# A positivity phenomenon in Elser's Gaussian-cluster percolation model

Galen Dorpalen-Barry (University of Minnesota) Cyrus Hettle (Georgia Tech) David C. Livingston (University of Wyoming) Jeremy L. Martin\* (University of Kansas) George Nasr (University of Nebraska) Julianne Vega (University of Kentucky) Hays Whitlatch (Gonzaga University)

> AMS Sectional Meeting University of Florida November 2, 2019

#### Definition

A **nucleus** of a connected graph G is a connected subgraph  $N \subseteq G$  such that V(N) is a vertex cover.



#### Definition

Let  $\mathcal{N}(G)$  denote the set of all nuclei. The  $k^{\mathrm{th}}$  Elser number of G is

$$els_k(G) = (-1)^{|V(G)|+1} \sum_{N \in \mathcal{N}(G)} (-1)^{|E(N)|} |V(N)|^k.$$

**Example**  $\operatorname{els}_k(K_2) = 2^k - 2$ 

Idea: Interpret Elser numbers as Euler characteristics.

## **Motivation: Percolation Theory**

- Percolation theory models a physical medium by an Erdös-Rényi random subgraph Γ of Z<sup>d</sup> or some other periodic lattice [H. Kesten, Notices AMS 2006]
- Typically, different values of d have to be studied separately (think the Drunkard's Walk)
- V. Elser [J. Phys. A 1984] proposed a random geometric graph model in which d can be treated as a parameter
- The numbers els<sub>k</sub>(G) arise in a generating function for connected components of Γ.
- ► Elser proved that els<sub>1</sub>(G) = 0 for all G and conjectured (based on experimentation) that els<sub>k</sub>(G) ≥ 0 for all k ≥ 2.

## The Main Theorem

#### Theorem [D-B, H, L, M, N, V, W 2019<sup>+</sup>]

Let G be a connected graph with at least two vertices. Then:

- 1.  $els_0(G) \le 0$ .
- 2.  $els_1(G) = 0$ .
- 3.  $\operatorname{els}_k(G) \ge 0$  for all  $k \ge 2$  (Elser's conjecture).

#### More specifically:

- 4. If G is 2-connected, then  $els_0(G) < 0$  and  $els_k(G) > 0$  for all  $k \ge 2$ .
- 5. Otherwise,  $els_k(G) \neq 0$  if and only if  $k \geq \ell$ , where  $\ell \geq 2$  is the number of *leaf blocks* (2-connected components of G that contain exactly one cut-vertex).

#### Also:

6. (Monotonicity) If  $e \in E(G)$  is neither a loop or cut-edge, then

$${\sf els}_k(G) \geq {\sf els}_k(G/e) + {\sf els}_k(G\setminus e)$$

with equality for k = 0.

Nuclei are stable under adding edges. Therefore:

#### Definition

The **nucleus complex** of G is the simplicial complex on E(G) given by

$$\Delta^{G} = \{ E(\overline{N}) : N \in \mathcal{N}(G) \}.$$

For  $U \subseteq V(G)$ , the *U***-nucleus complex** is the subcomplex

$$\Delta_U^G = \{ E(\overline{N}) : N \in \mathcal{N}(G), V(N) \supseteq U \}.$$

**Annoying Special Case:** We have to define  $\Delta_{\emptyset}^{cK_2}$  as a non-simplicial  $\Delta$ -complex, since not all nuclei of  $cK_2$  are determined by their edge sets.

What do the simplicial complexes  $\Delta_U^G$  look like?

• 
$$\Delta_{\emptyset}^{G} = \Delta^{G}$$
  
•  $\Delta_{V(G)}^{G}$  = matroid complex of cographic matroid

▶ In general, *U*-nucleus complexes are not pure or (nonpure) shellable

#### Proposition

$$\begin{aligned} \mathsf{els}_{k}(G) &= (-1)^{|E(G)| + |V(G)| + 1} \sum_{U \subseteq V(G)} \mathsf{Sur}(k, |U|) \sum_{\substack{N \in \mathcal{N}(G):\\ U \subseteq V(N)}} (-1)^{|E(\overline{N})|} \\ &= (-1)^{|E(G)| + |V(G)|} \sum_{U \subseteq V(G)} \mathsf{Sur}(k, |U|) \, \tilde{\chi}(\Delta_{U}^{\mathsf{G}}) \end{aligned} \tag{1}$$

where  $Sur(a, b) = b! \cdot Stir2(a, b) =$  number of surjections  $[a] \rightarrow [b]$ .

Let Dep(G) be the **deparallelization** of G: identify all edges in the same parallel class. (Note that Dep(G) can have loops.)

**Proposition** Let G be a graph and  $U \subseteq V(G)$ .

1. If G has a loop  $\ell$ , then  $\ell$  is a cone point of  $\Delta_U^G$ , so  $\tilde{\chi}(\Delta_U^G) = 0$ .

- 2. Let D = Dep(G). Then  $\tilde{\chi}(\Delta_U^D) = (-1)^{|E(G)| |E(D)|} \tilde{\chi}(\Delta_U^G)$ .
- 3. Suppose  $G \neq K_2$  has a cut-edge *e*. Then:
  - ▶ If e is a leaf edge with leaf x and  $x \notin U$ , then  $\Delta_{U}^{G}$  is a cone.

• Otherwise, 
$$\Delta_U^G = \Delta_{U/e}^{G/e}$$

In terms of Elser numbers:

- 1'. If G has a loop, then  $els_k(G) = 0$  for all k.
- 2'. For all G and k,  $els_k(G) = els_k(Dep(G))$ .

**Corollary** Let *T* be a tree with  $n \ge 3$  vertices. Let *L* be the set of leaf vertices. Then:

$$\tilde{\chi}(\Delta_U^{\mathsf{T}}) = \begin{cases} 1 - |U| & \text{if } T = K_2, \\ 0 & \text{if } T \neq K_2 \text{ and } L \not\subseteq U, \\ -1 & \text{if } T \neq K_2 \text{ and } L \subseteq U. \end{cases}$$
(2)

**Corollary** For all  $k \ge 1$ ,

$$\mathsf{els}_k(T) = \sum_{i=0}^{n-|L|} \binom{n-|L|}{i} \mathsf{Sur}(k,|L|+i)$$

In particular, Elser's conjecture is true for trees:  $els_k(T) \ge 0$  for  $k \ge 1$ (and > 0 iff  $k \ge |L|$ ). **Theorem** Let G be a connected graph with  $|V(G)| \ge 2$ , let  $e \in E(G)$  be neither a loop or cut-edge, and let  $U \subseteq V(G)$ . Then

$$\tilde{\chi}(\Delta_U^G) = \tilde{\chi}(\Delta_{U/e}^{G/e}) - \tilde{\chi}(\Delta_U^{G\setminus e}).$$

*Proof sketch:* It's a lot like proving a Tutte polynomial identity. Define a bijection  $\psi: 2^{E(G)} \to 2^{E(G \setminus e)} \cup 2^{E(G/e)}$  by

$$\psi(A) = \begin{cases} A \setminus e \subseteq E(G \setminus e) & \text{if } e \in A, \\ A \subseteq E(G/e) & \text{if } e \notin A. \end{cases}$$

Then crank out the recurrence, keeping track of vertex sets and treating the case  $G = K_2$  separately.

**Idea** Apply the deletion/contraction recurrence repeatedly until it bottoms out. The result will be an expression

$$\tilde{\chi}(\Delta_U^G) = \sum_{i=1}^s \varepsilon_i \ \tilde{\chi}(\Delta_{U[T_i]}^{T_i})$$
(3)

where

The list  $T_1, \ldots, T_s$  is not an invariant of G, but depends on the choices of edge to delete and contract at each stage of the recurrence.

The calculation is recorded by a thing we call a **restricted deletion/contraction tree** (RDCT).



#### Observation

 $\varepsilon_i$  = number of edges deleted =  $(|E(G)| - |E(T_i)|) - (|V(G)| - |V(T_i)|)$ 

Therefore, formula (3) becomes

$$(-1)^{|E(G)|+|V(G)|}\tilde{\chi}(\Delta_U^G) = -\sum_{i=1}^s \tilde{\chi}(\Delta_{U[T_i]}^{T_i}) \quad \begin{cases} \leq 0 & \text{if } |U| = 0 \\ = 0 & \text{if } |U| = 1 \\ \geq 0 & \text{if } |U| \geq 1 \end{cases}$$

and Elser's conjecture follows from the calculation of Elser numbers for trees (2) and the relationship between Elser numbers and  $\tilde{\chi}(\Delta_{II}^{G})$  (1).

#### Question

When are the inequalities  $\leq 0$  and  $\geq 0$  strict?

#### Proposition

Let  $\mathscr{B}$  be any RDCT for G, with leaves  $T_1, \ldots, T_s$ . Then:

1. 
$$els_0(G) = -\#\{i: T_i \cong K_2\}.$$

- 2. For  $k \ge 2$ , the following are equivalent:
  - els<sub>k</sub>(G) > 0;
  - for some  $U \subseteq V(G)$  we have  $|U| \leq k$  and  $\tilde{\chi}(\Delta_U^G) \neq 0$ ;
  - for some  $i \in [s]$  we have  $|L(T_i)| \leq k$ .

#### Problem

This result depends on the choice of  $\mathscr{B}$  — we would like a description in terms of *G* itself.

#### Question

Which tree minors show up as leaves of  $\mathscr{B}$  for some  $\mathscr{B}$ ?

#### Definition

An ear decomposition of G is a list of subgraphs  $R_1, \ldots, R_m$  such that

1. 
$$E(G) = E(R_1) \cup \cdots \cup E(R_m);$$

- 2.  $R_1$  is a cycle; and
- 3. for each i > 1, the graph  $R_i$  is a path that meets  $R_1 \cup \cdots \cup R_{i-1}$  only at its endpoints.



**Fact** *G* has an ear decomposition if and only if it is 2-connected (i.e., has no cut-vertex).

**Theorem** [D-B–H–L–M–N–V–W; F. Petrov]

Let G be a 2-connected graph and let  $T \subseteq G$  be a spanning tree.

Then G has an ear decomposition  $R_1 \cup \cdots \cup R_m$  such that  $|E(R_i) \setminus T| = 1$  for every *i*.

(Proof: constructive algorithm)

#### **Corollary** Let *G* be 2-connected.

Then *every* tree minor of G can be realized without contracting a cut-edge or deleting a loop, hence appears as a leaf of some RDCT.

Consequently,  $els_k(G) > 0$  for all  $k \ge 2$ .

#### Proposition

More generally,  $els_k(G) \neq 0$  if and only if G has at most k leaf blocks.

#### **Open Question**

To what extent do Elser numbers depend on the matroid of G? (They are *not* matroid invariants.)

#### Conjecture

Let G be a connected graph and  $U \subseteq V(G)$ . Then the reduced Betti number  $\tilde{\beta}_k(\Delta_U^G)$  is nonzero only if

(i) 
$$U = \emptyset$$
 and  $k = |E(G)| - |V(G)| - 1$ , or

(ii)  $|U| \ge 2$  and k = |E(G)| - |V(G)|.

- Can be reduced to the case of 2-connected graphs
- True when U is a vertex cover (using Jakob Jonsson's theory of pseudo-independence complexes)
- Verified computationally for  $|V(G)| \leq 6$
- What are the Betti numbers??

#### **Open Question**

What significance does our result have for Elser's percolation model???

# 

- You for listening
- Our session organizers
- Veit Elser for proposing the problem, Lou Billera for bringing it to our attention, and Vic Reiner for suggesting the topological approach
- The Graduate Research Workshop in Combinatorics

Preprint: arXiv:1905.11330 Correspondence: jlmartin@ku.edu