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Cellular Trees

X pure cell complex (= CW complex) of dimension d
∂k cellular boundary map ∂k : Ck(X )→ Ck−1(X )

Tree in X: T = Td ∪ Skeld−1(X ) where Td = column basis of ∂d

I Hd(T ;Q) = 0

I Hd−1(T ;Q) = Hd−1(X ;Q)

Tk(X) = set of all k-trees in X = trees in Skelk(X )

Examples:

I T1(X ) = {spanning forests of 1-skeleton graph}
I T0(X ) = {individual vertices}
I Td(X ∼= Sd) = {X − σ : σ a facet}
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Counting Cellular Trees

Assume H̃k−1(X ;Q) = 0 (analogue of connectedness).

Tree count:
τk(X ) =

∑
T∈Tk (X )

|H̃k−1(T ;Z)|2.

Weighted tree count: Assign each σ ∈ X a monomial weight qσ.

τk(X ; q) =
∑

T∈Tk (X )

|H̃k−1(T ;Z)|2
∏
σ∈T

qσ
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Counting Cellular Trees

Cellular matrix-tree theorem: expresses τk(X ), τk(X ; q) in terms
of eigenvalues/cokernels of combinatorial Laplacians ∂k∂

tr
k .

I Bolker ’78: first studied simplicial spanning trees

I Kalai ’83: homology-squared weighting; skeletons of simplices

I Adin ’92: complete colorful complexes

I Duval–Klivans–JLM; Lyons; Catanzaro–Chernyak–Klein:
general formulations

The cellular matrix-tree theorem can be restated in terms of
pseudodeterminants.



Trees in Cell Complexes Perfect Square Phenomena Even-Dimensional Balls

Pseudodeterminants

The cellular matrix-tree theorem can be restated in terms of
pseudodeterminants. What’s a pseudodeterminant?

Let L ∈ Zn×n, not necessarily of full rank; eigenvalues λ1, . . . , λn.

Pseudodeterminant pdet(L): last nonzero coefficient of
characteristic polynomial = coefficient of tn−rank L.

pdet L =
∏
λi 6=0

λi =
∑

I⊆[n]: |I |=rank L

det LI ,I

(So pdet L = det L if L is of full rank.)
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Counting Trees with Pseudodeterminants

Cellular Matrix-Tree Theorem, Pseudodeterminant Version:
Let Lud

k = ∂k∂
tr
k , the (k − 1)th updown Laplacian of X . (This is a

linear operator on Ck−1(X ).) Then

pdet Lud
k = τk(X )τk−1(X ).

Classical matrix-tree theorem: G graph, L = Lud
0 (G ).

# spanning trees =
product of nonzero eigenvalues of L

number of vertices

τ1(G ) = pdet L / τ0(G )
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Pseudodeterminants and (Skew)-Symmetry

Proposition

Let ∂ ∈ Zn×n be either symmetric or skew-symmetric. Then:

1. pdet(∂∂tr ) = (pdet ∂)2.
2. All principal minors ∂I ,I have the same sign, so

pdet ∂ = ±
∑
I

| coker ∂I ,I | (F)

where I ranges over all row bases of ∂.

Question
What topological setup will give (F) combinatorial meaning?
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Perfect Square Phenomena in Spanning Tree Counts

Tutte: G planar; G ∼= G ∗ from antipodal map on S2 =⇒

τ(G ) = (number of self-dual spanning trees)2.
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Question
Are there analogous perfect-square phenomena for
higher-dimensional self-dual cell complexes?
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Even-Dimensional Spheres: Maxwell’s Theorem

Theorem (Maxwell ’09)

Let k be odd. Let X be an antipodally self-dual cellular S2k with
at least one Z-acyclic self-dual tree. Then

∑
T∈Tk (X )

|H̃k−1(T ;Z)|2

︸ ︷︷ ︸
τk (X )

=

 ∑
T∈Tk (X )
T self-dual

|H̃k−1(T ;Z)|


2

.

What about odd-dimensional antipodally self-dual spheres?

I dim = 2k : involution on k-dimensional faces

I dim = 2k + 1: pairing between k- and (k + 1)-dim’l faces
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Self-Dual Cell Complexes

Self-dual d-ball: regular cell complex B ∼= Bd , with an
anti-automorphism α of its face poset:

σ ⊆ τ ⇐⇒ α(σ) ⊇ α(τ).

Self-dual (d − 1)-sphere: S = ∂B ∼= Sd−1.

Example: B = simplex on vertex set V ; α(σ) = V \ σ

Example: Self-dual polytopes (polygons in R2; pyramids over
polygons in R3; the 24-cell in R4; . . . )
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Tree Counts in Self-Dual Complexes

Proposition

Let B be a self-dual cellular Bd and j + k = d − 1.
Then τj(B) = τk(B).

Proof sketch.
For T ∈ Tj(B), consider the Alexander dual

T∨ = {σ ∈ B : α(σ) 6∈ T}.

Then
Tj(B) = {T∨ : T ∈ Tk(B)}

and
Hj−1(T ;Z) ∼= Hk−1(T∨;Z).
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Perfect Square Phenomenon for Even-Dimensional Balls

Let B ∼= B2k be self-dual and let ∂ = ∂k(B). Then

τk−1(B) = τk(B)

and the pseudodeterminant version of the CMTT says that

pdet(∂∂tr ) = τk−1(X )τk(X ) = τk(X )2.

Repeat Question: What additional structure will enable

pdet ∂ = ±
∑
I

| coker ∂I ,I | (F)

to carry combinatorial meaning?
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Antipodally Self-Dual Complexes

Definition: A self-dual cellular d-ball (B, α) is antipodally
self-dual if α arises from the antipodal map on ∂B ∼= Sd−1.

Non−antipodal self−dualityAntipodal self−duality

Technical details: explicit orientations, dual block complex,
Poincaré duality. . .
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Antipodal Self-Duality and Orientations

Proposition (Very Technical!)

Let B be an antipodally self-dual cellular (2k)-ball. Then B can be
oriented so that the middle boundary matrix ∂k satisfies

∂tr = (−1)k∂.

Example

If B is the simplex on vertices [2k + 1], then start with the
“textbook” orientation and reorient:

σ = {v0, . . . , vk} ∈ Bk 7→ (−1)
∑

viσ.
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Antipodally Self-Dual Even-Dimensional Balls

Proposition

Let B ∼= B2k be antipodally self-dual. Then B can be oriented so
that the middle boundary matrix ∂ = ∂k satisfies

∂tr = (−1)k∂.

Theorem
Let B ∼= B2k be antipodally self-dual and write τi = τi (B). Then

τk = τk−1 = pdet ∂ =
F

∑
I

| coker ∂I ,I | =
∑

T∈Tk (S)

|Hk(T ,T∨;Z)|.

(There is also a q-analogue.)
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Open Questions

1. What about antipodally self-dual Bd with d ≡ 1 (mod 4)?

I d ≡ 3 (mod 4): Maxwell

I d ≡ 0, 2 (mod 4): this work

2. Any hope of bijective proofs?

I E.g., higher-dimensional Prüfer code, Joyal bijection, . . .
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Thanks for listening!
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Appendix A: The Weighted CMTTPV

Weighted Cellular Matrix-Tree Theorem, Pdet Version

Ingredients:

S cell complex of dimension ≥ k ∂ = ∂k
x = (xi ) variables indexing (k − 1)-cells X = diag(x)
y = (yi ) variables indexing k-cells Y = diag(y)

Formula:

pdet(X 1/2 · ∂ · Z · ∂tr · Y 1/2) = τk(S ; y) τk−1(S ; z−1).

Setting yi = zi = 1 recovers the unweighted formula.
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Appendix B: A Little Linear Algebra

∂: matrix of rank r
I , I ′: sets of r rows
J, J ′: sets of r columns

Useful Fact 1 (“The Minor Miracle”)
I and J are a row basis and a column basis respectively if and
only if det ∂I ,J 6= 0.

Useful Fact 2

det ∂I ,J det ∂I ′,J′ = det ∂I ,J′ det ∂I ′,J .

Important consequences for matrices that are (skew-)symmetric!
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Appendix C: Explicit Reorientation of Simplices



123 124 125 134 135 145 234 235 245 345

45 0 0 0 0 0 − 0 0 − −
35 0 0 0 0 − 0 0 − 0 +
34 0 0 0 − 0 0 − 0 0 −
25 0 0 − 0 0 0 0 + + 0
24 0 − 0 0 0 0 − 0 − 0
23 − 0 0 0 0 0 − − 0 0
15 0 0 + 0 + + 0 0 0 0
14 0 + 0 + 0 − 0 0 0 0
13 + 0 0 − − 0 0 0 0 0
12 − − − 0 0 0 0 0 0 0


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Appendix C: Explicit Reorientation of Simplices



123 124 125 134 135 145 234 235 245 345

45 0 0 0 0 0 − 0 0 + −
35 0 0 0 0 + 0 0 − 0 +
34 0 0 0 − 0 0 + 0 0 −
25 0 0 − 0 0 0 0 + − 0
24 0 + 0 0 0 0 + 0 + 0
23 − 0 0 0 0 0 + − 0 0
15 0 0 + 0 − + 0 0 0 0
14 0 − 0 + 0 − 0 0 0 0
13 + 0 0 − + 0 0 0 0 0
12 − + − 0 0 0 0 0 0 0


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