Pseudodeterminants and perfect square spanning tree counts

Jeremy L. Martin (University of Kansas) Molly Maxwell (Flathead Valley Community College) Victor Reiner (University of Minnesota) Scott O. Wilson (Queens College)

> AMS Central Sectional Meeting University of Wisconsin, Eau Claire September 20, 2014

> > Preprint: arXiv:1311.6686

Cellular Trees

- X pure cell complex (= CW complex) of dimension d
- ∂_k cellular boundary map $\partial_k : C_k(X) \to C_{k-1}(X)$

Tree in X: $T = T_d \cup \text{Skel}_{d-1}(X)$ where $T_d = \text{column basis of } \partial_d$

•
$$H_d(T; \mathbb{Q}) = 0$$

$$H_{d-1}(T;\mathbb{Q}) = H_{d-1}(X;\mathbb{Q})$$

 $\mathscr{T}_{\mathbf{k}}(\mathbf{X}) =$ set of all k-trees in X = trees in $\text{Skel}_{k}(X)$

Examples:

𝒮₁(X) = {spanning forests of 1-skeleton graph}

•
$$\mathscr{T}_0(X) = \{ \text{individual vertices} \}$$

•
$$\mathscr{T}_d(X \cong \mathbb{S}^d) = \{X - \sigma : \sigma \text{ a facet}\}$$

Counting Cellular Trees

Assume $\tilde{H}_{k-1}(X; \mathbb{Q}) = 0$ (analogue of connectedness).

Tree count:

$$au_k(X) = \sum_{T\in\mathscr{T}_k(X)} | ilde{H}_{k-1}(T;\mathbb{Z})|^2.$$

Weighted tree count: Assign each $\sigma \in X$ a monomial weight \mathbf{q}_{σ} .

$$au_k(X; \mathbf{q}) = \sum_{T \in \mathscr{T}_k(X)} | ilde{H}_{k-1}(T; \mathbb{Z})|^2 \prod_{\sigma \in T} \mathbf{q}_\sigma$$

Counting Cellular Trees

Cellular matrix-tree theorem: expresses $\tau_k(X)$, $\tau_k(X; \mathbf{q})$ in terms of eigenvalues/cokernels of combinatorial Laplacians $\partial_k \partial_k^{tr}$.

- Bolker '78: first studied simplicial spanning trees
- Kalai '83: homology-squared weighting; skeletons of simplices
- Adin '92: complete colorful complexes
- Duval–Klivans–JLM; Lyons; Catanzaro–Chernyak–Klein: general formulations

The cellular matrix-tree theorem can be restated in terms of **pseudodeterminants**.

Pseudodeterminants

The cellular matrix-tree theorem can be restated in terms of pseudodeterminants. What's a pseudodeterminant?

Let $L \in \mathbb{Z}^{n \times n}$, not necessarily of full rank; eigenvalues $\lambda_1, \ldots, \lambda_n$.

Pseudodeterminant pdet(L): last nonzero coefficient of characteristic polynomial = coefficient of $t^{n-\operatorname{rank} L}$.

$$\mathsf{pdet}\ L = \prod_{\lambda_i \neq 0} \lambda_i = \sum_{I \subseteq [n]: \ |I| = \mathsf{rank}\ L} \det L_{I,I}$$

(So pdet $L = \det L$ if L is of full rank.)

Counting Trees with Pseudodeterminants

Cellular Matrix-Tree Theorem, Pseudodeterminant Version: Let $L_k^{ud} = \partial_k \partial_k^{tr}$, the $(k-1)^{th}$ updown Laplacian of X. (This is a linear operator on $C_{k-1}(X)$.) Then

pdet
$$L_k^{ud} = \tau_k(X)\tau_{k-1}(X).$$

Classical matrix-tree theorem: G graph, $L = L_0^{ud}(G)$.

spanning trees = $\frac{\text{product of nonzero eigenvalues of }L}{\text{number of vertices}}$ $\tau_1(G) = \text{pdet }L / \tau_0(G)$

Pseudodeterminants and (Skew)-Symmetry

Proposition

Let $\partial \in \mathbb{Z}^{n \times n}$ be either symmetric or skew-symmetric. Then:

- 1. $pdet(\partial \partial^{tr}) = (pdet \partial)^2$.
- 2. All principal minors $\partial_{I,I}$ have the same sign, so

pdet
$$\partial = \pm \sum_{I} |\operatorname{coker} \partial_{I,I}|$$
 (**★**)

where I ranges over all row bases of ∂ .

Question

What topological setup will give (\bigstar) combinatorial meaning?

Perfect Square Phenomena in Spanning Tree Counts

Tutte: G planar; $G \cong G^*$ from antipodal map on $\mathbb{S}^2 \implies$

 $\tau(G) = ($ number of self-dual spanning trees $)^2$.

Question

Are there analogous perfect-square phenomena for higher-dimensional self-dual cell complexes?

Even-Dimensional Spheres: Maxwell's Theorem

Theorem (Maxwell '09)

Let k be odd. Let X be an antipodally self-dual cellular S^{2k} with at least one \mathbb{Z} -acyclic self-dual tree. Then

$$\underbrace{\sum_{T \in \mathscr{T}_k(X)} |\tilde{H}_{k-1}(T;\mathbb{Z})|^2}_{\tau_k(X)} = \left(\sum_{\substack{T \in \mathscr{T}_k(X) \\ T \text{ self-dual}}} |\tilde{H}_{k-1}(T;\mathbb{Z})| \right)^2$$

What about odd-dimensional antipodally self-dual spheres?

- ▶ dim = 2k: involution on k-dimensional faces
- dim = 2k + 1: pairing between k- and (k + 1)-dim'l faces

Self-Dual Cell Complexes

Self-dual d-ball: regular cell complex $B \cong \mathbb{B}^d$, with an anti-automorphism α of its face poset:

$$\sigma \subseteq \tau \iff \alpha(\sigma) \supseteq \alpha(\tau).$$

Self-dual (d - 1)-sphere: $S = \partial B \cong \mathbb{S}^{d-1}$.

Example: $B = \text{simplex on vertex set } V; \quad \alpha(\sigma) = V \setminus \sigma$

Example: Self-dual polytopes (polygons in \mathbb{R}^2 ; pyramids over polygons in \mathbb{R}^3 ; the 24-cell in \mathbb{R}^4 ; ...)

Tree Counts in Self-Dual Complexes

Proposition

Let B be a self-dual cellular \mathbb{B}^d and j + k = d - 1. Then $\tau_j(B) = \tau_k(B)$.

Proof sketch. For $T \in \mathscr{T}_{j}(B)$, consider the Alexander dual

$$T^{\vee} = \{ \sigma \in B \colon \alpha(\sigma) \notin T \}.$$

Then

$$\mathscr{T}_{j}(B) = \{ T^{\vee} \colon T \in \mathscr{T}_{k}(B) \}$$

and

$$H_{j-1}(T;\mathbb{Z})\cong H_{k-1}(T^{\vee};\mathbb{Z}).$$

Perfect Square Phenomenon for Even-Dimensional Balls

Let $B \cong \mathbb{B}^{2k}$ be self-dual and let $\partial = \partial_k(B)$. Then

$$\tau_{k-1}(B) = \tau_k(B)$$

and the pseudodeterminant version of the CMTT says that

$$pdet(\partial \partial^{tr}) = \tau_{k-1}(X)\tau_k(X) = \tau_k(X)^2.$$

Repeat Question: What additional structure will enable

pdet
$$\partial = \pm \sum_{I} |\operatorname{coker} \partial_{I,I}|$$
 (**★**)

to carry combinatorial meaning?

Antipodally Self-Dual Complexes

Definition: A self-dual cellular *d*-ball (B, α) is **antipodally** self-dual if α arises from the antipodal map on $\partial B \cong \mathbb{S}^{d-1}$.

Non-antipodal self-duality

Technical details: explicit orientations, dual block complex, Poincaré duality...

Antipodal Self-Duality and Orientations

Proposition (Very Technical!)

Let B be an antipodally self-dual cellular (2k)-ball. Then B can be oriented so that the middle boundary matrix ∂_k satisfies

 $\partial^{tr} = (-1)^k \partial.$

Example

If *B* is the simplex on vertices [2k + 1], then start with the "textbook" orientation and reorient:

$$\sigma = \{v_0,\ldots,v_k\} \in B_k \; \mapsto \; (-1)^{\sum v_i} \sigma.$$

Antipodally Self-Dual Even-Dimensional Balls

Proposition

Let $B \cong \mathbb{B}^{2k}$ be antipodally self-dual. Then B can be oriented so that the middle boundary matrix $\partial = \partial_k$ satisfies

$$\partial^{tr} = (-1)^k \partial.$$

Theorem

Let $B \cong \mathbb{B}^{2k}$ be antipodally self-dual and write $\tau_i = \tau_i(B)$. Then

$$\tau_k = \tau_{k-1} = \operatorname{pdet} \partial = \sum_{I} |\operatorname{coker} \partial_{I,I}| = \sum_{T \in \mathscr{T}_k(S)} |H_k(T, T^{\vee}; \mathbb{Z})|.$$

(There is also a **q**-analogue.)

Open Questions

- 1. What about antipodally self-dual \mathbb{B}^d with $d \equiv 1 \pmod{4}$?
 - $d \equiv 3 \pmod{4}$: Maxwell
 - $d \equiv 0,2 \pmod{4}$: this work

- 2. Any hope of bijective proofs?
 - E.g., higher-dimensional Prüfer code, Joyal bijection, ...

Thanks for listening!

Appendix A: The Weighted CMTTPV

Weighted Cellular Matrix-Tree Theorem, Pdet Version

Ingredients:

$$\begin{array}{lll} S & \mbox{cell complex of dimension} \geq k & \partial = \partial_k \\ {\bf x} = (x_i) & \mbox{variables indexing } (k-1)\mbox{-cells} & X = \mbox{diag}({\bf x} \\ {\bf y} = (y_i) & \mbox{variables indexing } k\mbox{-cells} & Y = \mbox{diag}({\bf y} \\ \end{array}$$

Formula:

 $\mathsf{pdet}(X^{1/2} \cdot \partial \cdot Z \cdot \partial^{tr} \cdot Y^{1/2}) = \tau_k(S; \mathbf{y}) \tau_{k-1}(S; \mathbf{z}^{-1}).$

Setting $y_i = z_i = 1$ recovers the unweighted formula.

Appendix B: A Little Linear Algebra

 ∂ : matrix of rank *r I*, *I*': sets of *r* rows *J*, *J*': sets of *r* columns

Useful Fact 1 ("The Minor Miracle") *I* and *J* are a row basis and a column basis respectively if **and** only if det $\partial_{I,J} \neq 0$.

Useful Fact 2

$$\det \partial_{I,J} \det \partial_{I',J'} = \det \partial_{I,J'} \det \partial_{I',J}.$$

Important consequences for matrices that are (skew-)symmetric!

Appendix C: Explicit Reorientation of Simplices

	123	124	125	134	135	145	234	235	245	345
45	/ 0	0	0	0	0	_	0	0	_	- \
35	0	0	0	0	_	0	0	_	0	+
34	0	0	0	_	0	0	_	0	0	_
25	0	0	_	0	0	0	0	+	+	0
24	0	_	0	0	0	0	_	0	_	0
23	_	0	0	0	0	0	_	—	0	0
15	0	0	+	0	+	+	0	0	0	0
14	0	+	0	+	0	_	0	0	0	0
13	+	0	0	_	—	0	0	0	0	0
12	(_	_	_	0	0	0	0	0	0	0/

Appendix C: Explicit Reorientation of Simplices

	123	124	125	134	135	145	234	235	245	345
45	/ 0	0	0	0	0	_	0	0	+	- \
35	0	0	0	0	+	0	0	_	0	+
34	0	0	0	_	0	0	+	0	0	_
25	0	0	_	0	0	0	0	+	_	0
24	0	+	0	0	0	0	+	0	+	0
23	_	0	0	0	0	0	+	—	0	0
15	0	0	+	0	_	+	0	0	0	0
14	0	_	0	+	0	_	0	0	0	0
13	+	0	0	_	+	0	0	0	0	0
12	(_	+	_	0	0	0	0	0	0	0/