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Graphs

A graph is a pair G = (V ,E ), where

◮ V is a finite set of vertices;

◮ E is a finite set of edges;

◮ Each edge connects two vertices called its endpoints.
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◮ V is a finite set of vertices;

◮ E is a finite set of edges;

◮ Each edge connects two vertices called its endpoints.
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Why study graphs?

◮ Real-world applications
◮ Combinatorial optimization (routing, scheduling. . . )
◮ Computer science (data structures, sorting, searching. . . )
◮ Biology (evolutionary descent. . . )
◮ Chemistry (molecular structure. . . )
◮ Engineering (roads, electrical circuits, rigidity. . . )
◮ Network models (the Internet, Facebook!. . . )

◮ Pure mathematics
◮ Combinatorics (ubiquitous!)
◮ Discrete dynamical systems (chip-firing game. . . )
◮ Abstract algebra. . . )
◮ Discrete geometry (polytopes, sphere packing. . . )

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Spanning Trees

Definition A spanning tree of G is a set of edges T (or a
subgraph (V ,T )) such that:

1. (V ,T ) is connected: every pair of vertices is joined by a path

2. (V ,T ) is acyclic: there are no cycles

3. |T | = |V | − 1.

Any two of these conditions together imply the third.
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Counting Spanning Trees

Definition τ(G ) = number of spanning trees of G

(Think of τ(G ) as a rough measure of the complexity of G .)

◮ τ(tree) = 1 (trivial)

◮ τ(Cn) = n (almost trivial)

◮ τ(Kn) = nn−2 (Cayley’s formula; highly nontrivial!)

◮ Many other enumeration formulas for “nice” graphs
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Deletion and Contraction

Let e ∈ E (G ).

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

G

e

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

G

e

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

G

e

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

G

e

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

Spanning Trees
The Matrix-Tree Theorem and the Laplacian
The Chip-Firing Game
Acyclic Orientations

Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point
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Deletion and Contraction

Let e ∈ E (G ).

◮ Deletion G − e: Remove e

◮ Contraction G/e: Shrink e to a point

eG /G

e

Theorem τ(G ) = τ(G − e) + τ(G/e).
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◮ Therefore, we can calculate τ(G ) recursively. . .
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

◮ Therefore, we can calculate τ(G ) recursively. . .

◮ . . . but this is computationally inefficient (since it requires 2|E |

steps). . .
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Deletion and Contraction

Theorem τ(G ) = τ(G − e) + τ(G/e).

◮ Therefore, we can calculate τ(G ) recursively. . .

◮ . . . but this is computationally inefficient (since it requires 2|E |

steps). . .

◮ . . . and, in general, is not useful for proving enumerative
results like Cayley’s formula.
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The Matrix-Tree Theorem

G = (V ,E ): connected graph without loops (parallel edges OK)

V = {1, 2, . . . , n}

Definition The Laplacian of G is the n × n matrix L = [ℓij ]:

ℓij =

{

degG (i) if i = j

−(# of edges between i and j) otherwise.

◮ rank L = n − 1.
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The Matrix-Tree Theorem

Example

G =

1 2

3 4

L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.
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The Matrix-Tree Theorem

The Matrix-Tree Theorem (Kirchhoff, 1847)

(1) Let 0, λ1, λ2, . . . , λn−1 be the eigenvalues of L. Then the
number of spanning trees of G is

τ(G ) =
λ1λ2 · · ·λn−1

n
.

(2) Pick any i ∈ {1, . . . , n}. Form the reduced Laplacian L̃ by
deleting the i th row and i th column of L. Then

τ(G ) = det L̃ .
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The Matrix-Tree Theorem

Example G =

1 2

3 4

L =









3 −1 −2 0
−1 3 −1 −1
−2 −1 3 0
0 −1 0 1









L̃ =





3 −1 −1
−1 3 0
−1 0 1





Eigenvalues: 0, 1, 4, 5 det L̃ = 5

(1 · 4 · 5)/4 = 5
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The Chip-Firing Game

• Discrete dynamical system on graphs discovered independently
by many: Biggs, Dhar, Merino, . . .

• Essentially equivalent to the abelian sandpile model, dollar
game, . . .
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The Chip-Firing Game

• Let G = (V ,E ) be a simple graph, V = {0, 1, . . . , n}.
Each vertex i has a finite number ci of poker chips.
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• Let G = (V ,E ) be a simple graph, V = {0, 1, . . . , n}.
Each vertex i has a finite number ci of poker chips.
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• Let G = (V ,E ) be a simple graph, V = {0, 1, . . . , n}.
Each vertex i has a finite number ci of poker chips.

• A vertex fires by giving one chip to each of its neighbors.

• Vertex 0, the bank, only fires if no other vertex can fire.
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The Chip-Firing Game

• Let G = (V ,E ) be a simple graph, V = {0, 1, . . . , n}.
Each vertex i has a finite number ci of poker chips.

• A vertex fires by giving one chip to each of its neighbors.

• Vertex 0, the bank, only fires if no other vertex can fire.

• Vertices other than the bank cannot go into debt
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The Chip-Firing Game

• Let G = (V ,E ) be a simple graph, V = {0, 1, . . . , n}.
Each vertex i has a finite number ci of poker chips.

• A vertex fires by giving one chip to each of its neighbors.

• Vertex 0, the bank, only fires if no other vertex can fire.

• Vertices other than the bank cannot go into debt

• State of the system = c = (c1, . . . , cn)
(We don’t care how many chips the bank has.)
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Bank

1
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Chip-Firing and the Laplacian

• Recall: reduced Laplacian of G is L̃ = [ℓij ]i ,j=1...n, where

ℓij =











degG (i) if i = j

−1 if i , j are adjacent

0 otherwise.
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Chip-Firing and the Laplacian

• Recall: reduced Laplacian of G is L̃ = [ℓij ]i ,j=1...n, where

ℓij =











degG (i) if i = j

−1 if i , j are adjacent

0 otherwise.

• Firing vertex i ←→ subtracting i th column of L̃ from c
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Chip-Firing and the Laplacian

• Recall: reduced Laplacian of G is L̃ = [ℓij ]i ,j=1...n, where

ℓij =











degG (i) if i = j

−1 if i , j are adjacent

0 otherwise.

• Firing vertex i ←→ subtracting i th column of L̃ from c

Fact Each starting state c eventually leads to a unique critical
state Crit(c).
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Chip-Firing and Trees

Call two state vectors c, c′ firing-equivalent if their difference is in
the column space of L̃.

Fact c, c′ are firing-equivalent if and only if Crit(c) = Crit(c′).

Fact Number of critical states = det L̃ = τ(G ).
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Acyclic Orientations

To orient a graph, place an arrow on each edge.
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To orient a graph, place an arrow on each edge.

G

An orientation is acyclic if it contains no directed cycles.
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Acyclic Orientations

To orient a graph, place an arrow on each edge.

G not acyclic

An orientation is acyclic if it contains no directed cycles.
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Acyclic Orientations

To orient a graph, place an arrow on each edge.

G not acyclic acyclic

An orientation is acyclic if it contains no directed cycles.
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!

Theorem α(G ) = α(G − e) + α(G/e).
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Counting Acyclic Orientations

α(G ) = number of acyclic orientations of G

◮ α(tree with n vertices) = 2n−1

◮ α(Cn) = 2n − 2

◮ α(Kn) = n!

Theorem α(G ) = α(G − e) + α(G/e).

(Fact: Both α(G ) and τ(G ), as well as any other invariant
satisfying a deletion-contraction recurrence, can be obtained from
the Tutte polynomial TG (x , y).)
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Hyperplane Arrangements

Definition A hyperplane H in R
n is an (n − 1)-dimensional

affine linear subspace.

Definition A hyperplane arrangement A ⊂ R
n is a finite

collection of hyperplanes.

◮ n = 1: points on a line

◮ n = 2: lines on a plane

◮ n = 3: planes in 3-space
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Counting Regions

r(A) := number of regions of A
= number of connected components of Rn \ A
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Counting Regions

r(A) := number of regions of A
= number of connected components of Rn \ A
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Counting Regions

Example A = n lines in R
2

◮ 2n ≤ r(A) ≤ 1 +
(

n+1
2

)

Example A = n coordinate hyperplanes in R
n

◮ Regions of A = orthants

◮ r(A) = 2n
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The Braid Arrangement

The braid arrangement Brn ⊂ R
n consists of the

(

n
2

)

hyperplanes

H12 = {x ∈ R
n | x1 = x2},

H13 = {x ∈ R
n | x1 = x3},

. . .

Hn−1,n = {x ∈ R
n | xn−1 = xn}.

◮ R
n \ Brn = {x ∈ R

n | all xi are distinct}.

◮ Problem: Count the regions of Brn.

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

The Braid and Graphic Arrangements
Parking Functions and the Shi Arrangement

y < x < z x < z < y

x < y < z

z < x < yy < z < x

z < y < x

13

Br3
23H

H12

H
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Graphic Arrangements

Let G = (V ,E ) be a simple graph with V = [n] = {1, . . . , n}.
The graphic arrangement AG ⊂ R

n consists of the hyperplanes

{Hij : xi = xj
∣

∣ ij ∈ E}.
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Graphic Arrangements

Let G = (V ,E ) be a simple graph with V = [n] = {1, . . . , n}.
The graphic arrangement AG ⊂ R

n consists of the hyperplanes

{Hij : xi = xj
∣

∣ ij ∈ E}.

Theorem There is a bijection between regions of AG and acyclic
orientations of G . In particular,

r(AG ) = α(G ).

(When G = Kn, the arrangement AG is the braid arrangement.)
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Graphic Arrangements

Theorem r(AG ) = α(G ).
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .

The resulting orientation is acyclic.
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Graphic Arrangements

Theorem r(AG ) = α(G ).

Sketch of proof: Suppose that a ∈ R
n \ AG .

In particular, ai 6= aj for every edge ij . Orient that edge as

{

i → j if ai < aj ,

j → i if ai > aj .

The resulting orientation is acyclic.

Corollary r(Brn) = α(Kn) = n!.
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Parking Functions

There are n parking spaces on a one-way street.

Cars 1, . . . , n want to park in the spaces.

Each car has a preferred spot pi .

Can all the cars park?

(Analogy: Hash table. . . )
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

141541

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 4 5 1 4

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1541

1 2 3 4 5 6
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 4 5

1 2 3 4 65
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 2 3 4 65

41
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

3 4 65

1

1 2
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Parking Functions

Example #1: n = 6; (p1, . . . , p6) = (1, 4, 1, 5, 4, 1)

1 2 3 4 65

1

Success!
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

144541

1 2 3 4 5 6
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

1 4 5 4 4

1 2 3 4 5 6
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

541 4

1 2 3 4 5 6
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

541

1 2 3 4 5 6
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

1 2 3 4 65

1 4
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Parking Functions

Example #2: n = 6; (p1, . . . , p6) = (1, 4, 4, 5, 4, 1)

1 2 3 4 65

1 4
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .

111 112 122 113 123 132
121 212 131 213 231
211 221 311 312 321
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .

111 112 122 113 123 132
121 212 131 213 231
211 221 311 312 321

◮ In particular, parking functions are invariant up to
permutation.
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Parking Functions

◮ (p1, . . . , pn) is a parking function if and only if the i th smallest
entry is ≤ i , for all i .

111 112 122 113 123 132
121 212 131 213 231
211 221 311 312 321

◮ In particular, parking functions are invariant up to
permutation.

◮ The number of parking functions of length n is (n + 1)n−1.
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The Shi Arrangement

The Shi arrangement Shin ⊂ R
n consists of the 2

(

n
2

)

hyperplanes

{x ∈ R
n | x1 = x2}, {x ∈ R

n | x1 = x2 + 1},

{x ∈ R
n | x1 = x3}, {x ∈ R

n | x1 = x3 + 1},

. . .

{x ∈ R
n | xn−1 = xn}, {x ∈ R

n | xn−1 = xn + 1}.

Graph Theory and Discrete Geometry



Graphs
Hyperplane Arrangements

Beyond Graphs

The Braid and Graphic Arrangements
Parking Functions and the Shi Arrangement

The Shi Arrangement

x = y+1

Shi2 x = y
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x

z

y

y = z

x = z

x = y

y = z+1
x = z+1

x = y+1

Slice of Shi3

x+y+z = 0
by plane
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The Shi Arrangement

Theorem The number of regions in Shin is (n + 1)n−1.

(Many proofs known: Shi, Athanasiadis-Linusson, Stanley . . . )
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.

◮ If xj + 1 < xi , then i scores a point.
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.

◮ If xj + 1 < xi , then i scores a point.

s = (s1, . . . , sn) = score vector

(where si = number of points scored by i).
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Score Vectors

Let x ∈ R
n \ Shin. For every 1 ≤ i < j ≤ n:

◮ If xi < xj , then j scores a point.

◮ If xj < xi < xj + 1, then no one scores a point.

◮ If xj + 1 < xi , then i scores a point.

s = (s1, . . . , sn) = score vector

(where si = number of points scored by i).

Example The score vector of x = (3.142, 2.010, 2.718) is
s = (1, 0, 1).
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x
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.

Theorem

∑

regions R of Shin

yd(R0,R) =
∑

parking fns
(p1,...,pn)

yp1+···+pn

where d = distance, R0 = base region.
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Score Vectors and Parking Functions

Theorem (s1, . . . , sn) is the score vector of some region of Shin

⇐⇒ (s1 + 1, . . . , sn + 1) is a parking function of length n.

Theorem

∑

regions R of Shin

yd(R0,R) =
∑

parking fns
(p1,...,pn)

yp1+···+pn

where d = distance, R0 = base region.

Example For n = 3: TK4(1, y) = 1 + 3y + 6y2 + 6y3.
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Simplicial Complexes

Definition A simplicial complex is a space built out of

◮ vertices (dimension 0)

◮ edges (dimension 1)

◮ triangles (dimension 2)

◮ tetrahedra (dimension 3)

◮ higher-dimensional simplices

Simplicial complexes are the natural higher-dimensional analogues
of graphs.
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◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]
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◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]
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◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]

◮ Acyclic orientations: maybe
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Do the links between graph theory and geometry generalize to
higher dimension?

◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]

◮ Acyclic orientations: maybe

◮ Chip-firing game: sort of (“stable state” is problematic)
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Open Questions

Do the links between graph theory and geometry generalize to
higher dimension?

◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]

◮ Acyclic orientations: maybe

◮ Chip-firing game: sort of (“stable state” is problematic)

◮ Parking functions: also doubtful
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Beyond Graphs

Open Questions

Do the links between graph theory and geometry generalize to
higher dimension?

◮ Definition of spanning trees: yes (in several ways)

◮ Matrix-Tree Theorem: yes [Duval–Klivans–JLM 2007,
2009. . . , extending Bolker 1978, Kalai 1983, Adin 1992]

◮ Critical group: yes [Duval–Klivans–JLM 2010]

◮ Acyclic orientations: maybe

◮ Chip-firing game: sort of (“stable state” is problematic)

◮ Parking functions: also doubtful

◮ Hyperplane arrangements: ???
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