Cuts and Flows in Cell Complexes

Art M. Duval (University of Texas, El Paso)
Caroline J. Klivans (Brown University) Jeremy L. Martin (University of Kansas)

FPSAC/SFCA 25
Paris, June 27, 2013
Preprint: arXiv:1206.6157

The Incidence Matrix

$G=(V, E):$ connected, loopless graph

Orient each edge e by labeling its endpoints head and tail.

Signed incidence matrix $\partial=\left[\partial_{v e}\right]_{v \in V, e \in E}$:

$$
\partial_{v e}= \begin{cases}1 & \text { if } v=\operatorname{head}(e) \\ -1 & \text { if } v=\operatorname{tail}(e) \\ 0 & \text { otherwise }\end{cases}
$$

Cut and Flow Spaces

Definition

The cut space and flow space of G are

$$
\operatorname{Cut}(G)=\operatorname{im} \partial^{*} \subseteq \mathbb{R}^{E}, \quad \operatorname{Flow}(G)=\operatorname{ker} \partial \subseteq \mathbb{R}^{E}
$$

- Flow vectors $\phi=\left(\phi_{e}\right)_{e \in E}$ are defined by the condition

$$
\sum_{e: v=\operatorname{head}(e)} \phi_{e}-\sum_{e: v=\operatorname{tail}(e)} \phi_{e}=0 \quad \forall v \in V
$$

- Typical cut vector χ : fix a partition $V=X \uplus Y$ and define

$$
\chi_{e}= \begin{cases}1 & \text { if head }(e) \in X \text { and } \operatorname{tail}(e) \in Y \\ -1 & \text { if head }(e) \in Y \text { and } \operatorname{tail}(e) \in X \\ 0 & \text { otherwise }\end{cases}
$$

Cut and Flow Spaces and Lattices

- The flow and cut spaces are orthogonal complements in \mathbb{R}^{E}. $\operatorname{dim} \operatorname{Flow}(G)=|E|-|V|+1$ and $\operatorname{dim} \operatorname{Cut}(G)=|V|-1$.

Fix a spanning tree T.

- For each edge $e \notin T$, there is a unique cycle in $T \cup e$. The characteristic vectors of all such cycles form a basis for $\operatorname{Flow}(G)$.
- For each edge $e \in T$, the graph with edges $T \backslash e$ has two components. The corresponding cut vectors form a basis for Cut(G).
- These bases are in fact \mathbb{Z}-module bases for the cut lattice $\mathcal{C}(G)=\operatorname{Cut}(G) \cap \mathbb{Z}^{E}$ and the flow lattice $\mathcal{F}(G)=\operatorname{Flow}(G) \cap \mathbb{Z}^{E}$.

The Laplacian and the Critical Group

Laplacian matrix: $L=\partial \partial^{*}=\left[\ell_{x y}\right]_{x, y \in V}$

$$
\ell_{x y}=\left\{\begin{array}{cl}
\mid\{\text { edges incident to } x\} \mid & \text { if } x=y \\
-\mid\{\text { edges joining } x, y\} \mid & \text { if } x \neq y
\end{array}\right.
$$

Definition

The critical group $K(G)$ is the torsion summand of coker $L:=\mathbb{Z}^{n} / \operatorname{im} L$. Alternately, if \tilde{L}_{i} is the reduced Laplacian obtained from L by deleting the $i^{\text {th }}$ row and column, then $K(G)=\operatorname{coker} \tilde{L}$.

By the Matrix-Tree Theorem, $|K(G)|$ is the number of spanning trees of G.

Cuts, Flows and The Critical Group

The dual of a lattice $\mathcal{L} \subseteq \mathbb{Z}^{n}$ is $\mathcal{L}^{\sharp}=\{w \in \mathcal{L} \otimes \mathbb{R} \mid v \cdot w \in \mathbb{Z} \quad \forall v \in \mathcal{L}\}$.

Theorem (Bacher, de la Harpe, Nagnibeda)

For every graph G, there are isomorphisms

$$
K(G) \cong \mathcal{F}^{\sharp} / \mathcal{F} \cong \mathcal{C}^{\sharp} / \mathcal{C} \cong \mathbb{Z}^{E} /(\mathcal{C} \oplus \mathcal{F})
$$

- Chip-firing game: elements of critical group correspond to long-term behaviors of the chip-firing game/sandpile model
- Tutte polynomial / G-parking functions
- Graph : Riemann surface :: Critical group : Picard group (BdIHN, Baker-Norine)

Example: $G=K_{3}$

3

Flow lattice

$$
\begin{aligned}
\mathcal{F} & =\operatorname{ker} \partial=\langle(1,-1,1)\rangle \\
\mathcal{F}^{\sharp} & =\left\langle\left(\frac{1}{3},-\frac{1}{3}, \frac{1}{3}\right)\right\rangle
\end{aligned}
$$

$$
\mathcal{C}=\operatorname{im} \partial^{*}=\langle(1,0,-1),(0,1,1)\rangle
$$

$$
\mathcal{C}^{\sharp}=\left\langle\left(\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)\right\rangle
$$

Note: $\mathcal{F}^{\sharp} / \mathcal{F}=\mathcal{C}^{\sharp} / \mathcal{C}=\mathbb{Z}^{3} /(\mathcal{C} \oplus \mathcal{F})=K(G)=\mathbb{Z} / 3 \mathbb{Z}$

Cell Complexes

Cell complexes are higher-dimensional generalizations of graphs (like simplicial complexes, but even more general).

Examples: graphs, simplicial complexes, polytopes, polyhedral fans, ...
Rough definition: A cell complex X consists of cells (homeomorphic copies of \mathbb{R}^{k} for various k) together with attaching maps

$$
\partial_{k}(X): C_{k}(X) \rightarrow C_{k-1}(X)
$$

where $C_{k}(X)=$ free \mathbb{Z}-module generated by k-dimensional cells. (Note: $\partial_{k} \partial_{k+1}=0$ for all k.) The integer $\partial_{k}(X)_{\rho, \sigma}$ specifies the multiplicity with which the k-cell σ is attached to the $(k-1)$-cell ρ.

Notation: $X_{(k)}=k$-skeleton of X (union of all cells of dimension $\leq k$)

The Cellular Critical Group

Definition

The critical group of X^{d} is $K(X)=\operatorname{ker} \partial_{d-1} / \operatorname{im} \partial_{d} \partial_{d}^{*}$.

Fact: $K(X)$ is finite abelian of order $\tau(X)$, and can also be expressed in terms of the reduced Laplacian [DKM '11]

Questions:

- Can we interpret $K(X)$ in terms of cuts and flows?
- Is there a cellular chip-firing game for which elements of $K(X)$ correspond to critical states?
- Further discrete analogues of graphical Riemann-Roch?

Cellular Cuts and Flows

Definition

The cut and flow spaces of X are $\operatorname{Cut}(X)=\operatorname{im} \partial^{*}$ and $\operatorname{Flow}(X)=\operatorname{ker} \partial$ (considered as vector spaces over \mathbb{R}). The cut and flow lattices are $\mathcal{C}(X)=\operatorname{im} \partial^{*}$ and $\mathcal{F}(X)=\operatorname{ker} \partial$ (considered as \mathbb{Z}-modules).

Theorem (DKM)

Fix a cellular spanning tree $Y \subset X$.
(1) There are natural bases of $\operatorname{Cut}(X)$ and Flow (X) indexed by the d-cells contained / not contained in Y.
(2) The basis element corresponding to a d-cell σ is supported on the fundamental cocircuit / circuit of σ w.r.t. Y, and the coefficients are the cardinalities of certain (relative) homology groups.
(3) Under certain conditions on $\tilde{H}_{d-1}(Y)$, these are \mathbb{Z}-module bases for \mathcal{C} and \mathcal{F}.

Cellular Cuts and Flows

Question

Do the Bacher-de la Harpe-Nagnibeda isomorphisms

$$
K(G) \cong \mathcal{F}^{\sharp} / \mathcal{F} \cong \mathcal{C}^{\sharp} / \mathcal{C} \cong \mathbb{Z}^{n} /(\mathcal{C} \oplus \mathcal{F})
$$

still hold if the graph G is replaced with an arbitrary cell complex?

Answer: Not quite.

Cellular Cuts and Flows

Example: $X=\mathbb{R} P^{2}$: cell complex with one vertex, one edge, and one 2-cell, and cellular chain complex

$$
C_{2}=\mathbb{Z} \xrightarrow{\partial_{2}=[2]} C_{1}=\mathbb{Z} \xrightarrow{\left[\partial_{1}=0\right]} C_{0}=\mathbb{Z}
$$

$$
\begin{array}{rlrl}
\mathcal{C} & =\operatorname{im} \partial_{2}^{*}=2 \mathbb{Z} & \mathcal{F}=\operatorname{ker} \partial_{2}=0 \quad \mathbb{Z} /(\mathcal{C} \oplus \mathcal{F})=\mathbb{Z} / 2 \mathbb{Z} \\
\mathcal{C}^{\sharp} & =\frac{1}{2} \mathbb{Z} & \mathcal{F}^{\sharp} / \mathcal{F}=0 \\
\mathcal{C}^{\sharp} / \mathcal{C} & =\mathbb{Z} / 4 \mathbb{Z} & & \\
K(X) & =\operatorname{ker} \partial_{1} / \operatorname{im} \partial_{2} \partial_{2}^{*}=\mathbb{Z} / 4 \mathbb{Z} & &
\end{array}
$$

The problem is torsion (which doesn't show up in graphs). Note: $\tilde{H}_{2}(X)=0 ; \tilde{H}_{1}(X)=\mathbb{Z} / 2 \mathbb{Z} ; \tilde{H}_{0}(X)=0$.
(For a connected graph $G: \tilde{H}_{1}(G)=\mathbb{Z}^{|E|-|V|+1}, \tilde{H}_{0}(G)=0$.)

The Main Theorem

Theorem (DKM)

For any cell complex X, there are short exact sequences

$$
0 \rightarrow \mathbb{Z}^{n} /(\mathcal{C} \oplus \mathcal{F}) \rightarrow K(X) \cong \mathcal{C}^{\sharp} / \mathcal{C} \rightarrow \mathbf{T}\left(\tilde{H}_{d-1}(X)\right) \rightarrow 0
$$

and

$$
0 \rightarrow \mathbf{T}\left(\tilde{H}_{d-1}(X)\right) \rightarrow \mathbb{Z}^{n} /(\mathcal{C} \oplus \mathcal{F}) \rightarrow K^{*}(X) \cong \mathcal{F}^{\sharp} / \mathcal{F} \rightarrow 0
$$

Brief algebra review: " $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence" is equivalent to " $C \cong B / A$."
$\mathbf{T}(A)$ means the torsion summand of A.
Methods: Lots of homological algebra

Cellular Cuts and Flows

What's this thing called $K^{*}(X)$?
Cocritical group: First, construct an "acyclization" Ω of X by adjoining $(d+1)$-cells so as to eliminate all d-homology.
Then, define $K^{*}(X)=C_{d+1}(\Omega ; \mathbb{Z}) / \operatorname{im} \partial_{d+1}^{*} \partial_{d+1}=\operatorname{coker} L_{d+1}^{\mathrm{du}}(\Omega)$. PROBABLY NEED AN EXAMPLE.
(Compare: $K(X)=\operatorname{ker} \partial_{d-1} / \operatorname{im} L_{d-1}^{\mathrm{ud}}$.)

Ongoing/Future Work

Chip-firing/sandpiles/Riemann-Roch theory in higher dimension (connections to Baker-Norine; combinatorial commutative algebra connection (Hopkins/Perkinson/Wilmes, Dochtermann-Sanyal, Mohammadi-Shokrieh, etc.)
Max-flow/min-cut

