The Incidence Hopf Algebra of Graphs

Brandon Humpert bhumpert@math.ku.edu Jeremy L. Martin jmartin@math.ku.edu University of Kansas

FPSAC 2011
Reykjavik, Iceland

Full article: arXiv:1012.4786

Hopf Algebras

A (graded, connected) Hopf algebra \mathcal{H} is a graded \mathbb{C}-algebra $\mathcal{H}=\bigoplus_{n \geq 0} \mathcal{H}_{n}$, with $\mathcal{H}_{0}=\mathbb{C}$, and maps

$$
\begin{aligned}
\epsilon: \mathcal{H} & \rightarrow \mathbb{C} \\
\Delta: \mathcal{H}_{n} & \rightarrow \bigoplus \mathcal{H}_{k} \otimes \mathcal{H}_{n-k}
\end{aligned}
$$

satisfying various algebraic properties (e.g., coassociativity).

Idea

Comultiplication records decompositions of a combinatorial object into two pieces.

The Graph Hopf Algebra

The graph Hopf algebra is $\mathcal{G}=\bigoplus_{n \geq 0} \mathcal{G}_{n}$, where $\mathcal{G}_{n}=\mathbb{C}$-span of isomorphism classes [G] of simple graphs on n vertices, with multiplication $[G][H]=[G \cup H]$ and comultiplication

$$
\begin{aligned}
\Delta(G) & =\left.\left.\sum_{X \subseteq V(G)} G\right|_{X} \otimes G\right|_{X} \\
\Delta^{k-1}(G) & =\left.\left.\sum_{V(G)=X_{1} \cup \cdots \cup X_{k}} G\right|_{X_{1}} \otimes \cdots \otimes G\right|_{X_{k}}
\end{aligned}
$$

Properties of the Graph Hopf Algebra

■ The multiplicative unit in \mathcal{G} is K_{0} (the graph with no vertices).

- The counit is

$$
\epsilon(G)= \begin{cases}1 & \text { if } G=K_{0} \\ 0 & \text { if } G \neq K_{0}\end{cases}
$$

$\square \mathcal{G}$ is cocommutative $-\Delta(G)$ is unchanged by flipping all tensors
$■ \mathcal{G}$ is an incidence Hopf algebra [IHA] in the sense of Schmitt [1994] (prototype: Rota's Hopf algebra of graded posets)

Characters

A character on \mathcal{G} is a \mathbb{C}-linear function $\phi: \mathcal{G} \rightarrow \mathbb{C}$ that is multiplicative on connected components and has $\phi\left(K_{0}\right)=1$.

Definition (Convolution Product of Characters)

$$
(\phi * \psi)(h)=\sum \phi\left(h_{1}\right) \psi\left(h_{2}\right)
$$

where $\Delta(h)=\sum h_{1} \otimes h_{2}$.

- Characters form a group under convolution.

■ The counit ϵ is the identity: $\epsilon * \phi=\phi=\phi * \epsilon$.

Graph Invariants from Characters

Fact

For every character ϕ and element $h \in \mathcal{H}$, the function

$$
k \in \mathbb{Z} \mapsto P_{\phi, h}(k)=\phi^{k}(h)=\underbrace{(\phi * \cdots * \phi)}_{k \text { times }}(h)
$$

is a polynomial in k.

Idea

Use the Hopf algebra structure of \mathcal{G} to study polynomial invariants of graphs that arise from characters in this way.

Example: The Chromatic Polynomial

Define the character ζ on \mathcal{G} by

$$
\zeta(G)= \begin{cases}1 & \text { if } G \text { has no edges } \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
P_{\zeta, G}(k)=\zeta^{k}(G) & =\sum_{V(G)=X_{1} \cup \cdots \cup X_{k}} \zeta\left(\left.G\right|_{X_{1}}\right) \cdots \zeta\left(\left.G\right|_{X_{k}}\right) \\
& =\text { number of proper } k \text {-colorings of } G \\
& =\text { chromatic polynomial of } G
\end{aligned}
$$

The Antipode

Every graded connected Hopf algebra has a unique antipode: an automorphism $S: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
\begin{aligned}
S(h)=h & \text { for } h \in \mathcal{H}_{0}, \\
(m \circ(S \otimes I d) \circ \Delta)(h)=0 & \text { for } h \in \mathcal{H}_{n}, n>0 .
\end{aligned}
$$

(These formulas allow S to be calculated recursively, like the Möbius function of a poset.)

Fact

The convolution inverse of a character ϕ is $\phi^{-1}=\phi \circ S$.

A Classic Antipode Formula

Theorem (Schmitt 1994)

$$
S(G)=\sum_{\pi \in \mathcal{P}(G)}(-1)^{|\pi|}|\pi|!G_{\pi}
$$

where: $\mathcal{P}(G)=$ ordered partitions of $V(G)$ into nonempty blocks $G_{\pi}=$ disjoint union of induced subgraphs on blocks of π

■ Follows from Schmitt's general antipode formula for any IHA
■ Not cancellation-free - different π 's can have the same G_{π}

- Takeuchi (1971) had given an antipode formula for connected (not necessarily graded) Hopf algebras

A New Antipode Formula

Theorem (Humpert-Martin 2010)

$$
S(G)=\sum_{F \in \mathcal{F}(G)}(-1)^{n-\mathrm{rk}(F)} a(G / F) G_{V, F}
$$

where: $\mathcal{F}(G)=$ flats of graphic matroid M_{G} of G

$$
\mathrm{rk}=\text { rank }=\text { largest acyclic subset }
$$

$a=$ number of acyclic orientations

■ Bad news: Specific to \mathcal{G} (does not generalize to other IHAs)
■ Good news: Cancellation-free - handy for calculations
■ Aguiar-Ardila (unpublished): more general version in the context of Hopf monoids

The Tutte and Rank-Nullity Polynomials

The Tutte polynomial and rank-nullity polynomial of a graph G are defined by

$$
\begin{aligned}
& T_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{\mathrm{rk}(G)-\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)} \\
& R_{G}(x, y)=\sum_{A \subseteq E(G)}(x-1)^{\mathrm{rk}(A)}(y-1)^{|A|-\mathrm{rk}(A)}
\end{aligned}
$$

■ Every graph invariant satisfying a deletion/contraction recurrence (spanning trees, acyclic orientations, chromatic polynomial, ...) is an evaluation of T_{G} (essentially).

Convolution Powers of the Rank Character

The Tutte and rank-nullity polynomials give characters on \mathcal{G} :

$$
\tau_{x, y}(G)=T_{G}(x, y), \quad \rho_{x, y}(G)=R_{G}(x, y)
$$

Theorem (Humpert-Martin 2010)

$$
\rho_{x, y}^{k}(G)=P_{x, y}(G ; k)=k^{n-\operatorname{rk}(G)}(x-1)^{\mathrm{rk}(G)} T_{G}\left(\frac{k+x-1}{x-1}, y\right)
$$

Applications

Specializing x, y and k yields formulas like

$$
\begin{aligned}
\left(\widetilde{\tau_{0, y}}\right)^{-1} & =\overline{\tau_{2, y}} \\
\left(\tau_{2, y}\right)^{k}(G) & =k^{c(G)} T_{G}(k+1, y) \\
\left(\widetilde{\tau_{0, y}}\right)^{k}(G) & =k^{c(G)}(-1)^{r k(G)} T_{G}(1-k, y)
\end{aligned}
$$

where $\bar{\phi}=(-1)^{n} \phi$ and $\tilde{\phi}=(-1)^{\mathrm{rk}} \phi$.

Other consequences include
■ the expression for the chromatic polynomial in terms of T_{G}
■ Stanley's formula $a(G)=\left|\chi_{G}(-1)\right|$

A Combinatorial Interpretation of $T_{G}(3,2)$

Corollary
If G is connected, then

$$
\begin{aligned}
T(G ; 3,2) & =\frac{\left(\tau_{2,2} * \tau_{2,2}\right)(G)}{2}=\sum_{x \subseteq V(G)} 2^{e\left(\left.G\right|_{X}\right)+e\left(\left.G\right|_{\bar{X}}\right)-1} \\
& =\#\left\{\begin{array}{c}
\text { pairs }(f, A), \text { where } f \text { is a 2-coloring of } G \\
\text { and } A \text { is a set of monochromatic edges }
\end{array}\right\} .
\end{aligned}
$$

(Proof: Set $x=y=k=2$.)

A Curious (?) Reciprocity Relation

Theorem (Humpert-Martin 2010)

Define the character $\mathbf{1}$ by $\mathbf{1}(G)=1$ for all G. Then

$$
\left(1 * \zeta^{n}\right)\left(K_{m}\right)=\left(1 * \zeta^{m}\right)\left(K_{n}\right)
$$

■ Idea: $\mathbf{1} * \zeta^{n}$ counts "near-colorings" of G, in which one color class need not be a coclique. The expression for $\left(1 * \zeta^{n}\right)\left(K_{m}\right)$ is symmetric in m and n.

- Conjecture:
$\left(1 * \zeta^{-1}\right)\left(K_{n}\right)=(-1)^{n} \times$ number of derangements of $[n]$.
■ Enumeration of "generalized derangements" via characters?

