On the Spectra of Simplicial Rook Graphs

Jeremy L. Martin (University of Kansas)
Jennifer D. Wagner (Washburn University)

FPSAC 2013
Paris, France

Preprint: arxiv:1209.3493

The Adjacency and Laplacian Matrices of a Graph

Let $G=(V, E)$ be a simple graph.

Adjacency matrix $A(G)$: rows and columns indexed by $V(G)$; with 1 s for edges, 0 s for non-edges

Laplacian matrix $L(G)$: $D-A$, where $D=$ diagonal matrix of vertex degrees

- Eigenvalues of A and L are invariants that encode connectivity, number of spanning trees, ...
- If G is regular (all vertices have the same degree), then A, L have same eigenspaces

Simplicial Rook Graphs

Definition

For $d, n \in \mathbb{N}$, consider the dilated simplex

$$
\Delta=\Delta_{n}^{d-1}=\left\{\mathbf{v}=\left(v_{1}, \ldots, v_{d}\right) \in \mathbb{R}^{d}: \sum_{i=1}^{d} v_{i}=n\right\}
$$

The simplicial rook graph $S R(d, n)$ is the graph with vertices

$$
V(d, n)=\Delta_{n}^{d-1} \cap \mathbb{N}^{d}
$$

with edges $\{\mathbf{v w}: \mathbf{v}, \mathbf{w}$ differ in exactly 2 coordinates $\}$.

- $|V(d, n)|=\binom{n+d-1}{d-1}$
- $S R(d, n)$ is regular of degree $\delta=(d-1) n$
- $S R(2, n)=K_{n+1}$

Example: $\operatorname{SR}(2,3)$ and $\operatorname{SR}(3,3)$

The Spectrum of $S R(3, n)$

Theorem (JLM-JDW 2012)

The eigenvalues of the adjacency matrix A of $S R(3, n)$ are:

$\mathbf{n}=\mathbf{2 m}+\mathbf{1}$ odd		$\mathbf{n = 2 m}$ even	
Eigenvalue	Multiplicity	Eigenvalue	Multiplicity
-3	$\binom{2 m}{2}$	-3	$\binom{2 m-1}{2}$
$-2, \ldots, m-3$	3	$-2, \ldots, m-4$	3
$m-1$	2	$m-3$	2
$m, \ldots, n-2$	3	$m-1, \ldots, n-2$	3
$2 n$	1	$2 n$	1

Note: A acts on $\mathbb{R} V$ by $A[\mathbf{v}]=\sum_{\text {neighbors } \mathbf{w} \text { of } \mathbf{v}}[\mathbf{w}]$.

Hex Vectors

When \mathbf{v} is an "interior" vertex ($v_{i}>0$ for all i), the hexagon centered at \mathbf{v} gives rise to an eigenvector with eigenvalue -3 .

Eigenvectors of $A(3, n)$

- Number of possible centers for a hexagon vector $=$ number of interior vertices in $V(3, n)=\binom{n-1}{2}$.
- The hexagon vectors are all linearly independent.
- The other $\binom{n+2}{2}-\binom{n-1}{2}=3 n$ eigenvectors are sums of characteristic vectors of lattice lines. For example:

Simplicial Rook Graphs in Arbitrary Dimension

Conjecture

The graph $\operatorname{SR}(d, n)$ is integral for all d and n.

- Experimental evidence: verified by direct calculation for

$$
\begin{array}{ll}
d=4, n \leq 25 & d=5, n \leq 15 \\
d=6, n \leq 10 & d=7, n \leq 7
\end{array}
$$

- Partial results: complete geometric description of (asymptotically) largest eigenspace

Permutohedron Vectors

Definition

A lattice permutohedron in \mathbb{R}^{d} is a set of d ! points of the form

$$
\operatorname{Per}(\mathbf{p})=\left\{\mathbf{p}+\mathbf{w}: \mathbf{w} \in \mathfrak{S}_{d}\right\}
$$

where $\mathbf{p} \in \mathbb{Z}^{d}$ and \mathfrak{S}_{d} is the set of permutations of $(1,2, \ldots, d)$.

Theorem

If $\operatorname{Per}(\mathbf{p}) \subseteq V(d, n)$, then the vector

$$
H_{\mathbf{p}}=\sum_{\mathbf{w} \in \mathfrak{S}_{d}} \operatorname{sign}(\mathbf{w})[\mathbf{p}+\mathbf{w}]
$$

is an eigenvector of A with eigenvalue $-\binom{d}{2}$.

A Lattice Permutohedron in $S R(4,6)$

Permutohedron Eigenvectors

- The vectors H_{p} are linearly independent.
- Permutohedron vectors account for "most" eigenvectors:

$$
\frac{\#\{\mathbf{p}: \operatorname{Per}(\mathbf{p}) \subset V(d, n)\}}{|V(d, n)|}=\frac{\left(\begin{array}{c}
n-\binom{d-1}{2}
\end{array}\right)}{\binom{n+d-1}{d-1}} \rightarrow 1 \quad \text { as } n \rightarrow \infty .
$$

- $-\binom{d}{2}$ is the smallest eigenvalue of $S R(d, n)$.
- In order for Δ_{n}^{d-1} to contain any lattice permutohedra, we must have $n \geq\binom{ d}{2}$.

The Case $n<\binom{d}{2}$

When $n<\binom{d}{2}$, the simplex Δ_{n}^{d-1} contains no lattice permutohedra. On the other hand, characteristic vectors of partial permutohedra are eigenvectors with eigenvalue $-n$.

The Case $n<\binom{d}{2}$

Theorem

If $n \leq\binom{ d}{2}$, then every permutation $\pi \in \mathfrak{S}_{d}$ with n inversions gives rise to an eigenvector F_{π} of $A(S R(d, n))$ with eigenvalue $-n$. Moreover, these eigenvectors are linearly independent.

- The number of F_{π} is the Mahonian number $M(d, n)=$ coefficient of q^{n} in

$$
(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{d-1}\right)
$$

- The F_{π} appear to be a complete list of lowest-weight eigenvectors.
- Construction of F_{π} uses (ordinary, non-simplicial) rook theory.

Constructing an Eigenvector F_{π}

Example: $n=3, d=4, \pi=3142 \in \mathfrak{S}_{d}$

- Let $\mathbf{a}=\left(a_{i}\right)_{i=1}^{d}$, where $a_{i}=\#\{j>i: \pi(j)<\pi(i)\}$. Here, $\mathbf{a}=(2,0,1,0)$.
- $F_{\pi}=\sum_{\sigma} \operatorname{sign}(\sigma)[\mathbf{b}-\sigma]$, where σ runs over all rook placements on the skyline board $\mathbf{b}=\mathbf{a}+(1, \ldots, d)$.

- Prove that $A(d, n)$ (equivalently, $L(d, n)$) has integral spectrum for all d, n.
- Prove that the induced subgraphs

$$
\left.S R(d, n)\right|_{V(d, n) \cap \operatorname{Per}(\mathbf{p})}
$$

also appear to be Laplacian integral for all d, n, \mathbf{p}. (Verified for $d \leq 6$.)

- Is $A(d, n)$ determined up to isomorphism by its spectrum? (We don't know.)

