Graph Theory and Discrete Geometry

Jeremy L. Martin
Department of Mathematics
University of Kansas

C\&PE Graduate Seminar
November 9, 2010

Graphs

A graph is a pair $G=(V, E)$, where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its endpoints.

Graphs

A graph is a pair $G=(V, E)$, where

- V is a finite set of vertices;
- E is a finite set of edges;
- Each edge connects two vertices called its endpoints.

C_{8}

K_{6}

Graphs

G

Graphs Hyperplane Arrangements Beyond Graphs

G

Why study graphs?

- Real-world applications
- Combinatorial optimization (routing, scheduling...)
- Computer science (data structures, sorting, searching...)
- Biology (evolutionary descent...)
- Chemistry (molecular structure...)
- Engineering (roads, electrical circuits, rigidity...)
- Network models (the Internet, Facebook!...)
- Pure mathematics
- Combinatorics (ubiquitous!)
- Discrete dynamical systems (chip-firing game...)
- Abstract algebra...)
- Discrete geometry (polytopes, sphere packing...)

Spanning Trees

Definition A spanning tree of \mathbf{G} is a set of edges T (or a subgraph $(V, T))$ such that:

1. (V, T) is connected: every pair of vertices is joined by a path
2. (V, T) is acyclic: there are no cycles
3. $|T|=|V|-1$.

Any two of these conditions together imply the third.

The Chip-Firing Game
Acyclic Orientations

Spanning Trees

G

Graph Theory and Discrete Geometry

The Chip-Firing Game
Acyclic Orientations

Spanning Trees

G
T

The Chip-Firing Game
Acyclic Orientations

Spanning Trees

G
T

Counting Spanning Trees

Definition $\tau(G)=$ number of spanning trees of G
(Think of $\tau(G)$ as a rough measure of the complexity of G.)

- $\tau($ tree $)=1$ (trivial)
- $\tau\left(C_{n}\right)=n$ (almost trivial)
- $\tau\left(K_{n}\right)=n^{n-2}$ (Cayley's formula; highly nontrivial!)
- Many other enumeration formulas for "nice" graphs

Graphs

Deletion and Contraction

Let $e \in E(G)$.

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e

Graphs

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

Graphs

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Graphs

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Graphs

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Graphs

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

G

G/e

Deletion and Contraction

Let $e \in E(G)$.

- Deletion G - e: Remove e
- Contraction G/e: Shrink e to a point

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

Graphs

Deletion and Contraction

Theorem $\quad \tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...

Deletion and Contraction

Theorem $\tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since it requires $2^{|E|}$ steps)...

Deletion and Contraction

Theorem $\tau(G)=\tau(G-e)+\tau(G / e)$.

- Therefore, we can calculate $\tau(G)$ recursively...
- ... but this is computationally inefficient (since it requires $2^{|E|}$ steps)...
- ... and, in general, is not useful for proving enumerative results like Cayley's formula.

The Matrix-Tree Theorem

$G=(V, E)$: connected graph without loops (parallel edges OK)
$V=\{1,2, \ldots, n\}$
Definition The Laplacian of \mathbf{G} is the $n \times n$ matrix $L=\left[\ell_{i j}\right]$:

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -(\# \text { of edges between } i \text { and } j) & \text { otherwise. }\end{cases}
$$

- $\operatorname{rank} L=n-1$.

The Matrix-Tree Theorem

Example

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

(2) Pick any $i \in\{1, \ldots, n\}$. Form the reduced Laplacian \tilde{L} by deleting the $i^{\text {th }}$ row and $i^{\text {th }}$ column of L. Then

$$
\tau(G)=\operatorname{det} \tilde{L}
$$

The Matrix-Tree Theorem

Example

$$
L=\left[\begin{array}{cccc}
3 & -1 & -2 & 0 \\
-1 & 3 & -1 & -1 \\
-2 & -1 & 3 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \tilde{L}=\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Eigenvalues: 0, 1, 4, 5

$$
\operatorname{det} \tilde{L}=5
$$

$$
(1 \cdot 4 \cdot 5) / 4=5
$$

The Chip-Firing Game

- Discrete dynamical system on graphs discovered independently by many: Biggs, Dhar, Merino, ...
- Essentially equivalent to the abelian sandpile model, dollar game, ...

The Chip-Firing Game

- Let $G=(V, E)$ be a simple graph, $V=\{0,1, \ldots, n\}$. Each vertex i has a finite number c_{i} of poker chips.

The Chip-Firing Game

- Let $G=(V, E)$ be a simple graph, $V=\{0,1, \ldots, n\}$. Each vertex i has a finite number c_{i} of poker chips.
- A vertex fires by giving one chip to each of its neighbors.

The Chip-Firing Game

- Let $G=(V, E)$ be a simple graph, $V=\{0,1, \ldots, n\}$. Each vertex i has a finite number c_{i} of poker chips.
- A vertex fires by giving one chip to each of its neighbors.
- Vertex 0, the bank, only fires if no other vertex can fire.

The Chip-Firing Game

- Let $G=(V, E)$ be a simple graph, $V=\{0,1, \ldots, n\}$. Each vertex i has a finite number c_{i} of poker chips.
- A vertex fires by giving one chip to each of its neighbors.
- Vertex 0, the bank, only fires if no other vertex can fire.
- Vertices other than the bank cannot go into debt

The Chip-Firing Game

- Let $G=(V, E)$ be a simple graph, $V=\{0,1, \ldots, n\}$. Each vertex i has a finite number c_{i} of poker chips.
- A vertex fires by giving one chip to each of its neighbors.
- Vertex 0, the bank, only fires if no other vertex can fire.
- Vertices other than the bank cannot go into debt
- State of the system $=\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right)$
(We don't care how many chips the bank has.)

Graphs
gements
Beyond Graphs

The Chip-Firing Game

Bank

Chip-Firing and the Laplacian

- Recall: reduced Laplacian of G is $\tilde{L}=\left[\ell_{i j}\right]_{i, j=1 \ldots n}$, where

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -1 & \text { if } i, j \text { are adjacent } \\ 0 & \text { otherwise. }\end{cases}
$$

Chip-Firing and the Laplacian

- Recall: reduced Laplacian of G is $\tilde{L}=\left[\ell_{i j}\right]_{i, j=1 \ldots . . n}$, where

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -1 & \text { if } i, j \text { are adjacent } \\ 0 & \text { otherwise }\end{cases}
$$

- Firing vertex $i \longleftrightarrow$ subtracting $i^{\text {th }}$ column of \tilde{L} from \mathbf{c}

Chip-Firing and the Laplacian

- Recall: reduced Laplacian of G is $\tilde{L}=\left[\ell_{i j}\right]_{i, j=1 \ldots n}$, where

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -1 & \text { if } i, j \text { are adjacent } \\ 0 & \text { otherwise. }\end{cases}
$$

- Firing vertex $i \longleftrightarrow$ subtracting $i^{\text {th }}$ column of \tilde{L} from \mathbf{c}

Fact Each starting state \mathbf{c} eventually leads to a unique critical state Crit(c).

Chip-Firing and Trees

Call two state vectors $\mathbf{c}, \mathbf{c}^{\prime}$ firing-equivalent if their difference is in the column space of \tilde{L}.

Fact $\mathbf{c}, \mathbf{c}^{\prime}$ are firing-equivalent if and only if $\operatorname{Crit}(\mathbf{c})=\operatorname{Crit}\left(\mathbf{c}^{\prime}\right)$.

Fact Number of critical states $=\operatorname{det} \tilde{L}=\tau(G)$.

Graphs

Acyclic Orientations

Acyclic Orientations

To orient a graph, place an arrow on each edge.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

Acyclic Orientations

To orient a graph, place an arrow on each edge.

An orientation is acyclic if it contains no directed cycles.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

An orientation is acyclic if it contains no directed cycles.

Acyclic Orientations

To orient a graph, place an arrow on each edge.

G

not acyclic

acyclic

An orientation is acyclic if it contains no directed cycles.

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Theorem $\quad \alpha(G)=\alpha(G-e)+\alpha(G / e)$.

Counting Acyclic Orientations

$\alpha(G)=$ number of acyclic orientations of G

- $\alpha($ tree with n vertices $)=2^{n-1}$
- $\alpha\left(C_{n}\right)=2^{n}-2$
- $\alpha\left(K_{n}\right)=n!$

Theorem $\quad \alpha(G)=\alpha(G-e)+\alpha(G / e)$.
(Fact: Both $\alpha(G)$ and $\tau(G)$, as well as any other invariant satisfying a deletion-contraction recurrence, can be obtained from the Tutte polynomial $T_{G}(x, y)$.)

Hyperplane Arrangements

Definition A hyperplane H in \mathbb{R}^{n} is an $(n-1)$-dimensional affine linear subspace.

Definition $\quad \mathrm{A}$ hyperplane arrangement $\mathcal{A} \subset \mathbb{R}^{n}$ is a finite collection of hyperplanes.

- $n=1$: points on a line
- $n=2$: lines on a plane
- $n=3$: planes in 3-space

Graphs
Hyperplane Arrangements Beyond Graphs

The Braid and Graphic Arrangements
Parking Functions and the Shi Arrangement

Counting Regions

$$
\begin{aligned}
r(\mathcal{A}) & :=\text { number of regions of } \mathcal{A} \\
& =\text { number of connected components of } \mathbb{R}^{n} \backslash \mathcal{A}
\end{aligned}
$$

Counting Regions

$r(\mathcal{A}):=$ number of regions of \mathcal{A}
$=$ number of connected components of $\mathbb{R}^{n} \backslash \mathcal{A}$

Counting Regions

$r(\mathcal{A}):=$ number of regions of \mathcal{A}
$=$ number of connected components of $\mathbb{R}^{n} \backslash \mathcal{A}$

14 regions

16 regions

Counting Regions

Example $\mathcal{A}=n$ lines in \mathbb{R}^{2}

- $2 n \leq r(\mathcal{A}) \leq 1+\binom{n+1}{2}$

Example $\mathcal{A}=n$ coordinate hyperplanes in \mathbb{R}^{n}

- Regions of $\mathcal{A}=$ orthants
- $r(\mathcal{A})=2^{n}$

The Braid Arrangement

The braid arrangement $B r_{n} \subset \mathbb{R}^{n}$ consists of the $\binom{n}{2}$ hyperplanes

$$
\left.\begin{array}{rl}
H_{12} & =\left\{\mathbf{x} \in \mathbb{R}^{n}\right. \\
H_{13} & =\left\{\mathbf{x} \in \mathbb{R}^{n}\right. \\
& \ldots \\
& \ldots \\
\left.x_{1}=x_{2}\right\}
\end{array}\right\},
$$

- $\mathbb{R}^{n} \backslash B r_{n}=\left\{\mathbf{x} \in \mathbb{R}^{n} \quad \mid\right.$ all x_{i} are distinct $\}$.
- Problem: Count the regions of $B r_{n}$.
Br_{3}

Graphic Arrangements

Let $G=(V, E)$ be a simple graph with $V=[n]=\{1, \ldots, n\}$. The graphic arrangement $\mathcal{A}_{G} \subset \mathbb{R}^{n}$ consists of the hyperplanes

$$
\left\{H_{i j}: x_{i}=x_{j} \quad \mid \quad i j \in E\right\} .
$$

Graphic Arrangements

Let $G=(V, E)$ be a simple graph with $V=[n]=\{1, \ldots, n\}$. The graphic arrangement $\mathcal{A}_{G} \subset \mathbb{R}^{n}$ consists of the hyperplanes

$$
\left\{H_{i j}: x_{i}=x_{j} \quad \mid \quad i j \in E\right\} .
$$

Theorem There is a bijection between regions of \mathcal{A}_{G} and acyclic orientations of G. In particular,

$$
r\left(\mathcal{A}_{G}\right)=\alpha(G)
$$

(When $G=K_{n}$, the arrangement \mathcal{A}_{G} is the braid arrangement.)

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

The resulting orientation is acyclic.

Graphic Arrangements

Theorem $\quad r\left(\mathcal{A}_{G}\right)=\alpha(G)$.
Sketch of proof: Suppose that $\mathbf{a} \in \mathbb{R}^{n} \backslash \mathcal{A}_{G}$.
In particular, $a_{i} \neq a_{j}$ for every edge $i j$. Orient that edge as

$$
\begin{cases}i \rightarrow j & \text { if } a_{i}<a_{j} \\ j \rightarrow i & \text { if } a_{i}>a_{j}\end{cases}
$$

The resulting orientation is acyclic.
Corollary $\quad r\left(B r_{n}\right)=\alpha\left(K_{n}\right)=n!$.

Parking Functions

There are n parking spaces on a one-way street.
Cars $1, \ldots, n$ want to park in the spaces.
Each car has a preferred spot p_{i}.

Can all the cars park?
(Analogy: Hash table...)

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Parking Functions

Example \#1: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,1,5,4,1)$

Success!

1

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

Example \#2: $n=6 ;\left(p_{1}, \ldots, p_{6}\right)=(1,4,4,5,4,1)$

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

- In particular, parking functions are invariant up to permutation.

Parking Functions

- $\left(p_{1}, \ldots, p_{n}\right)$ is a parking function if and only if the $i^{\text {th }}$ smallest entry is $\leq i$, for all i.

111	112	122	113	123132
	121	212	131	213231
	211	221	311	312321

- In particular, parking functions are invariant up to permutation.
- The number of parking functions of length n is $(n+1)^{n-1}$.

The Shi Arrangement

The Shi arrangement Shin $\subset \mathbb{R}^{n}$ consists of the $2\binom{n}{2}$ hyperplanes

$$
\begin{array}{ll}
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{2}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{2}+1\right\} \\
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{3}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{1}=x_{3}+1\right\} \\
\ldots & \\
\left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{n-1}=x_{n}\right\}, & \left\{\mathbf{x} \in \mathbb{R}^{n} \mid x_{n-1}=x_{n}+1\right\} .
\end{array}
$$

The Shi Arrangement

[^0]

[^1]$$
x=y \quad x=y+1
$$

The Shi Arrangement

Theorem The number of regions in Shi_{n} is $(n+1)^{n-1}$.
(Many proofs known: Shi, Athanasiadis-Linusson, Stanley ...)

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shi $_{n}$. For every $1 \leq i<j \leq n$:

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin $_{n}$. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.
$\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)=$ score vector
(where $s_{i}=$ number of points scored by i).

Score Vectors

Let $\mathbf{x} \in \mathbb{R}^{n} \backslash$ Shin. For every $1 \leq i<j \leq n$:

- If $x_{i}<x_{j}$, then j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$, then no one scores a point.
- If $x_{j}+1<x_{i}$, then i scores a point.
$\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)=$ score vector
(where $s_{i}=$ number of points scored by i).
Example The score vector of $\mathbf{x}=(3.142,2.010,2.718)$ is $\mathbf{s}=(1,0,1)$.

$$
x=y \quad x=y+1
$$

Graphs
Hyperplane Arrangements Beyond Graphs

Graphs
Hyperplane Arrangements Beyond Graphs

$$
x=y \quad x=y+1
$$

$$
y=z
$$

Score Vectors and Parking Functions

Theorem $\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shi i_{n}
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Score Vectors and Parking Functions

Theorem $\quad\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shi $_{n}$
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Theorem

$$
\begin{aligned}
& \sum y^{d\left(R_{0}, R\right)}=\sum y^{p_{1}+\cdots+p_{n}} \\
& \text { regions } R \text { of } \text { Shin }_{n} \\
& \text { parking fns } \\
& \text { (} p_{1}, \ldots, p_{n} \text {) }
\end{aligned}
$$

where $d=$ distance, $R_{0}=$ base region.

Score Vectors and Parking Functions

Theorem $\quad\left(s_{1}, \ldots, s_{n}\right)$ is the score vector of some region of Shi $_{n}$
$\Longleftrightarrow\left(s_{1}+1, \ldots, s_{n}+1\right)$ is a parking function of length n.

Theorem

$$
\sum y^{d\left(R_{0}, R\right)}=\sum y^{p_{1}+\cdots+p_{n}}
$$

regions R of Shin $_{n}$
parking fns

$$
\left(p_{1}, \ldots, p_{n}\right)
$$

where $d=$ distance, $R_{0}=$ base region.
Example For $n=3: T_{K_{4}}(1, y)=1+3 y+6 y^{2}+6 y^{3}$.

Simplicial Complexes

Definition A simplicial complex is a space built out of

- vertices (dimension 0)
- edges (dimension 1)
- triangles (dimension 2)
- tetrahedra (dimension 3)
- higher-dimensional simplices

Simplicial complexes are the natural higher-dimensional analogues of graphs.

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]
- Acyclic orientations: maybe

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]
- Acyclic orientations: maybe
- Chip-firing game: sort of ("stable state" is problematic)

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]
- Acyclic orientations: maybe
- Chip-firing game: sort of ("stable state" is problematic)
- Parking functions: also doubtful

Open Questions

Do the links between graph theory and geometry generalize to higher dimension?

- Definition of spanning trees: yes (in several ways)
- Matrix-Tree Theorem: yes [Duval-Klivans-JLM 2007, 2009. .., extending Bolker 1978, Kalai 1983, Adin 1992]
- Critical group: yes [Duval-Klivans-JLM 2010]
- Acyclic orientations: maybe
- Chip-firing game: sort of ("stable state" is problematic)
- Parking functions: also doubtful
- Hyperplane arrangements: ???

[^0]: Graph Theory and Discrete Geometry

[^1]: Graph Theory and Discrete Geometry

