Graph Theory and Geometry

Jeremy Martin

University of Kansas
Faculty Seminar
October 12, 2010

Graphs

A graph is a pair $G=(V, E)$, where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its endpoints.

Graphs

A graph is a pair $G=(V, E)$, where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its endpoints.

C_{8}

K_{6}

G

G

Why study graphs?

- Real-world applications
- Combinatorial optimization (routing, scheduling. . .)
- Computer science (data structures, sorting, searching. . .)
- Biology (evolutionary descent. . .)
- Chemistry (molecular structure. . .)
- Engineering (roads, rigidity...)
- Network models (social networks, the Internet. . .)
- Pure mathematics
- Combinatorics (ubiquitous!)
- Discrete dynamical systems (chip-firing game...)
- Algebra (quivers, Cayley graphs. . .)
- Discrete geometry (polytopes, sphere packing. . .)

Spanning Trees

Definition A spanning tree of \mathbf{G} is a set of edges T (or a subgraph $(V, T))$ such that:

1. (V, T) is connected: every pair of vertices is joined by a path
2. (V, T) is acyclic: there are no cycles
3. $|T|=|V|-1$.

Any two of these conditions together imply the third.

Spanning Trees

G

Spanning Trees

G
T

Spanning Trees

G
T

Counting Spanning Trees

$\tau(G)=$ number of spanning trees of G

- $\tau($ tree $)=1$ (trivial)
- $\tau\left(C_{n}\right)=n$ (almost trivial)
- $\tau\left(K_{n}\right)=n^{n-2}$ (Cayley's formula; highly nontrivial!)
- Many other enumeration formulas for "nice" graphs

Deletion and Contraction

Let $e \in E(G)$.

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

G/e

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

G/e

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since $2^{|E|}$ steps must be considered)...

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since $2^{|E|}$ steps must be considered)...
- ... and cannot be used to prove nice enumerative results (like Cayley's formula)

The Matrix-Tree Theorem

$G=(V, E):$ graph with no loops (parallel edges OK)
$V=\{1,2, \ldots, n\}$

Definition The Laplacian of \mathbf{G} is the $n \times n$ matrix $L=\left[\ell_{i j}\right]$:

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -(\# \text { of edges joining } i, j) & \text { otherwise }\end{cases}
$$

- $\operatorname{rank} L=n-1$.

The Matrix-Tree Theorem

Example

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

(2) Let $1 \leq i \leq n$. Form the reduced Laplacian \tilde{L} by deleting the $i^{\text {th }}$ row and $i^{\text {th }}$ column of L. Then

$$
\tau(G)=\operatorname{det} \tilde{L}
$$

The Matrix-Tree Theorem

Example

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \tilde{L}=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Eigenvalues: 0, 1, 4, 5

$$
\operatorname{det} \tilde{L}=5
$$

$(1 \cdot 4 \cdot 5) / 4=5$

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \longleftrightarrow$ adding $i^{\text {th }}$ column of L

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \longleftrightarrow$ adding $i^{\text {th }}$ column of L
- Long-term behavior described by critical configuration

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \longleftrightarrow$ adding $i^{\text {th }}$ column of L
- Long-term behavior described by critical configuration $=$ coset of column space of \tilde{L}

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \longleftrightarrow$ adding $i^{\text {th }}$ column of L
- Long-term behavior described by critical configuration
$=$ coset of column space of \tilde{L}
= element of critical group $K(G)$

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \longleftrightarrow$ adding $i^{\text {th }}$ column of L
- Long-term behavior described by critical configuration
$=$ coset of column space of \tilde{L}
$=$ element of critical group $K(G)$

Theorem $\quad|K(G)|=\tau(G)$.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

An orientation is acyclic if it contains no directed cycles.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

An orientation is acyclic if it contains no directed cycles.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

not acyclic

acyclic

An orientation is acyclic if it contains no directed cycles.

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Theorem $\quad \alpha(G)=\alpha(G-e)+\alpha(G / e)$.

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Theorem $\quad \alpha(G)=\alpha(G-e)+\alpha(G / e)$.
(Fact: Both $\alpha(G)$ and $\tau(G)$, as well as any other invariant satisfying a deletion-contraction recurrence, can be obtained from the Tutte polynomial $T_{G}(x, y)$.)

Hyperplane Arrangements

Definition A hyperplane H in \mathbb{R}^{n} is an $(n-1)$-dimensional affine linear subspace.

Definition $\quad \mathrm{A}$ hyperplane arrangement $\mathcal{A} \subset \mathbb{R}^{n}$ is a finite collection of hyperplanes.

- $n=1$: points on a line
- $n=2$: lines on a plane
- $n=3$: planes in 3-space

$4 \square>4$ 㽞 1 ,

Counting Regions

$$
\begin{aligned}
r(\mathcal{A}) & :=\text { number of regions of } \mathcal{A} \\
& =\text { number of connected components of } \mathbb{R}^{n} \backslash \mathcal{A}
\end{aligned}
$$

Counting Regions

$$
\begin{aligned}
r(\mathcal{A}) & :=\text { number of regions of } \mathcal{A} \\
& =\text { number of connected components of } \mathbb{R}^{n} \backslash \mathcal{A}
\end{aligned}
$$

Counting Regions

$$
\begin{aligned}
r(\mathcal{A}) & :=\text { number of regions of } \mathcal{A} \\
& =\text { number of connected components of } \mathbb{R}^{n} \backslash \mathcal{A}
\end{aligned}
$$

14 regions

16 regions

Counting Regions

Example $\mathcal{A}=n$ lines in \mathbb{R}^{2}

- $2 n \leq r(\mathcal{A}) \leq 1+\binom{n+1}{2}$

Example $\mathcal{A}=n$ coordinate hyperplanes in \mathbb{R}^{n}

- Regions of $\mathcal{A}=$ orthants
- $r(\mathcal{A})=2^{n}$

The Braid Arrangement

The braid arrangement $B r_{n} \subset \mathbb{R}^{n}$ consists of the $\binom{n}{2}$ hyperplanes

$$
\begin{aligned}
& H_{12}=\left\{\mathbf{x} \in \mathbb{R}^{n}\right. \\
& H_{13}=\left\{\mathbf{x} \in \mathbb{R}^{n}\right. \\
&\left.x_{1}=x_{2}\right\}, \\
& \ldots \\
&\left.H_{n-1, n}=x_{3}\right\}, \\
& H_{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}\right. \\
&\left.x_{n-1}=x_{n}\right\} .
\end{aligned}
$$

- $\mathbb{R}^{n} \backslash B r_{n}=\left\{\mathbf{x} \in \mathbb{R}^{n} \quad \mid\right.$ all x_{i} are distinct $\}$.
- Problem: Count the regions of $B r_{n}$.

Graphic Arrangements

Let $G=(V, E)$ be a simple graph with $V=[n]=\{1, \ldots, n\}$. The graphic arrangement $\mathcal{A}_{G} \subset \mathbb{R}^{n}$ consists of the hyperplanes

$$
\left\{H_{i j}: x_{i}=x_{j} \quad \mid \quad i j \in E\right\}
$$

Graphic Arrangements

Let $G=(V, E)$ be a simple graph with $V=[n]=\{1, \ldots, n\}$. The graphic arrangement $\mathcal{A}_{G} \subset \mathbb{R}^{n}$ consists of the hyperplanes

$$
\left\{H_{i j}: x_{i}=x_{j} \quad \mid \quad i j \in E\right\} .
$$

Theorem There is a bijection between regions of \mathcal{A}_{G} and acyclic orientations of G. In particular,

$$
r\left(\mathcal{A}_{G}\right)=\alpha(G)
$$

(When $G=K_{n}$, the arrangement \mathcal{A}_{G} is the braid arrangement.)

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.

Graphic Arrangements

Theorem $r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

Graphic Arrangements

Theorem $r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

The resulting orientation is acyclic.

Graphic Arrangements

Theorem $r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

The resulting orientation is acyclic.
Corollary $\quad r\left(B r_{n}\right)=\alpha\left(K_{n}\right)=n!$.

Parking Functions

There are n parking spaces on a one-way street.

Cars $1, \ldots, n$ want to park in the spaces.

Each car has a preferred spot p_{i}.

Can all the cars park?

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Success!

1

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

- In particular, parking functions are invariant up to permutation.

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

- In particular, parking functions are invariant up to permutation.
- The number of parking functions of length n is $(n+1)^{n-1}$.

The Shi Arrangement

The Shi arrangement Shin $\subset \mathbb{R}^{n}$ consists of the $2\binom{n}{2}$ hyperplanes

$$
\begin{array}{ll}
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{2}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{2}+1\right\}, \\
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{3}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{3}+1\right\}, \\
\ldots & \\
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{n-1}=x_{n}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{n-1}=x_{n}+1\right\} .
\end{array}
$$

The Shi Arrangement

[^0]Graph Theory and Geometry

[^1]

The Shi Arrangement

Theorem The number of regions in Shin $_{n}$ is $(n+1)^{n-1}$.
(Many proofs known: Shi, Athanasiadis-Linusson, Stanley ...)

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.
$\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)=$ score vector
(where $s_{i}=$ number of points scored by i).

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.
$\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)=$ score vector
(where $s_{i}=$ number of points scored by i).
Example The score vector of $\mathbf{x}=(3.142,2.010,2.718)$ is
$\mathbf{s}=(1,0,1)$.

Score Vectors and Parking Functions

Theorem $\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shin
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Score Vectors and Parking Functions

Theorem $\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shin $_{n}$
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Theorem

$$
\sum_{\text {regions } R \text { of Shin }} y^{d\left(R_{0}, R\right)}=\sum_{\substack{\text { parking fns } \\\left(p_{1}, \ldots, p_{n}\right)}} y^{p_{1}+\cdots+p_{n}}=T_{K_{n+1}(1, y)}
$$

where $d=$ distance, $R_{0}=$ base region.

Score Vectors and Parking Functions

Theorem $\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shin $_{n}$
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Theorem

$$
\sum_{\text {regions } R \text { of } S h i_{n}} y^{d\left(R_{0}, R\right)}=\sum_{\substack{\text { parking fns } \\\left(p_{1}, \ldots, p_{n}\right)}} y^{p_{1}+\cdots+p_{n}}=T_{K_{n+1}(1, y)}
$$

where $d=$ distance, $R_{0}=$ base region.
Example For $n=3: T_{K_{4}}(1, y)=1+3 y+6 y^{2}+6 y^{3}$.

Simplicial Complexes

Definition An [abstract] simplicial complex is a set family

$$
\Delta \subseteq 2^{\{1,2, \ldots, n\}}
$$

such that

$$
\text { if } \sigma \in \Delta \text { and } \sigma^{\prime} \subseteq \sigma, \text { then } \sigma^{\prime} \in \Delta
$$

The elements of Δ are simplices.
The dimension of a simplex σ is $|\sigma|-1$.

- Simplicial complexes are topological spaces, with well-defined homology groups, Euler characteristic, ...

Simplicial Spanning Trees

Definition Let Δ be a simplicial complex of dimension d.
A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$ such that:

1. Υ contains all simplices of Δ of dimension $<d$.
2. Υ satisfies appropriate analogues of acyclicity and connectedness (defined in terms of simplicial homology).

Examples of SSTs

- If $\operatorname{dim} \Delta=1:$ SSTs = graph-theoretic spanning trees.

Examples of SSTs

- If $\operatorname{dim} \Delta=1:$ SSTs = graph-theoretic spanning trees.
- If $\operatorname{dim} \Delta=0:$ SSTs $=$ vertices of Δ.

Examples of SSTs

- If $\operatorname{dim} \Delta=1:$ SSTs $=$ graph-theoretic spanning trees.
- If $\operatorname{dim} \Delta=0:$ SSTs $=$ vertices of Δ.
- If Δ is contractible: it has only one SST, namely itself.
- Contractible complexes \approx acyclic graphs
- Some noncontractible complexes also qualify, notably $\mathbb{R P}^{2}$

Examples of SSTs

- If $\operatorname{dim} \Delta=1:$ SSTs = graph-theoretic spanning trees.
- If $\operatorname{dim} \Delta=0:$ SSTs $=$ vertices of Δ.
- If Δ is contractible: it has only one SST, namely itself.
- Contractible complexes \approx acyclic graphs
- Some noncontractible complexes also qualify, notably $\mathbb{R P}^{2}$
- If Δ is a simplicial sphere: SSTs are $\Delta \backslash\{\sigma\}$, where $\sigma \in \Delta$ is any maximal face
- Simplicial spheres \approx cycle graphs

Kalai's Theorem

Let Δ be the d-skeleton of the n-vertex simplex, i.e.,

$$
\Delta=\{F \subseteq\{1,2, \ldots, n\} \mid \operatorname{dim} F \leq d\}
$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ.

Kalai's Theorem

Let Δ be the d-skeleton of the n-vertex simplex, i.e.,

$$
\Delta=\{F \subseteq\{1,2, \ldots, n\} \quad \mid \quad \operatorname{dim} F \leq d\}
$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ.
Theorem [Kalai 1983]

$$
\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2}=n^{\binom{n-2}{d}}
$$

Kalai's Theorem

- Kalai's theorem reduces to Cayley's formula when $d=1$ (i.e., when $\Delta=K_{n}$)
- Anticipated by Bolker (1976), who observed that $n\binom{n-2}{d}$ gave an exact count of trees for small n, d, but failed for $n=6$, $d=2$ (the problem is $\mathbb{R P}^{2}!$)
- Adin (1992): Analogous formula for complete colorful complexes, (generalizing known formula for complete bipartite graphs)
- Duval-Klivans-JLM (2007): More general "simplicial matrix-tree theorem" enumerating simplicial spanning trees of many complexes, using combinatorial Laplacians

Open Questions

Does the theory of spanning trees generalize to higher dimension?

- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]
- Acyclic orientations: maybe
- The chip-firing game: doubtful
- Parking functions: also doubtful
- The Shi arrangement: ???

[^0]: 三 1
 三

[^1]: 三 1

