On the Spectra of Simplicial Rook Graphs

Jeremy L. Martin (University of Kansas) Jennifer D. Wagner (Washburn University)

> FPSAC 2013 Paris, France

Preprint: arxiv:1209.3493

Let G = (V, E) be a simple graph.

Adjacency matrix A(G): rows and columns indexed by V(G); with 1s for edges, 0s for non-edges

Laplacian matrix L(G): D - A, where D = diagonal matrix of vertex degrees

- Eigenvalues of A and L are invariants that encode connectivity, number of spanning trees, ...
- If G is regular (all vertices have the same degree), then A, L have same eigenspaces

Simplicial Rook Graphs

Definition

For $d, n \in \mathbb{N}$, consider the dilated simplex

$$\Delta = \Delta_n^{d-1} = \{ \mathbf{v} = (v_1, \ldots, v_d) \in \mathbb{R}^d : \sum_{i=1}^d v_i = n \}.$$

The simplicial rook graph SR(d, n) is the graph with vertices

$$V(d,n) = \Delta_n^{d-1} \cap \mathbb{N}^d$$

with edges {**vw**: **v**, **w** differ in exactly 2 coordinates}.

- $|V(d,n)| = \binom{n+d-1}{d-1}$
- SR(d, n) is regular of degree $\delta = (d 1)n$
- $SR(2, n) = K_{n+1}$

Example: SR(2,3) and SR(3,3)

SR(2,3) degree 4 (= octahedron) SR(3,3) degree 6

Theorem (JLM–JDW 2012)

The eigenvalues of the adjacency matrix A of SR(3, n) are:

n = 2m + 1 odd		n = 2m even	
Eigenvalue	Multiplicity	Eigenvalue	Multiplicity
-3	$\binom{2m}{2}$	-3	$\binom{2m-1}{2}$
$-2, \ldots, m-3$	3	$-2,\ldots,m-4$	3
m-1	2	m-3	2
$m,\ldots,n-2$	3	$m-1,\ldots,n-2$	3
2 <i>n</i>	1	2 <i>n</i>	1

Note: A acts on $\mathbb{R}V$ by $A[\mathbf{v}] = \sum_{\text{neighbors } \mathbf{w} \text{ of } \mathbf{v}} [\mathbf{w}].$

Hex Vectors

When **v** is an "interior" vertex ($v_i > 0$ for all *i*), the hexagon centered at **v** gives rise to an eigenvector with eigenvalue -3.

Eigenvectors of A(3, n)

- Number of possible centers for a hexagon vector = number of interior vertices in $V(3, n) = \binom{n-1}{2}$.
- The hexagon vectors are all linearly independent.
- The other $\binom{n+2}{2} \binom{n-1}{2} = 3n$ eigenvectors are sums of characteristic vectors of lattice lines. For example:

Simplicial Rook Graphs in Arbitrary Dimension

Conjecture

The graph SR(d, n) is integral for all d and n.

• Experimental evidence: verified by direct calculation for

$$d = 4, n \le 25$$

 $d = 6, n \le 10$
 $d = 5, n \le 15$
 $d = 7, n \le 7$

 Partial results: complete geometric description of (asymptotically) largest eigenspace

Permutohedron Vectors

Definition

A lattice permutohedron in \mathbb{R}^d is a set of d! points of the form

$$\operatorname{Per}(\mathbf{p}) = \{\mathbf{p} + \mathbf{w} \colon \mathbf{w} \in \mathfrak{S}_d\}$$

where $\mathbf{p} \in \mathbb{Z}^d$ and \mathfrak{S}_d is the set of permutations of $(1, 2, \ldots, d)$.

Theorem

If $Per(\mathbf{p}) \subseteq V(d, n)$, then the vector

$$H_{\mathbf{p}} = \sum_{\mathbf{w} \in \mathfrak{S}_d} sign(\mathbf{w})[\mathbf{p} + \mathbf{w}]$$

is an eigenvector of A with eigenvalue $-\binom{d}{2}$.

A Lattice Permutohedron in SR(4, 6)

Permutohedron Eigenvectors

- The vectors $H_{\mathbf{p}}$ are linearly independent.
- Permutohedron vectors account for "most" eigenvectors:

$$\frac{\#\{\mathbf{p}\colon \operatorname{Per}(\mathbf{p})\subset V(d,n)\}}{|V(d,n)|}=\frac{\binom{n-\binom{d-1}{2}}{d-1}}{\binom{n+d-1}{d-1}}\to 1 \quad \text{as } n\to\infty.$$

- $-\binom{d}{2}$ is the smallest eigenvalue of SR(d, n).
- In order for Δ_n^{d-1} to contain any lattice permutohedra, we must have $n \ge {d \choose 2}$.

The Case $n < \binom{d}{2}$

When $n < \binom{d}{2}$, the simplex Δ_n^{d-1} contains no lattice permutohedra. On the other hand, characteristic vectors of **partial permutohedra** are eigenvectors with eigenvalue -n.

Theorem

If $n \leq \binom{d}{2}$, then every permutation $\pi \in \mathfrak{S}_d$ with n inversions gives rise to an eigenvector F_{π} of A(SR(d, n)) with eigenvalue -n. Moreover, these eigenvectors are linearly independent.

• The number of F_{π} is the Mahonian number M(d, n) = coefficient of q^n in

$$(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{d-1}).$$

- The F_{π} appear to be a complete list of lowest-weight eigenvectors.
- Construction of F_{π} uses (ordinary, non-simplicial) rook theory.

Constructing an Eigenvector F_{π}

Example: $n = 3, d = 4, \pi = 3142 \in \mathfrak{S}_d$

- Let $\mathbf{a} = (a_i)_{i=1}^d$, where $a_i = \#\{j > i \colon \pi(j) < \pi(i)\}$. Here, $\mathbf{a} = (2, 0, 1, 0)$.
- $F_{\pi} = \sum_{\sigma} \operatorname{sign}(\sigma)[\mathbf{b} \sigma]$, where σ runs over all rook placements on the skyline board $\mathbf{b} = \mathbf{a} + (1, \dots, d)$.

- Prove that A(d, n) (equivalently, L(d, n)) has integral spectrum for all d, n.
- Prove that the induced subgraphs

 $SR(d, n)|_{V(d,n)\cap \operatorname{Per}(\mathbf{p})}$

also appear to be Laplacian integral for all d, n, \mathbf{p} . (Verified for $d \leq 6$.)

 Is A(d, n) determined up to isomorphism by its spectrum? (We don't know.)