(—1)| = # acyclic orientations of X

Proof: count lattice points in inside-out polytope (—1,1)" \ Hy;
apply Ehrhart-Macdonald reciprocity

(Graph case: Stanley '73, Greene '77)



Theorems

Integral tension reciprocity

Nowhere-zero integral k-tensions = lattice points in interior of
inside-out polytope

T =KF NnRowspd \ B

where B = Boolean arrangement of coordinate hyperplanes
Theorem

» Acyclic orientations of X «— regions of T

> |73 (—2k — 1)| = # compatible pairs (e, )):
1 integral k-tension, € orientation

> |7x(—1)| = number of acyclic orientations
(Graph case: Chen '10, Dall '08)



Theorems

Integral flow reciprocity

Nowhere-zero integral k-flows = lattice points in interior of
inside-out polytope

W =KFnkero\ B

where B = Boolean arrangement of coordinate hyperplanes
Theorem

» Totally cyclic orientations of X «— regions of W

> |px(—2k —1)| = # compatible pairs (e, w):
w integral k-flow, € orientation
> |ox(—1)| = number of totally cyclic orientations

(Graph case: Beck—Zaslavsky '06)



Theorems

Modular reciprocity

Modular reciprocity is trickier.

Geometrically: Modular flows/tensions correspond to lattice points
in a “periodic inside-out polytope”

Difficult part: How do you associate an orientation (i.e. a sign
vector) with a modular flow?

Idea: Breuer—Sanyal '12 (modular flow reciprocity for graphs)
Related work: Chen—Stanley '12



Theorems

Modular flow reciprocity

Theorem
Let X be a cell complex with no coloops. Then

w is a Zy-flow on X and

lox(—k)| =# < (w,0): o:zero(w) — {—1,1} extends
to a totally cyclic orientation

Corollary
|x(—1)| = number of totally cyclic orientations



Theorems

Modular tension reciprocity

Theorem
Let X be a cell complex with no loops. Then

t is a Z-tension on X and

|Tx(—k)| = #< (t,0): o :zero(t) — {—1,1} extends
to an acyclic orientation

Corollary
|7%(—1)| = number of acyclic orientations



Theorems

Modular reciprocity: proof sketch

(Idea + graph case: Breuer-Sanyal 2012)

For k > 0, interpret % (k) as sum of Ehrhart functions of disjoint
union of components of (—k, k)!Fl

x € (Zx)F is a flow <= some (= any) lift x € ZF has
Ox € (kZ)R

be ZR ~ P°(b) = {w € (0,1)F: Ow = b}
ox (k) = >, Ehr(Py, k)

Then apply Ehrhart-Macdonald reciprocity.



Theorems

Modular reciprocity: proof sketch

1 2
Example: 0 = [2 4]

P°(0,0) = point (0,0) P°(1,2) = line segment (1,0) to (0, 3)

P°(3,6) = point (1,1) P°(2,4) = line segment (1,1) to (0,1)
(k) = number of interior lattice points in union of kth dilates
| (—k)| = number of lattice points in closed union of k™ dilates
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Theorems

Modular reciprocity: proof sketch

» Lattice points on boundaries of P(b)'s have coordinates 0
mod k, i.e., somewhere-zero modular flows (which may admit
more than one totally cyclic orientation)

» For bijection between these lattice points and (w, o), sign =
choice of whether to lift 0 mod k to 0 or k € Z (requires
integral reciprocity!)




Questions

Further Directions

1. Is there a non-TU cell complex X whose modular chromatic
function x% (k) is polynomial?

2. Kook-Reiner-Stanton ('99): Tutte polynomial of a matroid
from convolution of tension and flow polynomials

Breuer—Sanyal: used KRS to interpret values of Tutte
polynomial of a graph at positive integers (a la Reiner '99).

Generalize to cell complexes whose tension and flow
functions are polynomials?

3. Hopf algebra point of view: chromatic polynomial =
combinatorial Hopf morphism from graphs to polynomials;
reciprocity = inversion of characters
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