Graph Theory and Geometry

Jeremy Martin

University of Kansas Faculty Seminar October 12, 2010

Graph Theory and Geometry

Image: A matrix

- < ∃ →

- ∢ ⊒ ▶

Graphs	Spanning Trees
Hyperplane Arrangements	The Matrix-Tree Theorem and the Laplacian
From Graphs to Simplicial Complexes	Acyclic Orientations

Graphs

A graph is a pair G = (V, E), where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its *endpoints*.

Graphs	Spanning Trees
Hyperplane Arrangements	The Matrix-Tree Theorem and the Laplacian
From Graphs to Simplicial Complexes	Acyclic Orientations

Graphs

A graph is a pair G = (V, E), where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its *endpoints*.

A ■

Graphs	Spanning Trees
Hyperplane Arrangements	The Matrix-Tree Theorem and the Laplacian
From Graphs to Simplicial Complexes	Acyclic Orientations

G

Graph Theory and Geometry

・ロト・(四ト・(川下・(日下・(日下)

Graphs	Spanning Trees
Hyperplane Arrangements	The Matrix-Tree Theorem and the Laplacian
From Graphs to Simplicial Complexes	Acyclic Orientations

Graph Theory and Geometry

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Graphs Spanning Trees Hyperplane Arrangements From Graphs to Simplicial Complexes Acyclic Orientations

Why study graphs?

- Real-world applications
 - Combinatorial optimization (routing, scheduling...)
 - Computer science (data structures, sorting, searching...)
 - Biology (evolutionary descent...)
 - Chemistry (molecular structure...)
 - Engineering (roads, rigidity...)
 - Network models (social networks, the Internet...)
- Pure mathematics
 - Combinatorics (ubiquitous!)
 - Discrete dynamical systems (chip-firing game...)
 - Algebra (quivers, Cayley graphs...)
 - Discrete geometry (polytopes, sphere packing...)

イロト イヨト イヨト イヨト

Spanning Trees

Definition A spanning tree of **G** is a set of edges T (or a subgraph (V, T)) such that:

(V, T) is connected: every pair of vertices is joined by a path
(V, T) is acyclic: there are no cycles
|T| = |V| - 1.

Any two of these conditions together imply the third.

(ロ) (同) (E) (E) (E)

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

G

Spanning Trees

(ロ) (四) (注) (注) (注) (注)

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

> G T

Spanning Trees

Graph Theory and Geometry

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Spanning Trees

Graph Theory and Geometry

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Counting Spanning Trees

- $\tau(G) =$ number of spanning trees of G
 - τ (tree) = 1 (trivial)
 - $\tau(C_n) = n$ (almost trivial)
 - $\tau(K_n) = n^{n-2}$ (Cayley's formula; highly nontrivial!)
 - Many other enumeration formulas for "nice" graphs

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

Graph Theory and Geometry

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

- Let $e \in E(G)$.
 - ► Deletion G e: Remove e

Graph Theory and Geometry

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G e: Remove e
- Contraction G/e: Shrink e to a point

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

イロン イヨン イヨン イヨン

æ

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

イロン イヨン イヨン イヨン

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

イロト イポト イヨト イヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

イロト イポト イヨト イヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

イロト イポト イヨト イヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Let $e \in E(G)$.

- ▶ Deletion G − e: Remove e
- Contraction G/e: Shrink e to a point

Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

イロト イヨト イヨト イヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

Graph Theory and Geometry

▲□→ ▲圖→ ▲厘→ ▲厘→

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

• Therefore, we can calculate $\tau(G)$ recursively...

イロン イヨン イヨン イヨン

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Theorem $\tau(G) = \tau(G - e) + \tau(G/e)$.

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since 2^{|E|} steps must be considered)...

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Deletion and Contraction

Theorem $\tau(G) = \tau(G - e) + \tau(G/e).$

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since 2^{|E|} steps must be considered)...
- ...and cannot be used to prove nice enumerative results (like Cayley's formula)

・ロン ・回と ・ヨン

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Matrix-Tree Theorem

$$G = (V, E)$$
: graph with no loops (parallel edges OK)
 $V = \{1, 2, ..., n\}$

Definition The Laplacian of **G** is the $n \times n$ matrix $L = [\ell_{ij}]$:

$$\ell_{ij} = \begin{cases} \deg_G(i) & \text{if } i = j \\ -(\# \text{ of edges joining i,j}) & \text{otherwise.} \end{cases}$$

• rank L = n - 1.

・ロン ・回 と ・ヨン ・ヨン

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Matrix-Tree Theorem

Example

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

イロン イヨン イヨン ・

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let $0, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$\tau(G) = \frac{\lambda_1 \lambda_2 \cdots \lambda_{n-1}}{n}$$

(2) Let $1 \le i \le n$. Form the *reduced Laplacian* \tilde{L} by deleting the i^{th} row and i^{th} column of L. Then

$$au(G) = \det \widetilde{L}$$
 .

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Matrix-Tree Theorem

イロト イヨト イヨト イヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Chip-Firing Game

Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...

・ロン ・回 と ・ヨン ・ヨン

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips

・ロト ・回ト ・ヨト ・ヨト

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors

・ロト ・回ト ・ヨト ・ヨト

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \leftrightarrow$ adding i^{th} column of L

イロン イヨン イヨン イヨン

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \leftrightarrow$ adding i^{th} column of L
- Long-term behavior described by critical configuration

イロン イヨン イヨン ・

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \leftrightarrow$ adding i^{th} column of L
- Long-term behavior described by critical configuration = coset of column space of \tilde{L}

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \leftrightarrow$ adding i^{th} column of L
- ► Long-term behavior described by *critical configuration*
 - = coset of column space of \tilde{L}
 - = element of critical group K(G)

・ロト ・回ト ・ヨト ・ヨト

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

The Chip-Firing Game

- Discrete dynamical system a.k.a. "sandpile model", "dollar game", "rotor-router model", ...
- Each vertex has a finite number of chips
- A vertex "fires" by giving one chip to each of its neighbors
- Firing vertex $i \leftrightarrow$ adding i^{th} column of L
- Long-term behavior described by *critical configuration* = coset of column space of \tilde{L}
 - = element of critical group K(G)

Theorem $|K(G)| = \tau(G)$.

イロン イヨン イヨン イヨン

Acyclic Orientations

To orient a graph, place an arrow on each edge.

・ロト ・ 同ト ・ ヨト ・ ヨト

Acyclic Orientations

To orient a graph, place an arrow on each edge.

イロン イヨン イヨン イヨン

Acyclic Orientations

To orient a graph, place an arrow on each edge.

イロン イヨン イヨン イヨン

Acyclic Orientations

To orient a graph, place an arrow on each edge.

An orientation is *acyclic* if it contains no directed cycles.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

An orientation is *acyclic* if it contains no directed cycles.

Acyclic Orientations

To *orient* a graph, place an arrow on each edge.

An orientation is *acyclic* if it contains no directed cycles.

-

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Counting Acyclic Orientations

 $\alpha(G) =$ number of acyclic orientations of G

・ロン ・回と ・ヨン・

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Counting Acyclic Orientations

 $\alpha(G) =$ number of acyclic orientations of G

• α (tree with *n* vertices) = 2^{n-1}

$$\blacktriangleright \alpha(C_n) = 2^n - 2$$

•
$$\alpha(K_n) = n!$$

イロン イヨン イヨン ・

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Counting Acyclic Orientations

 $\alpha(G) =$ number of acyclic orientations of G

• α (tree with *n* vertices) = 2^{n-1}

►
$$\alpha(C_n) = 2^n - 2$$

•
$$\alpha(K_n) = n!$$

Theorem $\alpha(G) = \alpha(G - e) + \alpha(G/e).$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Spanning Trees The Matrix-Tree Theorem and the Laplacian Acyclic Orientations

Counting Acyclic Orientations

 $\alpha(G) =$ number of acyclic orientations of G

• α (tree with *n* vertices) = 2^{n-1}

►
$$\alpha(C_n) = 2^n - 2$$

•
$$\alpha(K_n) = n!$$

Theorem
$$\alpha(G) = \alpha(G - e) + \alpha(G/e).$$

(Fact: Both $\alpha(G)$ and $\tau(G)$, as well as any other invariant satisfying a deletion-contraction recurrence, can be obtained from the *Tutte polynomial* $T_G(x, y)$.)

ヘロン 人間 とくほど くほとう

Hyperplane Arrangements

Definition A hyperplane H in \mathbb{R}^n is an (n-1)-dimensional affine linear subspace.

Definition A hyperplane arrangement $\mathcal{A} \subset \mathbb{R}^n$ is a finite collection of hyperplanes.

- n = 1: points on a line
- n = 2: lines on a plane
- n = 3: planes in 3-space

イロト イポト イヨト イヨト

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

Graph Theory and Geometry

< □ > < □ > < □ > < □ > < □ > < □ > = □

Graph Theory and Geometry

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

・ロン ・回 と ・ ヨン ・ ヨン

æ

 $r(\mathcal{A}) :=$ number of regions of \mathcal{A}

= number of connected components of $\mathbb{R}^n \setminus \mathcal{A}$

・ロト ・回ト ・ヨト ・ヨト

 $r(\mathcal{A}) :=$ number of regions of \mathcal{A} = number of connected components of $\mathbb{R}^n \setminus \mathcal{A}$

・ロト ・回ト ・ヨト ・ヨト

 $r(\mathcal{A}) :=$ number of regions of \mathcal{A} = number of connected components of $\mathbb{R}^n \setminus \mathcal{A}$

Graph Theory and Geometry

Example $\mathcal{A} = n$ lines in \mathbb{R}^2

$$\triangleright 2n \leq r(\mathcal{A}) \leq 1 + \binom{n+1}{2}$$

Example $\mathcal{A} = n$ coordinate hyperplanes in \mathbb{R}^n

• Regions of
$$A =$$
orthants

•
$$r(\mathcal{A}) = 2^n$$

イロン イヨン イヨン イヨン

The Braid Arrangement

The braid arrangement $Br_n \subset \mathbb{R}^n$ consists of the $\binom{n}{2}$ hyperplanes

$$H_{12} = \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_2 \}, \\ H_{13} = \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_3 \}, \\ \dots \\ H_{n-1,n} = \{ \mathbf{x} \in \mathbb{R}^n \mid x_{n-1} = x_n \}$$

▶ $\mathbb{R}^n \setminus Br_n = \{\mathbf{x} \in \mathbb{R}^n \mid \text{all } x_i \text{ are distinct}\}.$

Problem: Count the regions of *Br_n*.

イロン イヨン イヨン ・

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

Graph Theory and Geometry

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

Let G = (V, E) be a simple graph with $V = [n] = \{1, ..., n\}$. The graphic arrangement $A_G \subset \mathbb{R}^n$ consists of the hyperplanes

$$\{H_{ij}: x_i = x_j \mid ij \in E\}$$

イロン イヨン イヨン イヨン

Let G = (V, E) be a simple graph with $V = [n] = \{1, ..., n\}$. The graphic arrangement $A_G \subset \mathbb{R}^n$ consists of the hyperplanes

$$\{H_{ij}: x_i = x_j \mid ij \in E\}.$$

Theorem There is a bijection between regions of A_G and acyclic orientations of G. In particular,

$$r(\mathcal{A}_{\mathcal{G}}) = \alpha(\mathcal{G}).$$

(When $G = K_n$, the arrangement A_G is the braid arrangement.)

・ロト ・回ト ・ヨト ・ヨト

Theorem $r(\mathcal{A}_G) = \alpha(G)$.

イロン イヨン イヨン イヨン

Theorem $r(\mathcal{A}_G) = \alpha(G)$.

Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^n \setminus \mathcal{A}_G$.

・ロン ・回 と ・ヨン ・ヨン

Theorem $r(\mathcal{A}_G) = \alpha(G)$.

Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^n \setminus \mathcal{A}_G$.

In particular, $a_i \neq a_j$ for every edge *ij*. Orient that edge as

$$\begin{cases} i \to j & \text{ if } a_i < a_j, \\ j \to i & \text{ if } a_i > a_j. \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

Theorem $r(\mathcal{A}_G) = \alpha(G)$.

Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^n \setminus \mathcal{A}_G$.

In particular, $a_i \neq a_j$ for every edge *ij*. Orient that edge as

$$\begin{cases} i \to j & \text{ if } a_i < a_j, \\ j \to i & \text{ if } a_i > a_j. \end{cases}$$

The resulting orientation is acyclic.

◆□> ◆圖> ◆国> ◆国> -

Theorem $r(\mathcal{A}_G) = \alpha(G)$.

Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^n \setminus \mathcal{A}_G$.

In particular, $a_i \neq a_j$ for every edge *ij*. Orient that edge as

$$\begin{cases} i \to j & \text{ if } a_i < a_j, \\ j \to i & \text{ if } a_i > a_j. \end{cases}$$

The resulting orientation is acyclic.

Corollary
$$r(Br_n) = \alpha(K_n) = n!.$$

◆□> ◆圖> ◆国> ◆国> -

Parking Functions

There are *n* parking spaces on a one-way street.

Cars $1, \ldots, n$ want to park in the spaces.

Each car has a preferred spot p_i .

Can all the cars park?

イロト イポト イヨト イヨト

Parking Functions

Example #1: n = 6; $(p_1, \dots, p_6) = (1, 4, 1, 5, 4, 1)$

Graph Theory and Geometry

・ロト ・同ト ・ヨト ・ヨト

Parking Functions

Graph Theory and Geometry

・ロン ・回 と ・ヨン ・ヨン

Parking Functions

Graph Theory and Geometry

イロン イヨン イヨン イヨン

Parking Functions

Example #1: n = 6; $(p_1, \ldots, p_6) = (1, 4, 1, 5, 4, 1)$

Graph Theory and Geometry

イロン イヨン イヨン イヨン

Parking Functions

Example #1: n = 6; $(p_1, \ldots, p_6) = (1, 4, 1, 5, 4, 1)$

Graph Theory and Geometry

・ロト ・ 同ト ・ ヨト ・ ヨト

Parking Functions

Example #1: n = 6; $(p_1, \ldots, p_6) = (1, 4, 1, 5, 4, 1)$

Graph Theory and Geometry

メロト メポト メヨト メヨト

Parking Functions

Example #1: n = 6; $(p_1, \ldots, p_6) = (1, 4, 1, 5, 4, 1)$

Graph Theory and Geometry

・ロト ・回ト ・ヨト ・ヨト

Parking Functions

Example #2: n = 6; $(p_1, \dots, p_6) = (1, 4, 4, 5, 4, 1)$

Graph Theory and Geometry

イロン イヨン イヨン ・

Parking Functions

Example #2: n = 6; $(p_1, \dots, p_6) = (1, 4, 4, 5, 4, 1)$

Graph Theory and Geometry

・ロン ・回 と ・ヨン ・ヨン

Parking Functions

Example #2: n = 6; $(p_1, \dots, p_6) = (1, 4, 4, 5, 4, 1)$

1 4 5 4 -----

Graph Theory and Geometry

イロン イヨン イヨン イヨン

Parking Functions

Example #2: n = 6; $(p_1, \ldots, p_6) = (1, 4, 4, 5, 4, 1)$

Graph Theory and Geometry

イロン イヨン イヨン イヨン

Parking Functions

Graph Theory and Geometry

イロン イヨン イヨン イヨン

Parking Functions

Example #2: n = 6; $(p_1, \ldots, p_6) = (1, 4, 4, 5, 4, 1)$

・ロン ・回 と ・ ヨ と ・ ヨ と …

 (p₁,..., p_n) is a parking function if and only if the ith smallest entry is ≤ i, for all i.

・ロト ・回ト ・ヨト ・ヨト

1

 (p₁,..., p_n) is a parking function if and only if the ith smallest entry is ≤ i, for all i.

.11	112	122	113	123 132
	121	212	131	213 231
	211	221	311	312 321

・ロト ・回ト ・ヨト ・ヨト

(p₁,..., p_n) is a parking function if and only if the *ith* smallest entry is ≤ *i*, for all *i*.

111	112	122	113	123 132
	121	212	131	213 231
	211	221	311	312 321

 In particular, parking functions are invariant up to permutation.

(ロ) (同) (E) (E) (E)

(p₁,..., p_n) is a parking function if and only if the *ith* smallest entry is ≤ *i*, for all *i*.

111	112	122	113	123 132
	121	212	131	213 231
	211	221	311	312 321

- In particular, parking functions are invariant up to permutation.
- The number of parking functions of length *n* is $(n+1)^{n-1}$.

(ロ) (同) (E) (E) (E)

The Shi Arrangement

The Shi arrangement $Shi_n \subset \mathbb{R}^n$ consists of the $2\binom{n}{2}$ hyperplanes

$$\{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_2 \}, \qquad \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_2 + 1 \}, \\ \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_3 \}, \qquad \{ \mathbf{x} \in \mathbb{R}^n \mid x_1 = x_3 + 1 \}, \\ \cdots \\ \{ \mathbf{x} \in \mathbb{R}^n \mid x_{n-1} = x_n \}, \qquad \{ \mathbf{x} \in \mathbb{R}^n \mid x_{n-1} = x_n + 1 \}.$$

イロト イポト イヨト イヨト

æ

Graphs Hyperplane Arrangements From Graphs to Simplicial Complexes

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

The Shi Arrangement

Graph Theory and Geometry

< □ > < □ > < □ > < □ > < □ > .

э

ヨト ヨ

ヨト ヨ

æ

The Shi Arrangement

Theorem The number of regions in Shi_n is $(n+1)^{n-1}$.

(Many proofs known: Shi, Athanasiadis-Linusson, Stanley ...)

・ロト ・回ト ・ヨト ・ヨト

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:

Graph Theory and Geometry

・ロン ・回 と ・ヨン ・ヨン

- Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:
 - If $x_i < x_j$, then j scores a point.

・ロン ・回と ・ヨン・

Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:

- If $x_i < x_j$, then *j* scores a point.
- If $x_j < x_i < x_j + 1$, then no one scores a point.

イロン イヨン イヨン イヨン

Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:

- If $x_i < x_j$, then *j* scores a point.
- If $x_j < x_i < x_j + 1$, then no one scores a point.
- If $x_j + 1 < x_i$, then *i* scores a point.

イロン イヨン イヨン イヨン

Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:

- If $x_i < x_j$, then *j* scores a point.
- If $x_j < x_i < x_j + 1$, then no one scores a point.
- If $x_j + 1 < x_i$, then *i* scores a point.
- $\mathbf{s} = (s_1, \dots, s_n) = \mathbf{score \ vector}$ (where $s_i =$ number of points scored by i).

イロン イヨン イヨン イヨン

Let $\mathbf{x} \in \mathbb{R}^n \setminus Shi_n$. For every $1 \le i < j \le n$:

- If $x_i < x_j$, then j scores a point.
- If $x_j < x_i < x_j + 1$, then no one scores a point.
- If $x_j + 1 < x_i$, then *i* scores a point.
- $\mathbf{s} = (s_1, \dots, s_n) = \mathbf{score \ vector}$ (where $s_i =$ number of points scored by i).

Example The score vector of $\mathbf{x} = (3.142, 2.010, 2.718)$ is $\mathbf{s} = (1, 0, 1)$.

<ロ> (四) (四) (三) (三) (三) (三)

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

<ロ> (四) (四) (三) (三) (三) (三)

Graphs Hyperplane Arrangements From Graphs to Simplicial Complexes

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

æ

Graphs Hyperplane Arrangements From Graphs to Simplicial Complexes

The Braid and Graphic Arrangements Parking Functions and the Shi Arrangement

Score Vectors and Parking Functions

Theorem (s_1, \ldots, s_n) is the score vector of some region of $Shi_n \iff (s_1 + 1, \ldots, s_n + 1)$ is a parking function of length n.

< 口 > < 回 > < 回 > < 回 > < 回 > <

Score Vectors and Parking Functions

Theorem (s_1, \ldots, s_n) is the score vector of some region of $Shi_n \iff (s_1 + 1, \ldots, s_n + 1)$ is a parking function of length n.

Theorem

$$\sum_{\text{regions } R \text{ of } Shi_n} y^{d(R_0,R)} = \sum_{\substack{\text{parking fns} \\ (p_1,\dots,p_n)}} y^{p_1+\dots+p_n} = T_{\mathcal{K}_{n+1}(1,y)}$$

where d = distance, $R_0 = \text{base region}$.

イロン イヨン イヨン イヨン

Score Vectors and Parking Functions

Theorem (s_1, \ldots, s_n) is the score vector of some region of $Shi_n \iff (s_1 + 1, \ldots, s_n + 1)$ is a parking function of length n.

Theorem

$$\sum_{\text{regions } R \text{ of } Shi_n} y^{d(R_0,R)} = \sum_{\substack{\text{parking fns} \\ (p_1,...,p_n)}} y^{p_1+\dots+p_n} = T_{\mathcal{K}_{n+1}(1,y)}$$

where d = distance, $R_0 = \text{base region}$.

Example For n = 3: $T_{K_4}(1, y) = 1 + 3y + 6y^2 + 6y^3$.

・ロト ・回ト ・ヨト ・ヨト

Simplicial Complexes

Definition An [abstract] simplicial complex is a set family

$$\Delta \subseteq 2^{\{1,2,\ldots,n\}}$$

such that

$$\text{if } \sigma \in \Delta \text{ and } \sigma' \subseteq \sigma, \text{ then } \sigma' \in \Delta.$$

The elements of Δ are simplices. The dimension of a simplex σ is $|\sigma| - 1$.

• Simplicial complexes are topological spaces, with well-defined homology groups, Euler characteristic, ...

イロン イヨン イヨン イヨン

Simplicial Spanning Trees

Definition Let Δ be a simplicial complex of dimension d.

A simplicial spanning tree (SST) is a subcomplex $\Upsilon \subset \Delta$ such that:

- 1. Υ contains all simplices of Δ of dimension < d.
- 2. ↑ satisfies appropriate analogues of acyclicity and connectedness (defined in terms of simplicial homology).

イロト イポト イヨト イヨト

• If dim $\Delta = 1$: SSTs = graph-theoretic spanning trees.

Graph Theory and Geometry

・ロン ・回 と ・ヨン ・ヨン

- If dim $\Delta = 1$: SSTs = graph-theoretic spanning trees.
- If dim $\Delta = 0$: SSTs = vertices of Δ .

・ロン ・回 と ・ ヨ と ・ ヨ と

- If dim $\Delta = 1$: SSTs = graph-theoretic spanning trees.
- If dim $\Delta = 0$: SSTs = vertices of Δ .
- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - ▶ Some noncontractible complexes also qualify, notably \mathbb{RP}^2

イロン イヨン イヨン ・

- If dim $\Delta = 1$: SSTs = graph-theoretic spanning trees.
- If dim $\Delta = 0$: SSTs = vertices of Δ .
- If Δ is contractible: it has only one SST, namely itself.
 - Contractible complexes \approx acyclic graphs
 - Some noncontractible complexes also qualify, notably \mathbb{RP}^2
- If Δ is a simplicial sphere: SSTs are Δ \ {σ}, where σ ∈ Δ is any maximal face
 - Simplicial spheres \approx cycle graphs

・ロト ・回ト ・ヨト ・ヨト

Kalai's Theorem

Let Δ be the *d*-skeleton of the *n*-vertex simplex, i.e.,

$$\Delta = \left\{ F \subseteq \{1, 2, \dots, n\} \mid \dim F \leq d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ .

・ロン ・回 と ・ヨン ・ヨン

Kalai's Theorem

Let Δ be the *d*-skeleton of the *n*-vertex simplex, i.e.,

$$\Delta = \left\{ F \subseteq \{1, 2, \dots, n\} \mid \dim F \leq d \right\}$$

and let $\mathcal{T}(\Delta)$ denote the set of SSTs of Δ .

Theorem [Kalai 1983]

$$\sum_{\Upsilon\in\mathcal{T}(\Delta)}|\tilde{H}_{d-1}(\Upsilon;\mathbb{Z})|^2 = n^{\binom{n-2}{d}}.$$

・ロン ・回 と ・ヨン ・ヨン

Kalai's Theorem

- Kalai's theorem reduces to Cayley's formula when d = 1 (i.e., when Δ = K_n)
- Anticipated by Bolker (1976), who observed that n⁽ⁿ⁻²⁾/_d gave an exact count of trees for small n, d, but failed for n = 6, d = 2 (the problem is ℝP²!)
- Adin (1992): Analogous formula for complete colorful complexes, (generalizing known formula for complete bipartite graphs)
- Duval–Klivans–JLM (2007): More general "simplicial matrix-tree theorem" enumerating simplicial spanning trees of many complexes, using combinatorial Laplacians

(ロ) (同) (E) (E) (E)

Open Questions

Does the theory of spanning trees generalize to higher dimension?

- Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007, extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval–Klivans–JLM 2010]
- Acyclic orientations: maybe
- The chip-firing game: doubtful
- Parking functions: also doubtful
- The Shi arrangement: ???

イロト イポト イヨト イヨト