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Trees

Tree: a nonempty set of vertices connected by edges, so that ]

I there is a path between any two vertices (connectedness);

I there are no closed loops (acyclicity).

Tree Not connected Not acyclic
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Properties of Trees

1. Every tree with n vertices has exactly n − 1 edges. (Any fewer
and it cannot be connected; any more and it must contain a cycle.)

2. Every tree with at least two vertices has at least two leaves
(vertices with only one neighbor).

3. We only care about which vertices are connected, not how
the tree is depicted on the page. These trees are the same:
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How Many Trees Are There On n Labeled Vertices?

n = 1 1 1 tree

n = 2 1 2 1 tree

n = 3 2 3 21 2 13 1 3 3 trees
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How Many Trees Are There On n Vertices?

For n = 5, there are three tree shapes:

5!/2 = 60 trees 5 trees 5!/2 = 60 trees

Total: 125 trees on 5 labeled vertices.
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How Many Trees Are There On n Vertices?

For n = 6, there are six tree shapes:

6!/2 = 360 trees

6 trees

360 trees

360 trees

90 trees
120 trees

Total: 1296 trees on 6 labeled vertices.
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How Many Trees Are There On n Vertices?

Let T (n) = number of labeled trees on n vertices.

n T (n)
1 1
2 1
3 3
4 16
5 125
6 1296
7 16807
8 262144

Theorem 1 T (n) = nn−2 for all n.
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How Many Trees Are There On n Vertices?

Let T (n) = number of labeled trees on n vertices.

n T (n)
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Yeah, But How Do You Prove That? (#1)

Prüfer code of a tree: the sequence P(T ) constructed as follows.

I Find the leaf with the smallest label.

I Write down its neighbor (not the leaf itself!)

I Delete it.

I Repeat until just two vertices are left.

P(T ) =
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Yeah, But How Do You Prove That? (#1)

Prüfer code of a tree: the sequence P(T ) constructed as follows.

I Find the leaf with the smallest label.

I Write down its neighbor (not the leaf itself!)
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I Repeat until just two vertices are left.
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Yeah, But How Do You Prove That? (#1)

Fact: Every tree can be reconstructed from its Prüfer code, giving
a bijection

{trees on n vertices} → {(p1, . . . , pn−2) : 1 ≤ pi ≤ n}

and the size of the right-hand set is clearly nn−2.

Corollary: The number of trees in which vertex i has exactly di
neighbors is the coefficient of the monomial

xd11 xd22 · · · x
dn
n

in the expansion of x1x2 · · · xn(x1 + x2 + · · ·+ xn)n−2.
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Yeah, But How Do You Prove That? (#2)

The Matrix-Tree Theorem (which dates back to 1845!) says that
trees can be counted using linear algebra.

Long story short: T (n) is the determinant of the (n − 1)× (n − 1)
matrix 

n − 1 −1 −1 · · · −1
−1 n − 1 −1 · · · −1
−1 −1 n − 1 · · · −1

...
...

...
...

−1 −1 −1 · · · n − 1


Convince yourself that its eigenvalues are n (with multiplicity
n − 2) and 1.

What Else Can You Count. . . Benedictine College, April 2019



The Sandpile Model

Start with a bucket of sand. Take out m piles. Let si be the
number of grains of sand in the i th pile.

I When a sandpile gets too big, it topples over.

Specifically, if si ≥ m, then pile i spews sand in all directions,
giving one grain of sand to each other pile and putting one
grain back in the bucket.

I If no pile is too big, add one grain from the bucket to each
pile.

How does the system evolve?
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The Sandpile Model

Let m = 2. Record the state the model is in by the pair (s1, s2).

00 11 22

03

30

12

31

04

23

01

20

21

13

40

32

10

02

The states (0, 1), (1, 0), and (1, 1) are called critical:

I no pile other than the sink can topple (“stability”)

I these states appear repeatedly as the model evolves
(“recurrence”)

Fact: Every initial state evolves to exactly one critical state.
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The Sandpile Model

A possible evolution pattern for m = 3:

101 212 323

105

501

034

430

141

Complete list of critical states for m = 3:

222, 221, 212, 122, 211, 121, 112, 220, 202, 022,
012, 021, 102, 120, 201, 210.
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Sandpiles and Shopping Sprees

Sandpile model Dollar game
(statistical physics) (economics)

Sandpiles Consumers
Sand grains Dollars
Big enough Rich enough
Toppling Shopping spree
Sink Bank
Sink topples Economic stimulus package
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Joint Shopping Sprees

Does a shopping spree really require $m?

Ani gives a dollar to Chris Bob gives a dollar to Chris

Ani and Bob only need $1 each to go on a shopping spree together.

In a joint shopping spree, each consumer in a set X (not
including the bank) gives $1 to each consumer not in X (including
the bank). This is possible if

si > m − |X | ∀x ∈ X .
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Superstable States

A state of the dollar game is called superstable if no simultaneous
shopping sprees are possible.

Theorem 2
(s1, . . . , sm) superstable ⇐⇒ (m − s1, . . . ,m − sm) critical

Theorem 3
There is a bijection

{superstable states} → {labeled trees on n vertices}.

The proof uses the Burning Algorithm [Dhar, 1990].
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Dhar’s Burning Algorithm (A Sketch)

Let n = m + 1. Start with a superstable state s = (s1, . . . , sn−1).

I For each i = 1, . . . , n − 1, place si firefighters at vertex i .

I Set vertex n on fire.

I The fire tries to spread from burned vertices to unburned
vertices. Unburned vertices can deploy firefighters to protect
themselves. (A firefighter cannot be moved once deployed.)

I Superstability of s is precisely equivalent to the condition that
the fire eventually reaches every vertex!

I The route that the fire takes is a tree!

I Algorithm is reversible: s can be reconstructed from the
output tree!
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Parking Functions

I There are n parking spaces on a one-way street, labeled
0, . . . , n − 1.

I Along come n cars trying to park. Each car has a preferred
spot pi .

I Each car drives to its preferred spot and tries to park there.

I If a car’s preferred spot is occupied, it takes the next available
spot.

I Did I mention the pit full of snakes?
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5
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0 1 2 3 4 5

1 2
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 23

p3 = 3
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 2 3
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 2 34

p4 = 4
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 2 3 4
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Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 2 3 45

p5 = 3

What Else Can You Count. . . Benedictine College, April 2019



Parking Functions

Example #1 (p1, . . . , p6) = (0, 3, 0, 4, 3, 0)

0 1 2 3 4 5

1 23 4 56Success!

Example #2 (p1, . . . , p6) = (0, 3, 3, 4, 3, 0)

0 1 2 3 4 5

1 2 3 45

p5 = 3

Oops.
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Parking Functions

Definition A sequence p = (p1, . . . , pn) is a parking function
(PF) if it enables all cars to park without being eaten by snakes.

Theorem 4
p is a PF ⇐⇒ i th smallest entry is < i (for each i).

(In particular, shuffling p does not change whether it is a PF.)

Theorem 5
The number of PF of length n is (n + 1)n−1.

In fact, parking functions are the same thing as superstable states!
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Parking Functions

Definition A sequence p = (p1, . . . , pn) is a parking function
(PF) if it enables all cars to park without being eaten by snakes.

Theorem 4
p is a PF ⇐⇒ i th smallest entry is < i (for each i).

(In particular, shuffling p does not change whether it is a PF.)

Theorem 5
The number of PF of length n is (n + 1)n−1.

In fact, parking functions are the same thing as superstable states!
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Parking Functions and Superstable States

n = 1: 0

n = 2: 00 01
10

n = 3: 000 001 011 002 012 021
010 101 020 102 120
100 110 200 201 210

n = 4 (up to shuffling):
0000
0001 0002 0003
0011 0012 0013 0022 0023
0111 0112 0113 0122 0123

Number of PFs up to shuffling = Catalan number 1
n+1

(2n
n

)
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A Rather Slick Way To Count Parking Functions

I Remove the snakepit. Replace it with an extra parking spot
(#n) and a return ramp (like an airport terminal).

I Number of preference lists p is now (n + 1)n.

I All cars will be able to park, and one spot o(p) will be left
open.

I Cyclically rotating p also rotates o(p).

I Therefore, all spots are equally likely to be open.

I p is a parking function ⇐⇒ o(p) = n.

I Number of parking functions = (n+ 1)n/(n+ 1) = (n+ 1)n−1.
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Handicap Scoring

I Competitors in an individual event (e.g., marathon, bowling,
pentathlon, Rubik’s Cube) are seeded 1, 2, . . . , n.
Lower numbered seed = stronger player.

I Each competitor i achieves a score xi ∈ R (the higher the
better).

I We want to level the playing field by comparing each pair of
players head-to-head. For each 1 ≤ i < j ≤ n:

I If xi < xj (“upset”), then the underdog j scores a point.
I If xj < xi < xj + 1 (“chalk”), then no one scores a point.
I If xj + 1 < xi (“blowout”), then the favorite i scores a point.
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Handicap Scoring

I If xi < xj (“upset”), then the underdog j scores a point.

I If xj < xi < xj + 1 (“chalk”), then no one scores a point.

I If xj + 1 < xi (“blowout”), then the favorite i scores a point.

xi = xj

xi = xj + 1upset

chalk

blowout
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The Shi Arrangement

In order to understand the possible score vectors, we want to look
at the hyperplanes in Rn defined by the equations

x1 = x2, x1 = x3, . . . , xi = xj , . . . , xn−1 = xn,
x1 = x2 + 1, x1 = x3 + 1, . . . , xi = xj + 1, . . . , xn−1 = xn + 1.

The Shi arrangement Shi(n) is the set of all such hyperplanes.

The Shi arrangement separates Rn into regions that record the
possible outcomes from this scoring system.
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The Arrangement Shi(2)

y = x + 1

y = x
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The Arrangement Shi(3)
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The Arrangement Shi(3)
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z = y

y = x

z = x

z = y + 1 z = x + 1

y = x + 1
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Score Vectors for Shi(3)

y

z

x

y = z

x = z

x = z+1

x = y+1x = y

y = z+1
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Score Vectors for Shi(3)
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Score Vectors for Shi(3)
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Score Vectors for Shi(3)
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Score Vectors for Shi(3)
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The Shi Arrangement

Theorem 6 [Pak and Stanley]
Labeling with score vectors gives a function

{regions of Shi(n)} → {parking functions of length n}

that is a bijection!

In particular, the number of regions in Shi(n) is (n + 1)n−1.
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Conclusion

The numbers (n + 1)n−1 count lots of things:

I labeled trees on n + 1 vertices,

I long-term behaviors of the sandpile model with n vertices plus
a sink,

I superstable states of the dollar game with n vertices plus a
bank,

I parking functions for n cars,

I regions of the Shi arrangement in Rn,

I and, quite possibly, other beautiful combinatorial structures
that you will discover yourself (and please tell me).

What Else Can You Count. . . Benedictine College, April 2019



Thank you!
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