
Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes

Graph Theory and Geometry

Jeremy Martin

University of Kansas
Faculty Seminar
October 12, 2010

Graph Theory and Geometry



Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
Acyclic Orientations

Graphs

A graph is a pair G = (V ,E ), where

◮ V is a finite set of vertices;

◮ E is a finite set of edges;

◮ Each edge connects two vertices called its endpoints.
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Why study graphs?

◮ Real-world applications
◮ Combinatorial optimization (routing, scheduling. . . )
◮ Computer science (data structures, sorting, searching. . . )
◮ Biology (evolutionary descent. . . )
◮ Chemistry (molecular structure. . . )
◮ Engineering (roads, rigidity. . . )
◮ Network models (social networks, the Internet. . . )

◮ Pure mathematics
◮ Combinatorics (ubiquitous!)
◮ Discrete dynamical systems (chip-firing game. . . )
◮ Algebra (quivers, Cayley graphs. . . )
◮ Discrete geometry (polytopes, sphere packing. . . )
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Spanning Trees

Definition A spanning tree of G is a set of edges T (or a
subgraph (V ,T )) such that:

1. (V ,T ) is connected: every pair of vertices is joined by a path

2. (V ,T ) is acyclic: there are no cycles

3. |T | = |V | − 1.

Any two of these conditions together imply the third.
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Counting Spanning Trees

τ(G ) = number of spanning trees of G

◮ τ(tree) = 1 (trivial)

◮ τ(Cn) = n (almost trivial)

◮ τ(Kn) = nn−2 (Cayley’s formula; highly nontrivial!)

◮ Many other enumeration formulas for “nice” graphs
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Deletion and Contraction

Let e ∈ E (G ).
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Let e ∈ E (G ).

◮ Deletion G − e: Remove e
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Let e ∈ E (G ).
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◮ Contraction G/e: Shrink e to a point
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Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

eG /G

e

Theorem τ(G ) = τ(G − e) + τ(G/e).
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

◮ Therefore, we can calculate τ(G ) recursively. . .
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

◮ Therefore, we can calculate τ(G ) recursively. . .

◮ . . . but this is computationally inefficient (since 2|E | steps
must be considered). . .
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

◮ Therefore, we can calculate τ(G ) recursively. . .

◮ . . . but this is computationally inefficient (since 2|E | steps
must be considered). . .

◮ . . . and cannot be used to prove nice enumerative results (like
Cayley’s formula)
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The Matrix-Tree Theorem

G = (V ,E ): graph with no loops (parallel edges OK)
V = {1, 2, . . . , n}

Definition The Laplacian of G is the n × n matrix L = [ℓij ]:

ℓij =

{

degG (i) if i = j

−(# of edges joining i,j) otherwise.

◮ rank L = n − 1.
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The Matrix-Tree Theorem

Example

G =

1 2

3 4

L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.

(2) Let 1 ≤ i ≤ n. Form the reduced Laplacian L̃ by deleting the
i th row and i th column of L. Then

τ(G ) = det L̃ .
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The Matrix-Tree Theorem

Example G =

1 2

3 4

L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1









L̃ =





3 −1 −1
−1 3 0
−1 0 1





Eigenvalues: 0, 1, 4, 5 det L̃ = 5

(1 · 4 · 5)/4 = 5
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◮ Discrete dynamical system a.k.a. “sandpile model”, “dollar
game”, “rotor-router model”, . . .
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◮ Each vertex has a finite number of chips
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◮ Firing vertex i ←→ adding i th column of L
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The Chip-Firing Game

◮ Discrete dynamical system a.k.a. “sandpile model”, “dollar
game”, “rotor-router model”, . . .

◮ Each vertex has a finite number of chips

◮ A vertex “fires” by giving one chip to each of its neighbors

◮ Firing vertex i ←→ adding i th column of L

◮ Long-term behavior described by critical configuration
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The Chip-Firing Game

◮ Discrete dynamical system a.k.a. “sandpile model”, “dollar
game”, “rotor-router model”, . . .

◮ Each vertex has a finite number of chips

◮ A vertex “fires” by giving one chip to each of its neighbors

◮ Firing vertex i ←→ adding i th column of L

◮ Long-term behavior described by critical configuration
= coset of column space of L̃
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The Chip-Firing Game

◮ Discrete dynamical system a.k.a. “sandpile model”, “dollar
game”, “rotor-router model”, . . .

◮ Each vertex has a finite number of chips

◮ A vertex “fires” by giving one chip to each of its neighbors

◮ Firing vertex i ←→ adding i th column of L

◮ Long-term behavior described by critical configuration
= coset of column space of L̃
= element of critical group K (G )
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The Chip-Firing Game

◮ Discrete dynamical system a.k.a. “sandpile model”, “dollar
game”, “rotor-router model”, . . .

◮ Each vertex has a finite number of chips

◮ A vertex “fires” by giving one chip to each of its neighbors

◮ Firing vertex i ←→ adding i th column of L

◮ Long-term behavior described by critical configuration
= coset of column space of L̃
= element of critical group K (G )

Theorem |K (G )| = τ(G ).
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Acyclic Orientations

To orient a graph, place an arrow on each edge.
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To orient a graph, place an arrow on each edge.

G

An orientation is acyclic if it contains no directed cycles.

Graph Theory and Geometry



Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
Acyclic Orientations

Acyclic Orientations

To orient a graph, place an arrow on each edge.
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An orientation is acyclic if it contains no directed cycles.
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G not acyclic acyclic

An orientation is acyclic if it contains no directed cycles.
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α(G ) = number of acyclic orientations of G
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!

Graph Theory and Geometry



Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
Acyclic Orientations

Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!

Theorem α(G ) = α(G − e) + α(G/e).
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!

Theorem α(G ) = α(G − e) + α(G/e).

(Fact: Both α(G ) and τ(G ), as well as any other invariant
satisfying a deletion-contraction recurrence, can be obtained from
the Tutte polynomial TG (x , y).)
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Hyperplane Arrangements

Definition A hyperplane H in R
n is an (n − 1)-dimensional

affine linear subspace.

Definition A hyperplane arrangement A ⊂ R
n is a finite

collection of hyperplanes.

◮ n = 1: points on a line

◮ n = 2: lines on a plane

◮ n = 3: planes in 3-space
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Counting Regions

r(A) := number of regions of A
= number of connected components of Rn \ A
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r(A) := number of regions of A
= number of connected components of Rn \ A

5

6

10

14 regions 16 regions

1

11
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Counting Regions

Example A = n lines in R
2

◮ 2n ≤ r(A) ≤ 1 +
(

n+1
2

)

Example A = n coordinate hyperplanes in R
n

◮ Regions of A = orthants

◮ r(A) = 2n
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The Braid Arrangement

The braid arrangement Brn ⊂ R
n consists of the

(

n
2

)

hyperplanes

H12 = {x ∈ R
n | x1 = x2},

H13 = {x ∈ R
n | x1 = x3},

. . .

Hn−1,n = {x ∈ R
n | xn−1 = xn}.

◮ R
n \ Brn = {x ∈ R

n | all xi are distinct}.

◮ Problem: Count the regions of Brn.
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y < x < z x < z < y

x < y < z

z < x < yy < z < x

z < y < x

13

Br3
23H

H12

H
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Graphic Arrangements

Let G = (V ,E ) be a simple graph with V = [n] = {1, . . . , n}.
The graphic arrangement AG ⊂ R

n consists of the hyperplanes

{Hij : xi = xj
∣

∣ ij ∈ E}.
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Graphic Arrangements

Let G = (V ,E ) be a simple graph with V = [n] = {1, . . . , n}.
The graphic arrangement AG ⊂ R

n consists of the hyperplanes

{Hij : xi = xj
∣

∣ ij ∈ E}.

Theorem There is a bijection between regions of AG and acyclic
orientations of G . In particular,

r(AG ) = α(G ).

(When G = Kn, the arrangement AG is the braid arrangement.)
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Graphic Arrangements

Theorem r(AG ) = α(G ).
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .

The resulting orientation is acyclic.
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .

The resulting orientation is acyclic.

Corollary r(Brn) = α(Kn) = n!.
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Parking Functions

There are n parking spaces on a one-way street.

Cars 1, . . . , n want to park in the spaces.

Each car has a preferred spot pi .

Can all the cars park?
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

141541

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 4 5 1 4

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1541

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 4 5

1 2 3 4 65
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 2 3 4 65

41
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

3 4 65

1

1 2
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 2 3 4 65

1

Success!
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

144541

1 2 3 4 5 6

Graph Theory and Geometry



Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes

The Braid and Graphic Arrangements
Parking Functions and the Shi Arrangement

Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

1 4 5 4 4

1 2 3 4 5 6
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

541 4

1 2 3 4 5 6
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◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .

111 112 122 113 123 132
121 212 131 213 231
211 221 311 312 321

◮ In particular, parking functions are invariant up to
permutation.
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .

111 112 122 113 123 132
121 212 131 213 231
211 221 311 312 321

◮ In particular, parking functions are invariant up to
permutation.

◮ The number of parking functions of length n is (n + 1)n−1.
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The Shi Arrangement

The Shi arrangement Shin ⊂ R
n consists of the 2

(

n
2

)

hyperplanes

{x ∈ R
n | x1 = x2}, {x ∈ R

n | x1 = x2 + 1},

{x ∈ R
n | x1 = x3}, {x ∈ R

n | x1 = x3 + 1},

. . .

{x ∈ R
n | xn−1 = xn}, {x ∈ R

n | xn−1 = xn + 1}.
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The Shi Arrangement

x = y+1

Shi2 x = y
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z
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y = z

x = z

x = y

y = z+1
x = z+1

x = y+1

Slice of Shi3

x+y+z = 0
by plane
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The Shi Arrangement

Theorem The number of regions in Shin is (n + 1)n−1.

(Many proofs known: Shi, Athanasiadis-Linusson, Stanley . . . )
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Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.
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Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.

◮ If xj + 1 < xi , then i scores a point.

s = (s1, . . . , sn) = score vector

(where si = number of points scored by i).
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.

◮ If xj + 1 < xi , then i scores a point.

s = (s1, . . . , sn) = score vector

(where si = number of points scored by i).

Example The score vector of x = (3.142, 2.010, 2.718) is
s = (1, 0, 1).
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.

Theorem

∑

regions R of Shin

yd(R0,R) =
∑

parking fns
(p1,...,pn)

yp1+···+pn = TKn+1(1,y)

where d = distance, R0 = base region.
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.

Theorem

∑

regions R of Shin

yd(R0,R) =
∑

parking fns
(p1,...,pn)

yp1+···+pn = TKn+1(1,y)

where d = distance, R0 = base region.

Example For n = 3: TK4(1, y) = 1 + 3y + 6y2 + 6y3.
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Simplicial Complexes

Definition An [abstract] simplicial complex is a set family

∆ ⊆ 2{1,2,...,n}

such that
if σ ∈ ∆ and σ′ ⊆ σ, then σ′ ∈ ∆.

The elements of ∆ are simplices.
The dimension of a simplex σ is |σ| − 1.

• Simplicial complexes are topological spaces, with well-defined
homology groups, Euler characteristic, . . .
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Simplicial Spanning Trees

Definition Let ∆ be a simplicial complex of dimension d .

A simplicial spanning tree (SST) is a subcomplex Υ ⊂ ∆ such
that:

1. Υ contains all simplices of ∆ of dimension < d .

2. Υ satisfies appropriate analogues of acyclicity and
connectedness (defined in terms of simplicial homology).
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Examples of SSTs

◮ If dim∆ = 1: SSTs = graph-theoretic spanning trees.
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◮ If dim∆ = 1: SSTs = graph-theoretic spanning trees.

◮ If dim∆ = 0: SSTs = vertices of ∆.
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Examples of SSTs

◮ If dim∆ = 1: SSTs = graph-theoretic spanning trees.

◮ If dim∆ = 0: SSTs = vertices of ∆.

◮ If ∆ is contractible: it has only one SST, namely itself.
◮ Contractible complexes ≈ acyclic graphs
◮ Some noncontractible complexes also qualify, notably RP

2
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Examples of SSTs

◮ If dim∆ = 1: SSTs = graph-theoretic spanning trees.

◮ If dim∆ = 0: SSTs = vertices of ∆.

◮ If ∆ is contractible: it has only one SST, namely itself.
◮ Contractible complexes ≈ acyclic graphs
◮ Some noncontractible complexes also qualify, notably RP

2

◮ If ∆ is a simplicial sphere: SSTs are ∆ \ {σ}, where σ ∈ ∆ is
any maximal face

◮ Simplicial spheres ≈ cycle graphs
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Kalai’s Theorem

Let ∆ be the d-skeleton of the n-vertex simplex, i.e.,

∆ =
{

F ⊆ {1, 2, . . . , n} | dimF ≤ d
}

and let T (∆) denote the set of SSTs of ∆.
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Kalai’s Theorem

Let ∆ be the d-skeleton of the n-vertex simplex, i.e.,

∆ =
{

F ⊆ {1, 2, . . . , n} | dimF ≤ d
}

and let T (∆) denote the set of SSTs of ∆.

Theorem [Kalai 1983]

∑

Υ∈T (∆)

|H̃d−1(Υ;Z)|2 = n

(

n−2
d

)

.
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Kalai’s Theorem

◮ Kalai’s theorem reduces to Cayley’s formula when d = 1 (i.e.,
when ∆ = Kn)

◮ Anticipated by Bolker (1976), who observed that n

(

n−2
d

)

gave
an exact count of trees for small n, d , but failed for n = 6,
d = 2 (the problem is RP2!)

◮ Adin (1992): Analogous formula for complete colorful
complexes, (generalizing known formula for complete bipartite
graphs)

◮ Duval–Klivans–JLM (2007): More general “simplicial
matrix-tree theorem” enumerating simplicial spanning trees of
many complexes, using combinatorial Laplacians

Graph Theory and Geometry



Graphs
Hyperplane Arrangements

From Graphs to Simplicial Complexes
Higher Dimensional Questions

Open Questions

Does the theory of spanning trees generalize to higher dimension?

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]

◮ Acyclic orientations: maybe

◮ The chip-firing game: doubtful

◮ Parking functions: also doubtful

◮ The Shi arrangement: ???
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