What Else Can You Count If You Can Count Trees?

Jeremy L. Martin
Department of Mathematics
University of Kansas

Benedictine College April 4, 2019

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- there is a path between any two vertices (connectedness);
- ▶ there are no closed loops (acyclicity).

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- ▶ there is a path between any two vertices (connectedness);
- ▶ there are no closed loops (acyclicity).

Not connected

Not acyclic

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- ▶ there is a path between any two vertices (connectedness);
- ▶ there are no closed loops (acyclicity).

Not connected

Not acyclic

Properties of Trees

- 1. Every tree with n vertices has exactly n-1 edges. (Any fewer and it cannot be connected; any more and it must contain a cycle.)
- 2. Every tree with at least two vertices has at least two leaves (vertices with only one neighbor).
- 3. We only care about **which vertices are connected**, not how the tree is depicted on the page. These trees are the same:

n = 1

1 tree

n = 1

1

1 tree

n = 2

1 tree

n = 1

1

1 tree

n = 2

1 tree

n = 3

3 trees

For n = 5, there are three tree shapes:

Total: 125 trees on 5 labeled vertices.

For n = 6, there are six tree shapes:

Total: 1296 trees on 6 labeled vertices.

Let T(n) = number of labeled trees on n vertices.

n	T(n)
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

Let T(n) = number of labeled trees on n vertices.

n	T(n)		
1	1	=	1^{-1}
2	1	=	2^0
3	3	=	3^1
4	16	=	4 ²
5	125	=	5 ³
6	1296	=	6 ⁴
7	16807	=	7 5
8	262144	=	8 6

Let T(n) = number of labeled trees on n vertices.

Theorem 1 $T(n) = n^{n-2}$ for all n.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- ▶ Delete it.
- Repeat until just two vertices are left.

- Find the leaf with the smallest label.
- ► Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

- Find the leaf with the smallest label.
- ▶ Write down its neighbor (not the leaf itself!)
- ▶ Delete it.
- Repeat until just two vertices are left.

$$P(T) = 712$$

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- ▶ Delete it.
- Repeat until just two vertices are left.

$$P(T) = 7128$$

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- ▶ Delete it.
- Repeat until just two vertices are left.

$$P(T) = 71282$$

- Find the leaf with the smallest label.
- ▶ Write down its neighbor (not the leaf itself!)
- ▶ Delete it.
- Repeat until just two vertices are left.

$$P(T) = 712826$$

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$P(T) = 712826$$

Fact: Every tree can be reconstructed from its Prüfer code, giving a bijection

$$\{\text{trees on } n \text{ vertices}\} \rightarrow \{(p_1, \dots, p_{n-2}): 1 \leq p_i \leq n\}$$

and the size of the right-hand set is clearly n^{n-2} .

Fact: Every tree can be reconstructed from its Prüfer code, giving a bijection

$$\{\text{trees on } n \text{ vertices}\} \rightarrow \{(p_1, \dots, p_{n-2}): 1 \leq p_i \leq n\}$$

and the size of the right-hand set is clearly n^{n-2} .

Corollary: The number of trees in which vertex i has exactly d_i neighbors is the coefficient of the monomial

$$x_1^{d_1}x_2^{d_2}\cdots x_n^{d_n}$$

in the expansion of $x_1x_2\cdots x_n(x_1+x_2+\cdots+x_n)^{n-2}$.

The **Matrix-Tree Theorem** (which dates back to 1845!) says that trees can be counted using linear algebra.

Long story short: T(n) is the determinant of the $(n-1) \times (n-1)$ matrix

$$\begin{pmatrix} n-1 & -1 & -1 & \cdots & -1 \\ -1 & n-1 & -1 & \cdots & -1 \\ -1 & -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -1 & -1 & \cdots & n-1 \end{pmatrix}$$

Convince yourself that its eigenvalues are n (with multiplicity n-2) and 1.

Start with a bucket of sand. Take out m piles. Let s_i be the number of grains of sand in the i^{th} pile.

- ▶ When a sandpile gets too big, it topples over.
 - Specifically, if $s_i \ge m$, then pile i spews sand in all directions, giving one grain of sand to each other pile and putting one grain back in the bucket.
- If no pile is too big, add one grain from the bucket to each pile.

How does the system evolve?

Let m = 2. Record the state the model is in by the pair (s_1, s_2) .

Let m = 2. Record the state the model is in by the pair (s_1, s_2) .

The states (0,1), (1,0), and (1,1) are called **critical**:

- ▶ no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

Let m = 2. Record the state the model is in by the pair (s_1, s_2) .

The states (0,1), (1,0), and (1,1) are called **critical**:

- no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

Fact: Every initial state evolves to exactly one critical state.

A possible evolution pattern for m = 3:

Complete list of critical states for m = 3:

222, 221, 212, 122, 211, 121, 112, 220, 202, 022, 012, 021, 102, 120, 201, 210.

Sandpiles and Shopping Sprees

Sandpile model (statistical physics)	•
Sandpiles Sand grains Big enough Toppling Sink Sink topples	Consumers Dollars Rich enough Shopping spree Bank Economic stimulus package

Joint Shopping Sprees

Does a shopping spree really require m?

Joint Shopping Sprees

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

Joint Shopping Sprees

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to Bob Ani gives a dollar to Chris

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to Bob Bob gives a dollar to Ani Bob gives a dollar to Chris Bob gives a dollar to Chris

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to Bob Bob gives a dollar to Ani Bob gives a dollar to Chris Bob gives a dollar to Chris

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

```
Ani gives a dollar to Bob Bob gives a dollar to Ani
Ani gives a dollar to Chris Bob gives a dollar to Chris
```

Ani and Bob only need \$1 each to go on a shopping spree together.

Does a shopping spree really require m?

Suppose that Ani and Bob go on shopping sprees at the same time.

Ani gives a dollar to Bob Bob gives a dollar to Ani Bob gives a dollar to Chris Bob gives a dollar to Chris

Ani and Bob only need \$1 each to go on a shopping spree together.

In a **joint shopping spree**, each consumer in a set X (not including the bank) gives \$1 to each consumer not in X (including the bank). This is possible if

$$s_i > m - |X| \quad \forall x \in X.$$

Superstable States

A state of the dollar game is called **superstable** if no simultaneous shopping sprees are possible.

Theorem 2

$$(s_1,\ldots,s_m)$$
 superstable $\iff (m-s_1,\ldots,m-s_m)$ critical

Theorem 3

There is a bijection

 $\{\text{superstable states}\} \rightarrow \{\text{labeled trees on } n \text{ vertices}\}.$

The proof uses the **Burning Algorithm** [Dhar, 1990].

Dhar's Burning Algorithm (A Sketch)

Let n = m + 1. Start with a superstable state $\mathbf{s} = (s_1, \dots, s_{n-1})$.

- ▶ For each i = 1, ..., n 1, place s_i firefighters at vertex i.
- Set vertex n on fire.
- The fire tries to spread from burned vertices to unburned vertices. Unburned vertices can deploy firefighters to protect themselves. (A firefighter cannot be moved once deployed.)
- ► Superstability of **s** is precisely equivalent to the condition that the fire eventually reaches every vertex!
- ▶ The route that the fire takes is a tree!
- ► Algorithm is reversible: **s** can be reconstructed from the output tree!

There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- ▶ Along come n cars trying to park. Each car has a preferred spot p_i .

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- ▶ Along come n cars trying to park. Each car has a preferred spot p_i .
- ► Each car drives to its preferred spot and tries to park there.

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- ▶ Along come n cars trying to park. Each car has a preferred spot p_i .
- ► Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is occupied, it takes the next available spot.

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- ▶ Along come n cars trying to park. Each car has a preferred spot p_i .
- Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is occupied, it takes the next available spot.
- ▶ Did I mention the pit full of snakes?

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

0	1	2	3	4	5

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

	0	1	2	3	4	5
ı						
1						

Example #1
$$(p_1, \dots, p_6) = (0, 3, 0, 4, 3, 0)$$

$$p_1 = 0$$

0	1	2	3	4	5

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

0	1	2	3	4	5
1					

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

	0	1	2	3	4	5
ĺ						
ı						
ı						

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

2

 $p_2 = 3$

0	1	2	3	4	5
1					

Z

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

0	1	2	3	4	5
1			2		

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

	0	1	2	3	4	5
ı						
1						

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

 $p_3 = 0$

0	1	2	3	4	5
1			2		

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

0	1	2	3	4	5
1	3		2		

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

 $p_4 = 4$

0	1	2	3	4	5
1	3		2		

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5

Example #1
$$(p_1, \dots, p_6) = (0, 3, 0, 4, 3, 0)$$

 $p_5 = 3$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

 $p_6 = 0$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Example #1
$$(p_1, ..., p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

Example #2 $(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$

Example #1
$$(p_1, \dots, p_6) = (0, 3, 0, 4, 3, 0)$$

$$p_1 = 0$$

Example #1
$$(p_1, ..., p_6) = (0, 3, 0, 4, 3, 0)$$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5
1					

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

$$p_2 = 3$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

3

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

0	1	2	3	4	5
1			2		

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

Example #2 $(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$

$$p_3 = 3$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

Example #2 $(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

$$p_4 = 4$$

Example #1
$$(p_1, ..., p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

Example #2 $(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

$$p_5 = 3$$

Example #1
$$(p_1, \ldots, p_6) = (0, 3, 0, 4, 3, 0)$$

Success!

Example #2
$$(p_1, \ldots, p_6) = (0, 3, 3, 4, 3, 0)$$

Oops.

1

2

3

4

2

$$p_5 = 3$$

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function** (**PF**) if it enables all cars to park without being eaten by snakes.

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function** (**PF**) if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a PF \iff i^{th} smallest entry is < i (for each i).

Parking Functions

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function** (**PF**) if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a PF \iff i^{th} smallest entry is < i (for each i).

(In particular, shuffling **p** does not change whether it is a PF.)

Parking Functions

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function** (**PF**) if it enables all cars to park without being eaten by snakes.

Theorem 4

 \mathbf{p} is a PF $\iff i^{th}$ smallest entry is < i (for each i).

(In particular, shuffling \mathbf{p} does not change whether it is a PF.)

Theorem 5

The number of PF of length n is $(n+1)^{n-1}$.

Parking Functions

Definition A sequence $\mathbf{p} = (p_1, \dots, p_n)$ is a **parking function** (**PF**) if it enables all cars to park without being eaten by snakes.

Theorem 4

p is a PF \iff i^{th} smallest entry is < i (for each i).

(In particular, shuffling \mathbf{p} does not change whether it is a PF.)

Theorem 5

The number of PF of length n is $(n+1)^{n-1}$.

In fact, parking functions are the same thing as superstable states!

Parking Functions and Superstable States

$$n=1$$
: 0

 $n=2$: 00 01
10

 $n=3$: 000 001 011 002 012 021
010 101 020 102 120
100 110 200 201 210

 $n=4$ (up to shuffling):
0000
0001 0002 0003
0011 0012 0013 0022 0023
0111 0112 0113 0122 0123

Number of PFs up to shuffling = Catalan number $\frac{1}{n+1}\binom{2n}{n}$

A Rather Slick Way To Count Parking Functions

- Remove the snakepit. Replace it with an extra parking spot (#n) and a return ramp (like an airport terminal).
- Number of preference lists **p** is now $(n+1)^n$.
- All cars will be able to park, and one spot $o(\mathbf{p})$ will be left open.
- ▶ Cyclically rotating \mathbf{p} also rotates $o(\mathbf{p})$.
- Therefore, all spots are equally likely to be open.
- **p** is a parking function \iff $o(\mathbf{p}) = n$.
- Number of parking functions = $(n+1)^n/(n+1) = (n+1)^{n-1}$.

Handicap Scoring

- Competitors in an individual event (e.g., marathon, bowling, pentathlon, Rubik's Cube) are seeded 1, 2, ..., n. Lower numbered seed = stronger player.
- ▶ Each competitor *i* achieves a score $x_i \in \mathbb{R}$ (the higher the better).
- We want to level the playing field by comparing each pair of players head-to-head. For each $1 \le i < j \le n$:
 - ▶ If $x_i < x_j$ ("upset"), then the underdog j scores a point.
 - ▶ If $x_j < x_i < x_j + 1$ ("chalk"), then no one scores a point.
 - ▶ If $x_j + 1 < x_i$ ("blowout"), then the favorite i scores a point.

Handicap Scoring

- ▶ If $x_i < x_i$ ("upset"), then the underdog j scores a point.
- ▶ If $x_i < x_i < x_i + 1$ ("chalk"), then no one scores a point.
- ▶ If $x_j + 1 < x_i$ ("blowout"), then the favorite i scores a point.

The Shi Arrangement

In order to understand the possible score vectors, we want to look at the hyperplanes in \mathbb{R}^n defined by the equations

$$x_1 = x_2,$$
 $x_1 = x_3,$..., $x_i = x_j,$..., $x_{n-1} = x_n,$ $x_1 = x_2 + 1,$ $x_1 = x_3 + 1,$..., $x_i = x_j + 1,$..., $x_{n-1} = x_n + 1.$

The **Shi** arrangement Shi(n) is the set of all such hyperplanes.

The Shi arrangement separates \mathbb{R}^n into regions that record the possible outcomes from this scoring system.

The Arrangement Shi(2)

The Arrangement Shi(3)

The Arrangement Shi(3)

The Shi Arrangement

Theorem 6 [Pak and Stanley] Labeling with score vectors gives a function

 $\{\text{regions of }Shi(n)\} \rightarrow \{\text{parking functions of length }n\}$

that is a bijection!

In particular, the number of regions in Shi(n) is $(n+1)^{n-1}$.

Conclusion

The numbers $(n+1)^{n-1}$ count lots of things:

- labeled trees on n+1 vertices.
- long-term behaviors of the sandpile model with n vertices plus a sink,
- superstable states of the dollar game with n vertices plus a bank,
- parking functions for n cars,
- regions of the Shi arrangement in \mathbb{R}^n ,
- and, quite possibly, other beautiful combinatorial structures that you will discover yourself (and please tell me).

Thank you!