What Else Can You Count If You Can Count Trees?

Jeremy L. Martin
Department of Mathematics
University of Kansas

Benedictine College
April 4, 2019

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Tree

Not connected

Not acyclic

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Tree

Not connected

Not acyclic

Trees

Tree: a nonempty set of vertices connected by edges, so that]

- there is a path between any two vertices (connectedness);
- there are no closed loops (acyclicity).

Tree

Not connected

Not acyclic

Properties of Trees

1. Every tree with n vertices has exactly $\boldsymbol{n} \mathbf{- 1}$ edges. (Any fewer and it cannot be connected; any more and it must contain a cycle.)
2. Every tree with at least two vertices has at least two leaves (vertices with only one neighbor).
3. We only care about which vertices are connected, not how the tree is depicted on the page. These trees are the same:

How Many Trees Are There On n Labeled Vertices?

How Many Trees Are There On n Labeled Vertices?

$$
\begin{equation*}
n=1 \tag{1}
\end{equation*}
$$

1 tree

How Many Trees Are There On n Labeled Vertices?

$n=1$1 tree
1 tree

How Many Trees Are There On n Labeled Vertices?

$n=1$
$n=2$
(1)-2
$n=3$
(1)-2-(3)

(1)-(3)-2

1 tree
1 tree

3 trees

How Many Trees Are There On n Labeled Vertices?

$$
\begin{align*}
& n=1 \\
& n=2 \\
& \text { (1)-2 } \\
& 1 \text { tree } \\
& 3 \text { trees } \tag{1}\\
& \text { (1)-2-(3-(4) (1)-(4)-(3) (2)-(3-(1)-4 } \\
& n=4 \\
& 1 \text { tree } \\
& 1 \text { tree } \\
& 3 \text { trees } \\
& 16 \text { trees }
\end{align*}
$$

How Many Trees Are There On n Vertices?

For $\boldsymbol{n}=5$, there are three tree shapes:

$5!/ 2=60$ trees

5 trees

$5!/ 2=60$ trees

Total: $\mathbf{1 2 5}$ trees on 5 labeled vertices.

How Many Trees Are There On n Vertices?

For $\boldsymbol{n}=6$, there are six tree shapes:

Total: 1296 trees on 6 labeled vertices.

How Many Trees Are There On n Vertices?

Let $T(n)=$ number of labeled trees on n vertices.

n	$T(n)$
1	1
2	1
3	3
4	16
5	125
6	1296
7	16807
8	262144

How Many Trees Are There On n Vertices?

Let $T(n)=$ number of labeled trees on n vertices.

n	$T(n)$	
1	1	$=1^{-1}$
2	1	$=2^{0}$
3	3	$=3^{1}$
4	16	$=4^{2}$
5	125	$=5^{3}$
6	1296	$=6^{4}$
7	16807	$=7^{5}$
8	262144	$=8^{6}$

How Many Trees Are There On n Vertices?

Let $T(n)=$ number of labeled trees on n vertices.

n	$T(n)$	
1	1	$=1^{-1}$
2	1	$=2^{0}$
3	3	$=3^{1}$
4	16	$=4^{2}$
5	125	$=5^{3}$
6	1296	$=6^{4}$
7	16807	$=7^{5}$
8	262144	$=8^{6}$

Theorem $1 \quad T(n)=n^{n-2}$ for all n.

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=7
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=71
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=712
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=7128
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=71282
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=712826
$$

Yeah, But How Do You Prove That? (\#1)

Prüfer code of a tree: the sequence $P(T)$ constructed as follows.

- Find the leaf with the smallest label.
- Write down its neighbor (not the leaf itself!)
- Delete it.
- Repeat until just two vertices are left.

$$
P(T)=712826
$$

Yeah, But How Do You Prove That? (\#1)

Fact: Every tree can be reconstructed from its Prüfer code, giving a bijection

$$
\{\text { trees on } n \text { vertices }\} \rightarrow\left\{\left(p_{1}, \ldots, p_{n-2}\right): 1 \leq p_{i} \leq n\right\}
$$

and the size of the right-hand set is clearly n^{n-2}.

Yeah, But How Do You Prove That? (\#1)

Fact: Every tree can be reconstructed from its Prüfer code, giving a bijection

$$
\{\text { trees on } n \text { vertices }\} \rightarrow\left\{\left(p_{1}, \ldots, p_{n-2}\right): 1 \leq p_{i} \leq n\right\}
$$

and the size of the right-hand set is clearly n^{n-2}.

Corollary: The number of trees in which vertex i has exactly d_{i} neighbors is the coefficient of the monomial

$$
x_{1}^{d_{1}} x_{2}^{d_{2}} \cdots x_{n}^{d_{n}}
$$

in the expansion of $x_{1} x_{2} \cdots x_{n}\left(x_{1}+x_{2}+\cdots+x_{n}\right)^{n-2}$.

Yeah, But How Do You Prove That? (\#2)

The Matrix-Tree Theorem (which dates back to 1845 !) says that trees can be counted using linear algebra.

Long story short: $T(n)$ is the determinant of the $(n-1) \times(n-1)$ matrix

$$
\left(\begin{array}{ccccc}
n-1 & -1 & -1 & \cdots & -1 \\
-1 & n-1 & -1 & \cdots & -1 \\
-1 & -1 & n-1 & \cdots & -1 \\
\vdots & \vdots & \vdots & & \vdots \\
-1 & -1 & -1 & \cdots & n-1
\end{array}\right)
$$

Convince yourself that its eigenvalues are n (with multiplicity $n-2)$ and 1.

The Sandpile Model

Start with a bucket of sand. Take out m piles. Let s_{i} be the number of grains of sand in the $i^{\text {th }}$ pile.

- When a sandpile gets too big, it topples over.

Specifically, if $s_{i} \geq m$, then pile i spews sand in all directions, giving one grain of sand to each other pile and putting one grain back in the bucket.

- If no pile is too big, add one grain from the bucket to each pile.

How does the system evolve?

The Sandpile Model

Let $m=2$. Record the state the model is in by the pair $\left(s_{1}, s_{2}\right)$.

The Sandpile Model

Let $m=2$. Record the state the model is in by the pair $\left(s_{1}, s_{2}\right)$.

The states $(0,1),(1,0)$, and $(1,1)$ are called critical:

- no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

The Sandpile Model

Let $m=2$. Record the state the model is in by the pair $\left(s_{1}, s_{2}\right)$.

The states $(0,1),(1,0)$, and $(1,1)$ are called critical:

- no pile other than the sink can topple ("stability")
- these states appear repeatedly as the model evolves ("recurrence")

Fact: Every initial state evolves to exactly one critical state.

The Sandpile Model

A possible evolution pattern for $m=3$:

Complete list of critical states for $m=3$:
222, 221, 212, 122, 211, 121, 112, 220, 202, 022, 012, 021, 102, 120, 201, 210.

Sandpiles and Shopping Sprees

Sandpile model Dollar game
 (statistical physics) (economics)

Sandpiles	Consumers
Sand grains	Dollars
Big enough	Rich enough
Toppling	Shopping spree
Sink	Bank
Sink topples	Economic stimulus package

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?
Suppose that Ani and Bob go on shopping sprees at the same time.

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?
Suppose that Ani and Bob go on shopping sprees at the same time.
Ani gives a dollar to Bob
Ani gives a dollar to Chris

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?
Suppose that Ani and Bob go on shopping sprees at the same time.
Ani gives a dollar to Bob Bob gives a dollar to Ani
Ani gives a dollar to Chris Bob gives a dollar to Chris

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?
Suppose that Ani and Bob go on shopping sprees at the same time.
Ani gives a dollar to Bob Bob gives a dollar to Ani
Ani gives a dollar to Chris Bob gives a dollar to Chris

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?
Suppose that Ani and Bob go on shopping sprees at the same time.
Ani gives a dollar to Bob Bob gives a dollar to Ani
Ani gives a dollar to Chris Bob gives a dollar to Chris
Ani and Bob only need $\$ 1$ each to go on a shopping spree together.

Joint Shopping Sprees

Does a shopping spree really require $\$ m$?

Suppose that Ani and Bob go on shopping sprees at the same time.
Ani gives a dollar to Bob Bob gives a dollar to Ani
Ani gives a dollar to Chris Bob gives a dollar to Chris
Ani and Bob only need $\$ 1$ each to go on a shopping spree together.
In a joint shopping spree, each consumer in a set X (not including the bank) gives $\$ 1$ to each consumer not in X (including the bank). This is possible if

$$
s_{i}>m-|X| \quad \forall x \in X
$$

Superstable States

A state of the dollar game is called superstable if no simultaneous shopping sprees are possible.

Theorem 2
$\left(s_{1}, \ldots, s_{m}\right)$ superstable $\Longleftrightarrow\left(m-s_{1}, \ldots, m-s_{m}\right)$ critical

Theorem 3
There is a bijection
\{superstable states $\} \rightarrow$ \{labeled trees on n vertices $\}.$

The proof uses the Burning Algorithm [Dhar, 1990].

Dhar's Burning Algorithm (A Sketch)

Let $n=m+1$. Start with a superstable state $\mathbf{s}=\left(s_{1}, \ldots, s_{n-1}\right)$.

- For each $i=1, \ldots, n-1$, place s_{i} firefighters at vertex i.
- Set vertex n on fire.
- The fire tries to spread from burned vertices to unburned vertices. Unburned vertices can deploy firefighters to protect themselves. (A firefighter cannot be moved once deployed.)
- Superstability of \mathbf{s} is precisely equivalent to the condition that the fire eventually reaches every vertex!
- The route that the fire takes is a tree!
- Algorithm is reversible: s can be reconstructed from the output tree!

Parking Functions

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.

Parking Functions

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- Along come n cars trying to park. Each car has a preferred spot p_{i}.

Parking Functions

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- Along come n cars trying to park. Each car has a preferred spot p_{i}.
- Each car drives to its preferred spot and tries to park there.

Parking Functions

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- Along come n cars trying to park. Each car has a preferred spot p_{i}.
- Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is occupied, it takes the next available spot.

Parking Functions

- There are n parking spaces on a one-way street, labeled $0, \ldots, n-1$.
- Along come n cars trying to park. Each car has a preferred spot p_{i}.
- Each car drives to its preferred spot and tries to park there.
- If a car's preferred spot is occupied, it takes the next available spot.
- Did I mention the pit full of snakes?

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

3

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

$\mathbf{0}$	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5
1					

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

3

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5
1			2		

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

3

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5
1	3		2		

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5
1	3		2	4	

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

0	1	2	3	4	5
1	3		2	4	5

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

$$
p_{6}=0
$$

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

$\mathbf{0}$	1	2	3	4	5

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5
1					

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5
1			2		

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5
1			2		

$$
p_{3}=3
$$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5
1			2	3	

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

$p_{4}=4$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

0	1	2	3	4	5
1			2	3	4

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

$p_{5}=3$

Parking Functions

Example \#1 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,0,4,3,0)$

Success!

0	1	2		3	4

Example \#2 $\quad\left(p_{1}, \ldots, p_{6}\right)=(0,3,3,4,3,0)$

Oops.
$p_{5}=3$

Parking Functions

Definition A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a parking function (PF) if it enables all cars to park without being eaten by snakes.

Parking Functions

Definition A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a parking function (PF) if it enables all cars to park without being eaten by snakes.

Theorem 4
\mathbf{p} is a PF $\Longleftrightarrow i^{\text {th }}$ smallest entry is $<i$ (for each i).

Parking Functions

Definition A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a parking function (PF) if it enables all cars to park without being eaten by snakes.

Theorem 4
\mathbf{p} is a PF $\Longleftrightarrow i^{\text {th }}$ smallest entry is $<i$ (for each i).
(In particular, shuffling \mathbf{p} does not change whether it is a PF.)

Parking Functions

Definition A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a parking function (PF) if it enables all cars to park without being eaten by snakes.

Theorem 4
\mathbf{p} is a PF $\Longleftrightarrow i^{\text {th }}$ smallest entry is $<i$ (for each i).
(In particular, shuffling \mathbf{p} does not change whether it is a PF.)

Theorem 5
The number of PF of length n is $(n+1)^{n-1}$.

Parking Functions

Definition A sequence $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right)$ is a parking function (PF) if it enables all cars to park without being eaten by snakes.

Theorem 4

\mathbf{p} is a PF $\Longleftrightarrow i^{\text {th }}$ smallest entry is $<i$ (for each i).
(In particular, shuffling \mathbf{p} does not change whether it is a PF.)

Theorem 5
The number of PF of length n is $(n+1)^{n-1}$.
In fact, parking functions are the same thing as superstable states!

Parking Functions and Superstable States

$$
\left.\begin{array}{llllll}
n=1: & 0 & & & & \\
n=2: & 00 & 01 \\
10
\end{array}\right]
$$

$n=4$ (up to shuffling):
0000
000100020003
$0011 \quad 0012 \quad 0013 \quad 0022 \quad 0023$
01110112011301220123
Number of PFs up to shuffling $=$ Catalan number $\frac{1}{n+1}\binom{2 n}{n}$

A Rather Slick Way To Count Parking Functions

- Remove the snakepit. Replace it with an extra parking spot ($\# n$) and a return ramp (like an airport terminal).
- Number of preference lists \mathbf{p} is now $(n+1)^{n}$.
- All cars will be able to park, and one spot $o(\mathbf{p})$ will be left open.
- Cyclically rotating \mathbf{p} also rotates $O(\mathbf{p})$.
- Therefore, all spots are equally likely to be open.
- \mathbf{p} is a parking function $\Longleftrightarrow o(\mathbf{p})=n$.
- Number of parking functions $=(n+1)^{n} /(n+1)=(n+1)^{n-1}$.

Handicap Scoring

- Competitors in an individual event (e.g., marathon, bowling, pentathlon, Rubik's Cube) are seeded $1,2, \ldots, n$.
Lower numbered seed $=$ stronger player.
- Each competitor i achieves a score $x_{i} \in \mathbb{R}$ (the higher the better).
- We want to level the playing field by comparing each pair of players head-to-head. For each $1 \leq i<j \leq n$:
- If $x_{i}<x_{j}$ ("upset"), then the underdog j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$ ("chalk"), then no one scores a point.
- If $x_{j}+1<x_{i}$ ("blowout"), then the favorite i scores a point.

Handicap Scoring

- If $x_{i}<x_{j}$ ("upset"), then the underdog j scores a point.
- If $x_{j}<x_{i}<x_{j}+1$ ("chalk"), then no one scores a point.
- If $x_{j}+1<x_{i}$ ("blowout"), then the favorite i scores a point.

The Shi Arrangement

In order to understand the possible score vectors, we want to look at the hyperplanes in \mathbb{R}^{n} defined by the equations

$$
\begin{array}{llllll}
x_{1}=x_{2}, & x_{1}=x_{3}, & \ldots, & x_{i}=x_{j}, & \ldots, & x_{n-1}=x_{n} \\
x_{1}=x_{2}+1, & x_{1}=x_{3}+1, & \ldots, & x_{i}=x_{j}+1, & \ldots, & x_{n-1}=x_{n}+1 .
\end{array}
$$

The Shi arrangement $\operatorname{Shi}(n)$ is the set of all such hyperplanes.
The Shi arrangement separates \mathbb{R}^{n} into regions that record the possible outcomes from this scoring system.

The Arrangement Shi(2)

The Arrangement Shi(3)

The Arrangement Shi(3)

$$
y=x \quad y=x+1
$$

Score Vectors for Shi(3)

The Shi Arrangement

Theorem 6 [Pak and Stanley]
Labeling with score vectors gives a function
$\{$ regions of $\operatorname{Shi}(n)\} \rightarrow$ \{parking functions of length $n\}$
that is a bijection!
In particular, the number of regions in $\operatorname{Shi}(n)$ is $(n+1)^{n-1}$.

Conclusion

The numbers $(n+1)^{n-1}$ count lots of things:

- labeled trees on $n+1$ vertices,
- long-term behaviors of the sandpile model with n vertices plus a sink,
- superstable states of the dollar game with n vertices plus a bank,
- parking functions for n cars,
- regions of the Shi arrangement in \mathbb{R}^{n},
- and, quite possibly, other beautiful combinatorial structures that you will discover yourself (and please tell me).

Thank you!

