# A positivity phenomenon in Elser's Gaussian-cluster percolation model 

Galen Dorpalen-Barry (University of Minnesota) Cyrus Hettle (Georgia Tech)<br>David C. Livingston (University of Wyoming) Jeremy L. Martin* (University of Kansas) George Nasr (University of Nebraska) Julianne Vega (University of Kentucky) Hays Whitlatch (Gonzaga University)

AMS Sectional Meeting
University of Florida
November 2, 2019

## Nuclei and Elser Numbers

## Definition

A nucleus of a connected graph $G$ is a connected subgraph $N \subseteq G$ such that $V(N)$ is a vertex cover.


## Definition

Let $\mathcal{N}(G)$ denote the set of all nuclei. The $\boldsymbol{k}^{\text {th }}$ Elser number of $G$ is

$$
\operatorname{els}_{k}(G)=(-1)^{|V(G)|+1} \sum_{N \in \mathcal{N}(G)}(-1)^{|E(N)|}|V(N)|^{k}
$$

Example els $_{k}\left(K_{2}\right)=2^{k}-2$
Idea: Interpret Elser numbers as Euler characteristics.

## Motivation: Percolation Theory

- Percolation theory models a physical medium by an Erdös-Rényi random subgraph $\Gamma$ of $\mathbb{Z}^{d}$ or some other periodic lattice $[\mathrm{H}$. Kesten, Notices AMS 2006]
- Typically, different values of $d$ have to be studied separately (think the Drunkard's Walk)
- V. Elser [J. Phys. A 1984] proposed a random geometric graph model in which $d$ can be treated as a parameter
- The numbers els $s_{k}(G)$ arise in a generating function for connected components of $\Gamma$.
- Elser proved that els ${ }_{1}(G)=0$ for all $G$ and conjectured (based on experimentation) that $\operatorname{els}_{k}(G) \geq 0$ for all $k \geq 2$.


## The Main Theorem

Theorem [D-B, H, L, M, N, V, W 2019+]
Let $G$ be a connected graph with at least two vertices. Then:

1. els $(G) \leq 0$.
2. $\operatorname{els}_{1}(G)=0$.
3. $\operatorname{els}_{k}(G) \geq 0$ for all $k \geq 2$ (Elser's conjecture).

## More specifically:

4. If $G$ is 2 -connected, then $\operatorname{els}_{0}(G)<0$ and $\operatorname{els}_{k}(G)>0$ for all $k \geq 2$.
5. Otherwise, els $(G) \neq 0$ if and only if $k \geq \ell$, where $\ell \geq 2$ is the number of leaf blocks (2-connected components of $G$ that contain exactly one cut-vertex).

## Also:

6. (Monotonicity) If $e \in E(G)$ is neither a loop or cut-edge, then

$$
\operatorname{els}_{k}(G) \geq \operatorname{els}_{k}(G / e)+\operatorname{els}_{k}(G \backslash e)
$$

with equality for $k=0$.

## Nucleus Complexes

Nuclei are stable under adding edges. Therefore:

## Definition

The nucleus complex of $G$ is the simplicial complex on $E(G)$ given by

$$
\Delta^{G}=\{E(\bar{N}): N \in \mathcal{N}(G)\} .
$$

For $U \subseteq V(G)$, the $\boldsymbol{U}$-nucleus complex is the subcomplex

$$
\Delta_{U}^{G}=\{E(\bar{N}): \quad N \in \mathcal{N}(G), \quad V(N) \supseteq U\}
$$

Annoying Special Case: We have to define $\Delta_{\emptyset}^{c K_{2}}$ as a non-simplicial $\Delta$-complex, since not all nuclei of $c K_{2}$ are determined by their edge sets.

## Elser Numbers and Euler Characteristics

What do the simplicial complexes $\Delta_{U}^{G}$ look like?

- $\Delta_{\emptyset}^{G}=\Delta^{G}$
- $\Delta_{V(G)}^{G}=$ matroid complex of cographic matroid
- In general, $U$-nucleus complexes are not pure or (nonpure) shellable


## Proposition

$$
\begin{align*}
\operatorname{els}_{k}(G) & =(-1)^{|E(G)|+|V(G)|+1} \sum_{U \subseteq V(G)} \operatorname{Sur}(k,|U|) \sum_{\substack{N \in \mathcal{N}(G): \\
U \subseteq V(N)}}(-1)^{|E(\bar{N})|} \\
& =(-1)^{|E(G)|+|V(G)|} \sum_{U \subseteq V(G)} \operatorname{Sur}(k,|U|) \tilde{\chi}\left(\Delta_{U}^{G}\right) \tag{1}
\end{align*}
$$

where $\operatorname{Sur}(a, b)=b!\cdot \operatorname{Stir} 2(a, b)=$ number of surjections $[a] \rightarrow[b]$.

## U-Nucleus Complexes

Let $\operatorname{Dep}(G)$ be the deparallelization of $G$ : identify all edges in the same parallel class. (Note that $\operatorname{Dep}(G)$ can have loops.)

Proposition Let $G$ be a graph and $U \subseteq V(G)$.

1. If $G$ has a loop $\ell$, then $\ell$ is a cone point of $\Delta_{U}^{G}$, so $\tilde{\chi}\left(\Delta_{U}^{G}\right)=0$.
2. Let $D=\operatorname{Dep}(G)$. Then $\tilde{\chi}\left(\Delta_{U}^{D}\right)=(-1)^{|E(G)|-|E(D)|} \tilde{\chi}\left(\Delta_{U}^{G}\right)$.
3. Suppose $G \neq K_{2}$ has a cut-edge $e$. Then:

- If $e$ is a leaf edge with leaf $x$ and $x \notin U$, then $\Delta_{U}^{G}$ is a cone.
- Otherwise, $\Delta_{U}^{G}=\Delta_{U / e}^{G / e}$.

In terms of Elser numbers:
$1^{\prime}$. If $G$ has a loop, then $\operatorname{els}_{k}(G)=0$ for all $k$.
$2^{\prime}$. For all $G$ and $k$, $\operatorname{els}_{k}(G)=\operatorname{els}_{k}(\operatorname{Dep}(G))$.

## Elser Numbers for Trees

Corollary Let $T$ be a tree with $n \geq 3$ vertices. Let $L$ be the set of leaf vertices. Then:

$$
\tilde{\chi}\left(\Delta_{U}^{T}\right)= \begin{cases}1-|U| & \text { if } T=K_{2}  \tag{2}\\ 0 & \text { if } T \neq K_{2} \text { and } L \nsubseteq U \\ -1 & \text { if } T \neq K_{2} \text { and } L \subseteq U\end{cases}
$$

Corollary For all $k \geq 1$,

$$
\operatorname{els}_{k}(T)=\sum_{i=0}^{n-|L|}\binom{n-|L|}{i} \operatorname{Sur}(k,|L|+i)
$$

In particular, Elser's conjecture is true for trees: els $k(T) \geq 0$ for $k \geq 1$ (and $>0$ iff $k \geq|L|$ ).

## Deletion/Contraction for Nucleus Complexes

Theorem Let $G$ be a connected graph with $|V(G)| \geq 2$, let $e \in E(G)$ be neither a loop or cut-edge, and let $U \subseteq V(G)$. Then

$$
\tilde{\chi}\left(\Delta_{U}^{G}\right)=\tilde{\chi}\left(\Delta_{U / e}^{G / e}\right)-\tilde{\chi}\left(\Delta_{U}^{G \backslash e}\right)
$$

Proof sketch: It's a lot like proving a Tutte polynomial identity.
Define a bijection $\psi: 2^{E(G)} \rightarrow 2^{E(G \backslash e)} \uplus 2^{E(G / e)}$ by

$$
\psi(A)= \begin{cases}A \backslash e \subseteq E(G \backslash e) & \text { if } e \in A \\ A & \subseteq E(G / e) \\ \text { if } e \notin A\end{cases}
$$

Then crank out the recurrence, keeping track of vertex sets and treating the case $G=K_{2}$ separately.

## Proof of Elser's Conjecture

Idea Apply the deletion/contraction recurrence repeatedly until it bottoms out. The result will be an expression

$$
\begin{equation*}
\tilde{\chi}\left(\Delta_{U}^{G}\right)=\sum_{i=1}^{s} \varepsilon_{i} \tilde{\chi}\left(\Delta_{U\left[T_{i}\right]}^{T_{i}}\right) \tag{3}
\end{equation*}
$$

where

- $T_{1}, \ldots, T_{s}$ are tree minors of $G$;
- $U\left[T_{i}\right]=$ image of $U$ in $T_{i}$;
- $\varepsilon_{i} \in\{ \pm 1\}$.

The list $T_{1}, \ldots, T_{s}$ is not an invariant of $G$, but depends on the choices of edge to delete and contract at each stage of the recurrence.

The calculation is recorded by a thing we call a restricted deletion/contraction tree (RDCT).


## Proof of Elser's Conjecture

Observation
$\varepsilon_{i}=$ number of edges deleted $=\left(|E(G)|-\left|E\left(T_{i}\right)\right|\right)-\left(|V(G)|-\left|V\left(T_{i}\right)\right|\right)$
Therefore, formula (3) becomes

$$
(-1)^{|E(G)|+|V(G)|} \tilde{\chi}\left(\Delta_{U}^{G}\right)=-\sum_{i=1}^{s} \tilde{\chi}\left(\Delta_{U\left[T_{i}\right]}^{T_{i}}\right) \quad \begin{cases}\leq 0 & \text { if }|U|=0 \\ =0 & \text { if }|U|=1 \\ \geq 0 & \text { if }|U| \geq 1\end{cases}
$$

and Elser's conjecture follows from the calculation of Elser numbers for trees (2) and the relationship between Elser numbers and $\tilde{\chi}\left(\Delta_{U}^{G}\right)(1)$.

## Question

When are the inequalities $\leq 0$ and $\geq 0$ strict?

## Pinning Down The Signs

## Proposition

Let $\mathscr{B}$ be any RDCT for $G$, with leaves $T_{1}, \ldots, T_{s}$. Then:

1. $\operatorname{els}_{0}(G)=-\#\left\{i: \quad T_{i} \cong K_{2}\right\}$.
2. For $k \geq 2$, the following are equivalent:

- $\operatorname{els}_{k}(G)>0$;
- for some $U \subseteq V(G)$ we have $|U| \leq k$ and $\tilde{\chi}\left(\Delta_{U}^{G}\right) \neq 0$;
- for some $i \in[s]$ we have $\left|L\left(T_{i}\right)\right| \leq k$.


## Problem

This result depends on the choice of $\mathscr{B}$ - we would like a description in terms of $G$ itself.

## Question

Which tree minors show up as leaves of $\mathscr{B}$ for some $\mathscr{B}$ ?

## Ear Decompositions

## Definition

An ear decomposition of $G$ is a list of subgraphs $R_{1}, \ldots, R_{m}$ such that

1. $E(G)=E\left(R_{1}\right) \cup \cdots \cup E\left(R_{m}\right)$;
2. $R_{1}$ is a cycle; and
3. for each $i>1$, the graph $R_{i}$ is a path that meets $R_{1} \cup \cdots \cup R_{i-1}$ only at its endpoints.


Fact $G$ has an ear decomposition if and only if it is 2-connected (i.e., has no cut-vertex).

## Criteria for Positivity of Elser Numbers

Theorem [D-B-H-L-M-N-V-W; F. Petrov]
Let $G$ be a 2-connected graph and let $T \subseteq G$ be a spanning tree.
Then $G$ has an ear decomposition $R_{1} \cup \cdots \cup R_{m}$ such that $\left|E\left(R_{i}\right) \backslash T\right|=1$ for every $i$.
(Proof: constructive algorithm)

Corollary Let $G$ be 2-connected.
Then every tree minor of $G$ can be realized without contracting a cut-edge or deleting a loop, hence appears as a leaf of some RDCT.
Consequently, $\operatorname{els}_{k}(G)>0$ for all $k \geq 2$.

## Proposition

More generally, $\operatorname{els}_{k}(G) \neq 0$ if and only if $G$ has at most $k$ leaf blocks.

## Future Directions

## Open Question

To what extent do Elser numbers depend on the matroid of $G$ ? (They are not matroid invariants.)

## Conjecture

Let $G$ be a connected graph and $U \subseteq V(G)$. Then the reduced Betti number $\tilde{\beta}_{k}\left(\Delta_{U}^{G}\right)$ is nonzero only if
(i) $U=\emptyset$ and $k=|E(G)|-|V(G)|-1$, or
(ii) $|U| \geq 2$ and $k=|E(G)|-|V(G)|$.

- Can be reduced to the case of 2-connected graphs
- True when $U$ is a vertex cover (using Jakob Jonsson's theory of pseudo-independence complexes)
- Verified computationally for $|V(G)| \leq 6$
- What are the Betti numbers??


## Open Question

What significance does our result have for Elser's percolation model???

## Thank You!

## A \huge Thanks! to:

- You for listening
- Our session organizers
- Veit Elser for proposing the problem, Lou Billera for bringing it to our attention, and Vic Reiner for suggesting the topological approach
- The Graduate Research Workshop in Combinatorics

Preprint: arXiv:1905.11330
Correspondence: jlmartin@ku.edu

