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Background: Graph Laplacians and Critical Groups

Let G be a connected graph on vertex set [n] with no loops.
The adjacency matrix A = A(G ) is given by

aij = #{edges from i to j}, i , j ∈ [n].

The Laplacian matrix L = L(G ) is given by

`ij =

{
degG (i) for i = j ,

−aij for i 6= j ,
i , j ∈ [n].

That is, L = D − A, where D = diagonal matrix of vertex degrees.
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Background: Graph Laplacians and Critical Groups

Some standard facts about the Laplacian:

I rank L = n − 1

I ker L is one-dimensional, spanned by the all-ones vector 1.

I Zn/ im L ∼= Z⊕ K (G ), where K (G ), the critical group, has
cardinality equal to the number of spanning trees of G .

Idea: Replace L by another singular matrix of the form D ′ − A,
where D ′ is a diagonal matrix.
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Arithmetic Structures

Definition (Lorenzini, 1989)

An arithmetical graph consists of a connected graph G on [n] and
two vectors d, r ∈ Nn

>0 with gcd(ri ) = 1 such that

(diag(d)− A(G ))︸ ︷︷ ︸
L̃

r = 0.

I If d = deg(G ) and r = 1 then L̃ is the usual Laplacian.

Definition
Let (G ,d, r) be an arithmetical graph.
The critical group K (G ,d, r) is the torsion summand of coker L̃.
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Arithmetic Structures

I Motivation from algebraic geometry (Lorenzini ’89): study
curves C that degenerate into n components C1, . . . ,Cn with
|Ci ∩ Cj | = aij .

I Entries of d’s are self-intersection numbers
I Critical group K (G ,d, r) = group of components of the Néron

model of the Jacobian of the curve

I Lorenzini: “. . . by presenting here our results without any
reference to geometry, some non algebraic geometers will take
interest in this subject and bring new techniques to the study
of these matrices.”
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Arithmetic Structures: The Basics

Basic facts about arithmetic graphs (observed by Lorenzini):

Fact 1: Each of d or r determines the other.

I Either of d, r defines an arithmetic structure on G .

I The set of all arithmetic structures on G is written Arith(G ).

Fact 2: The “pseudo-Laplacian” L̃ = D − A has rank n− 1, and is
an M-matrix in the sense of numerical analysis.

I Every principal minor of M has positive determinant

I Chip-firing on M-matrices: Guzmán and Klivans, 2015
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Arithmetic Structures: The Basics

Fact 3: Every graph has at most finitely many arithmetical
structures.

Lorenzini’s proof was general and non-constructive (essentially by
reduction to Dickson’s lemma).

How many are there?
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Subdivision and Smoothing

A degree-2 vertex of an arithmetical graph can be added or deleted:

d1 d2
r1 r2

Subdivision Smoothing

d1 + 1 1 d2 + 1
r1 r1 + r2 r2

These operations are key to studying arithmetical structures on
paths and cycles (where all vertices have degree ≤ 2).
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Example: Arithmetic Structures on the Path P4

Let P4 be the path with four vertices.

An arithmetic structure (d, r) on P4 is defined by
d1 −1 0 0
−1 d2 −1 0
0 −1 d3 −1
0 0 −1 d4



r1
r2
r3
r4

 = 0 i.e.,

d1r1 = r2,
d2r2 = r1 + r3,
d3r3 = r2 + r4,
d4r4 = r3.

I gcd(r) = 1 plus first and last equations =⇒ r1 = r4 = 1.

I The two middle equations are equivalent to

r2
∣∣ r1 + r3, r3

∣∣ r2 + r4.
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Arithmetic Structures on the Path Pn

n = 2
d r
11 11

n = 3
d r

121 111
212 121

n = 4
d r

1221 1111
2131 1211
1312 1121
2213 1231
3122 1321

n = 5
d r

12221 11111
21321 12111
13131 11211
12312 11121
21412 12121
31231 13211
22141 12311
13213 11231
14122 11321
41222 14321
22214 12341
32132 13521
23123 12531
31313 13231
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Arithmetic Structures on Pn

Proposition (Oaxaca Group 2016+)

A sequence (r1, . . . , rn) is an arithmetic r-structure on Pn if and
only if r1 = 1, rn = 1, and ri |ri−1 + ri+1 for 2 ≤ i ≤ n − 1. In
particular,

|Arith(Pn)| = Cn−1 =
1

n

(
2n − 2

n − 1

)
.

I Interpretation #92 in Stanley’s Catalan Numbers

I Finer enumeration of Arith(Pn) reveals more Catalan
combinatorics
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Arithmetic Structures on Pn

For (d, r) ∈ Arith(Pn), let r(1) = #{i : ri = 1}.

Theorem (Oaxaca Group 2016+)

1. Every (d, r) ∈ Arith(Pn) has trivial critical group.

2. Every (d, r) ∈ Arith(Pn) satisfies r(1) = 3n − 2−
∑n

j=1 dj .

3. For every k ∈ [n], the number of arithmetic structures (d, r)
with r(1) = k is given by the ballot number

B(n − 2, n − k) =
k − 1

n − 1

(
2n − 2− k

n − 2

)
(the number of lattice paths from (0, 0) to (n − 2, n − k) that
do not cross above the line y = x).
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Arithmetic Structures on Pn

Theorem (OG 2016+)

The entries of d are distributed identically.
Specifically, for every i , k ∈ [n], the number

# {(d, r) ∈ Arith(Pn) | di = n − k − 1}

is given by the ballot number B(n − 2, k).
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Arithmetic Structures on Cn

Let Cn be the cycle on n ≥ 2 vertices.

Similarly to the path, the arithmetic r-structures on Cn are
characterized by the conditions

ri
∣∣ ri−1 + ri−1 ∀i ∈ [n]

(taking indices modulo n).

Subdividing and smoothing are defined similarly.
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Arithmetic Structures on Cn
Here are all the arithmetic structures on C2 for n = 2, 3, 4, up to
dihedral symmetry:

n = 2

d r
22 11

Total: 1

n = 3

d r #

222 111 1
331 112 3
521 123 6

Total: 10

n = 4

d r #

2222 1111 1
3231 1112 4
4141 1212 2
4321 1123 8
6221 1234 8
6131 1323 4
5213 1352 8

Total: 35

|Arith(C5)| = 126
|Arith(C6)| = 462
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Arithmetic Structures on Cn

Theorem (Corrales–Valencia 2016+; Lorenzini)

Let (d, r) be an arithmetic d-structure on Cn. Then:

1. Either d = 2 or min(di ) = 1.

2. If d has an “isolated 1,” i.e., di−1 > di = 1 < di+1, then

(a) (d, r) is the subdivision of some (d′, r′) ∈ Arith(Cn−1).

(b) K (Cn,d, r) ∼= K (Cn−1,d′, r′).

Theorem (OG 2016+)

r(1) = 3n −
∑n

i=1 di , and K (Cn,d, r) is cyclic of this order.
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Arithmetic Structures on Cn

Theorem (OG 2016+)

There is a bijection between arithmetic structures (d, r) on Cn with
r(1) = k and multisubsets of [n] of cardinality n − k.

In particular

# {(d, r) ∈ Arith(Cn) | r(1) = k} =

(
2n − k − 1

n − k

)
and

# Arith(Cn) =

(
2n − 1

n − 1

)
.
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Arithmetic Structures on Cn

Theorem (OG 2016+)

There is a bijection between arithmetic structures (d, r) on Cn with
r(1) = k and multisubsets of [n] of cardinality n − k.

Proof #1 (“United Airlines Bijection”): explicit algorithm;
equivariant w/r/t actions of Zn on Cn by rotation and on multisets
by addition modulo n.

Proof #2: idea is to “snip” a structure on Cn at one of its 1’s to
obtain a structure on Pn, then reuse what we know about paths.
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Arithmetic Structures on Other Graphs

It is much harder to count arithmetic structures for graphs other
than Pn and Cn.

Dn (Coxeter graph of type Dn — path with branch at end):
We have some computations but not enough for a conjecture.

Kn (complete graph): d-structures are positive integer solutions to
1/d1 + · · ·+ 1/dn = 1 (“weak Egyptian fractions”)

n 1 2 3 4 5 · · ·
# Arith(Kn) 1 1 10 215 12231 · · ·

(OEIS #A002967; very little known.)
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Thank you!
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