Arithmetical structures on graphs and Catalan combinatorics

Jeremy L. Martin
University of Kansas

University of St. Thomas
October 30, 2016

Acknowledgements

This project began at the "Sandpile Groups" workshop at Casa Matemática Oaxaca in November 2015. The group members are:

Carlos Alfaro
Benjamin Braun
Hugo Corrales
Scott Corry
Luis García Puente
Darren Glass
Nathan Kaplan
Lionel Levine
Hiram López
Jeremy Martin
Gregg Musiker
Carlos Valencia

Background: Graph Laplacians and Critical Groups

Let G be a connected graph on vertex set $[n]$ with no loops. The adjacency matrix $A=A(G)$ is given by

$$
a_{i j}=\#\{\text { edges from } i \text { to } j\}, \quad i, j \in[n] .
$$

The Laplacian matrix $L=L(G)$ is given by

$$
\ell_{i j}=\left\{\begin{array}{ll}
\operatorname{deg}_{G}(i) & \text { for } i=j, \\
-a_{i j} & \text { for } i \neq j,
\end{array} \quad i, j \in[n] .\right.
$$

That is, $L=D-A$, where $D=$ diagonal matrix of vertex degrees.

Background: Graph Laplacians and Critical Groups

Some standard facts about the Laplacian:

- $\operatorname{rank} L=n-1$
- $\operatorname{ker} L$ is one-dimensional, spanned by the all-ones vector 1 .
- $\mathbb{Z}^{n} / \operatorname{im} L \cong \mathbb{Z} \oplus K(G)$, where $K(G)$, the critical group, has cardinality equal to the number of spanning trees of G.

Idea: Replace L by another singular matrix of the form $D^{\prime}-A$, where D^{\prime} is a diagonal matrix.

Arithmetic Structures

Definition (Lorenzini, 1989)

An arithmetical graph consists of a connected graph G on [n] and two vectors $\mathbf{d}, \mathbf{r} \in \mathbb{N}_{>0}^{n}$ with $\operatorname{gcd}\left(r_{i}\right)=1$ such that

$$
\underbrace{(\operatorname{diag}(\mathbf{d})-A(G))}_{\tilde{L}} \mathbf{r}=0 .
$$

- If $\mathbf{d}=\boldsymbol{d e g}(G)$ and $\mathbf{r}=\mathbf{1}$ then \tilde{L} is the usual Laplacian.

Definition

Let ($G, \mathbf{d}, \mathbf{r}$) be an arithmetical graph.
The critical group $K(G, \mathbf{d}, \mathbf{r})$ is the torsion summand of coker \tilde{L}.

Arithmetic Structures

- Motivation from algebraic geometry (Lorenzini '89): study curves C that degenerate into n components C_{1}, \ldots, C_{n} with $\left|C_{i} \cap C_{j}\right|=a_{i j}$.
- Entries of d's are self-intersection numbers
- Critical group $K(G, \mathbf{d}, \mathbf{r})=$ group of components of the Néron model of the Jacobian of the curve
- Lorenzini: ". . . by presenting here our results without any reference to geometry, some non algebraic geometers will take interest in this subject and bring new techniques to the study of these matrices."

Arithmetic Structures: The Basics

Basic facts about arithmetic graphs (observed by Lorenzini):

Fact 1: Each of \mathbf{d} or \mathbf{r} determines the other.

- Either of \mathbf{d}, \mathbf{r} defines an arithmetic structure on G.
- The set of all arithmetic structures on G is written $\operatorname{Arith}(G)$.

Fact 2: The "pseudo-Laplacian" $\tilde{L}=D-A$ has rank $n-1$, and is an M-matrix in the sense of numerical analysis.

- Every principal minor of M has positive determinant
- Chip-firing on M-matrices: Guzmán and Klivans, 2015

Arithmetic Structures: The Basics

Fact 3: Every graph has at most finitely many arithmetical structures.

Lorenzini's proof was general and non-constructive (essentially by reduction to Dickson's lemma).

How many are there?

Subdivision and Smoothing

A degree-2 vertex of an arithmetical graph can be added or deleted:

These operations are key to studying arithmetical structures on paths and cycles (where all vertices have degree ≤ 2).

Example: Arithmetic Structures on the Path \mathcal{P}_{4}

Let \mathcal{P}_{4} be the path with four vertices.
An arithmetic structure (\mathbf{d}, \mathbf{r}) on \mathcal{P}_{4} is defined by

$$
\left[\begin{array}{cccc}
d_{1} & -1 & 0 & 0 \\
-1 & d_{2} & -1 & 0 \\
0 & -1 & d_{3} & -1 \\
0 & 0 & -1 & d_{4}
\end{array}\right]\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\right]=0 \quad \text { i.e., } \quad \begin{aligned}
& d_{1} r_{1}=r_{2}, \\
& d_{2} r_{2}=r_{1}+r_{3}, \\
& d_{3} r_{3}=r_{2}+r_{4}, \\
& d_{4} r_{4}=r_{3}
\end{aligned}
$$

- $\operatorname{gcd}(\mathbf{r})=1$ plus first and last equations $\Longrightarrow r_{1}=r_{4}=1$.
- The two middle equations are equivalent to

$$
r_{2}\left|r_{1}+r_{3}, \quad r_{3}\right| r_{2}+r_{4}
$$

Arithmetic Structures on the Path \mathcal{P}_{n}

Arithmetic Structures on \mathcal{P}_{n}

Proposition (Oaxaca Group 2016+)

A sequence $\left(r_{1}, \ldots, r_{n}\right)$ is an arithmetic r-structure on \mathcal{P}_{n} if and only if $r_{1}=1, r_{n}=1$, and $r_{i} \mid r_{i-1}+r_{i+1}$ for $2 \leq i \leq n-1$. In particular,

$$
\left|\operatorname{Arith}\left(\mathcal{P}_{n}\right)\right|=C_{n-1}=\frac{1}{n}\binom{2 n-2}{n-1}
$$

- Interpretation \#92 in Stanley's Catalan Numbers
- Finer enumeration of $\operatorname{Arith}\left(\mathcal{P}_{n}\right)$ reveals more Catalan combinatorics

Arithmetic Structures on \mathcal{P}_{n}

For $(\mathbf{d}, \mathbf{r}) \in \operatorname{Arith}\left(\mathcal{P}_{n}\right)$, let $\mathbf{r}(1)=\#\left\{i: r_{i}=1\right\}$.
Theorem (Oaxaca Group 2016+)

1. Every $(\mathbf{d}, \mathbf{r}) \in \operatorname{Arith}\left(\mathcal{P}_{n}\right)$ has trivial critical group.
2. Every $(\mathbf{d}, \mathbf{r}) \in \operatorname{Arith}\left(\mathcal{P}_{n}\right)$ satisfies $\mathbf{r}(1)=3 n-2-\sum_{j=1}^{n} d_{j}$.
3. For every $k \in[n]$, the number of arithmetic structures (\mathbf{d}, \mathbf{r}) with $\mathbf{r}(1)=k$ is given by the ballot number

$$
B(n-2, n-k)=\frac{k-1}{n-1}\binom{2 n-2-k}{n-2}
$$

(the number of lattice paths from $(0,0)$ to $(n-2, n-k)$ that do not cross above the line $y=x$).

Arithmetic Structures on \mathcal{P}_{n}

Theorem (OG 2016+)
The entries of \mathbf{d} are distributed identically. Specifically, for every $i, k \in[n]$, the number

$$
\#\left\{(\mathbf{d}, \mathbf{r}) \in \operatorname{Arith}\left(\mathcal{P}_{n}\right) \mid d_{i}=n-k-1\right\}
$$

is given by the ballot number $B(n-2, k)$.

Arithmetic Structures on \mathcal{C}_{n}

Let \mathcal{C}_{n} be the cycle on $n \geq 2$ vertices.
Similarly to the path, the arithmetic r-structures on \mathcal{C}_{n} are characterized by the conditions

$$
r_{i} \mid r_{i-1}+r_{i-1} \quad \forall i \in[n]
$$

(taking indices modulo n).

Subdividing and smoothing are defined similarly.

Arithmetic Structures on \mathcal{C}_{n}

Here are all the arithmetic structures on \mathcal{C}_{2} for $n=2,3,4$, up to dihedral symmetry:

$n=2$	$n=3$			$n=4$		
d $\quad \mathbf{r}$	d	r	\#	d	r	\#
22 11	222	111	1	2222	1111	1
Total: 1	331	112	3	3231	1112	4
	521	123	6	4141	1212	2
	Total: 10			4321	1123	8
				6221	1234	8
				6131	1323	4
				5213	1352	8
					Total:	

$\left|\operatorname{Arith}\left(\mathcal{C}_{5}\right)\right|=126$
$\operatorname{Arith}\left(\mathcal{C}_{6}\right) \mid=462$

Arithmetic Structures on \mathcal{C}_{n}

Theorem (Corrales-Valencia 2016+; Lorenzini)

Let (\mathbf{d}, \mathbf{r}) be an arithmetic d-structure on \mathcal{C}_{n}. Then:

1. Either $\mathbf{d}=\mathbf{2}$ or $\min \left(d_{i}\right)=1$.
2. If \mathbf{d} has an "isolated 1," i.e., $d_{i-1}>d_{i}=1<d_{i+1}$, then
(a) (\mathbf{d}, \mathbf{r}) is the subdivision of some $\left(\mathbf{d}^{\prime}, \mathbf{r}^{\prime}\right) \in \operatorname{Arith}\left(\mathcal{C}_{n-1}\right)$.
(b) $K\left(\mathcal{C}_{n}, \mathbf{d}, \mathbf{r}\right) \cong K\left(\mathcal{C}_{n-1}, \mathbf{d}^{\prime}, \mathbf{r}^{\prime}\right)$.

Theorem (OG 2016+)
$\mathbf{r}(1)=3 n-\sum_{i=1}^{n} d_{i}$, and $K\left(\mathcal{C}_{n}, \mathbf{d}, \mathbf{r}\right)$ is cyclic of this order.

Arithmetic Structures on \mathcal{C}_{n}

Theorem (OG 2016+)

There is a bijection between arithmetic structures (\mathbf{d}, \mathbf{r}) on \mathcal{C}_{n} with $\mathbf{r}(1)=k$ and multisubsets of $[n]$ of cardinality $n-k$.

In particular

$$
\#\left\{(\mathbf{d}, \mathbf{r}) \in \operatorname{Arith}\left(\mathcal{C}_{n}\right) \mid \mathbf{r}(1)=k\right\}=\binom{2 n-k-1}{n-k}
$$

and

$$
\# \operatorname{Arith}\left(\mathcal{C}_{n}\right)=\binom{2 n-1}{n-1}
$$

Arithmetic Structures on \mathcal{C}_{n}

Theorem (OG 2016+)
There is a bijection between arithmetic structures (\mathbf{d}, \mathbf{r}) on \mathcal{C}_{n} with $\mathbf{r}(1)=k$ and multisubsets of $[n]$ of cardinality $n-k$.

Proof \#1 ("United Airlines Bijection"): explicit algorithm; equivariant $\mathrm{w} / \mathrm{r} / \mathrm{t}$ actions of \mathbb{Z}_{n} on \mathcal{C}_{n} by rotation and on multisets by addition modulo n.

Proof \#2: idea is to "snip" a structure on \mathcal{C}_{n} at one of its 1 's to obtain a structure on \mathcal{P}_{n}, then reuse what we know about paths.

Arithmetic Structures on Other Graphs

It is much harder to count arithmetic structures for graphs other than \mathcal{P}_{n} and \mathcal{C}_{n}.
\mathcal{D}_{n} (Coxeter graph of type D_{n} — path with branch at end):
We have some computations but not enough for a conjecture.
K_{n} (complete graph): d-structures are positive integer solutions to $1 / d_{1}+\cdots+1 / d_{n}=1$ ("weak Egyptian fractions")

n	1	2	3	4	5	\cdots
\# Arith $\left(K_{n}\right)$	1	1	10	215	12231	\cdots

(OEIS \#A002967; very little known.)

Thank you!

References

- H. Corrales and C. Valencia, Arithmetical structures of graphs, arXiv:1604.02502
- J. Guzmán and C. Klivans, Chip-firing and energy minimization on M-matrices, J. Combin. Theory Ser. A 132 (2015), 14-31
- D. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), 481-501
- R.P. Stanley, Catalan Numbers, Cambridge U. Press, 2015.

