Stanley-Reisner Rings (10/24/02)

Speaker: Vic Reiner

$k(\Delta)$ associated a simplicial complex Δ on vertex set $V=k\left[x_{v}: v \in V\right] / I_{\Delta}$, where

$$
\begin{aligned}
I_{\Delta} & =\left\{x_{v_{1}}, \ldots, x_{v_{r}}:\left\{v_{1}, \ldots, v_{r}\right\} \notin \Delta\right\} \\
& =\text { arbitrary square-free monimial ideal }
\end{aligned}
$$

Motivation (i)

Arbitrary graded rings deform to $k[\Delta]$'s, leaving many properties (Knull dimension, Hilbert series, degree of projection embedding) unchanged; and having many homological invariants only increasing.

Motivation (ii)

For $k[d]$, almost any (ring-theoretic) homological invariant (e.g., $\operatorname{Tor}^{s}\left(k[\Delta]\right.$,), $H_{m}(k[\Delta])$ local cohomology) are computed via simplicial (co-) homology of Δ. E.g., dependence on the characteristic of the field k can be subtle for these ring invariants, but comes down to torsion for $H(\Delta, k)$.

$$
=\mathbb{R} P^{2} \text { has } k[\Delta]=k\left[x_{1}, x_{2}, \ldots, x_{6}\right] /\left(x_{1} x_{2} x_{3}, x_{1} x_{2} x_{6}, \ldots\right)
$$

with most of its homological invariants depending upon whether char $(k)=2$ or not, since

$$
\begin{aligned}
\tilde{H}_{i}(\Delta ; k) & =\left\{\begin{array}{ll}
0 & i>2 \\
k & i=2 \\
k & i=1 \\
0 & i=0
\end{array} \quad \text { if } \operatorname{char}(k)=2\right. \\
& =0 \quad \forall i, \quad \text { if } \operatorname{char}(k) \neq 2 .
\end{aligned}
$$

Motivation (iii)

For some combinatorial problems about simplicial complexes Δ, the approach via $k[\Delta]$ is the easy way or the only way. E.g., The upper bound conjecture (UBC) for simplicial polytopes and spheres (Motzkin 1957?)
CONJ: Δ a simplicial ($d-1$)-dimensional sphere (e.g., boundary of a simplicial convex polytope)
simple

where

$$
\begin{aligned}
\Delta_{c(n, d)} & =\text { boundary of the cyclic } d \text {-polytope } C(n, d) \text { with } n \text { vertices } \\
& =\text { convex hull of any } n \text { points on the moment curve }\left\{\left(t, t^{2}, \ldots, t^{d}\right): t \in \mathbb{R}\right\} \subset \mathbb{R}^{d}
\end{aligned}
$$

e.g. $n=6$

$C(6,2)$

C(6, 3)

$$
\left\{\left(t, t^{2}, t^{3}\right): t \in \mathbb{R}\right\}
$$

UBC is proven for convex polytopes by Peter Mcmullen in 1970 (?) using key observations about the n-vectors ...

$$
\begin{aligned}
& f(\Delta)\left(f_{-1}, f_{0}, f_{1}, f_{2}\right)=(1,5,9,6) \\
& h(\Delta)\left(h_{0}, h_{1}, h_{2}, h_{3}\right)=(1,2,2,1)
\end{aligned}
$$

				1			
			1		5		
		1		4		9	
	1		3		5		6
$(1$		2		2		$1)=h(\Delta)$	

So

$$
\begin{aligned}
\operatorname{Hilb}(k[\Delta], t) & =f_{-1}+f_{0}\left(\frac{t}{1-t}\right)+f_{1}\left(\frac{t}{1-t}\right)^{2}+f_{2}\left(\frac{t}{1-t}\right)^{3} \\
& =1+5\left(\frac{t}{1-t}\right)+9\left(\frac{t}{1-t}\right)^{2}+6\left(\frac{t}{1-t}\right)^{3} \\
& =\frac{h_{0}+h_{1} t+h_{2} t^{2}+f_{3} t^{3}}{(1-t)^{3}} \\
& =\frac{1+2 t+2 t^{2}+t^{3}}{(1-t)^{3}}
\end{aligned}
$$

McMullen's observation 1

UBC follows from

$$
h_{i}(\Delta) \leq\binom{ n-d+i-1}{i}
$$

where $n=f_{0}=\#$ of vertices.
(follows from explicit knowledge of f_{i} for boundary of $C(n, d)$ and a little mucking around...)

McMullen's observation 2

$h_{i}(\Delta) \leq\binom{ n-d+i-1}{i}$ is easy to prove by induction on $f_{d-1}=\#$ of facets (=maximal faces) for Δ which are pure shellable simplicial complies (of dimension $d-1$ with n vertices)
Δ is shellable if it can be built up by ordering facets F_{1}, F_{2}, \ldots so that $\forall i \geq 2$,

$$
F_{i} \cap \underbrace{\left(\overline{U_{j<i} F_{j}}\right)}
$$

sub complex gen'd by $F_{1}, F_{2}, \ldots, F_{i-1}$
is pure of codimension inside F_{i}
When $d=3, d-1=2$,

Brngesser \& Mani (1969?), Boundary of convex polytopes are shellable (this proves UBC)

McMullen's observation 3

For Δ shellable, $h_{i}(\Delta)$ counts something: it is equal to the number of facets F_{i} is shelling having $d-i$ new walls, i old walls, where $d-i$ new walls are not in $\overline{\cup_{j<i} F_{i}}$.

For shellable Δ,

Cor 1: $h_{i}(\Delta) \geq 0$
Cor 2: $h_{i}(\Delta)=h_{d-i}(\Delta)$ (provided Δ is the boundary of a d-dimensional polytope, or more generally has a shelling order whose reverse is also a shelling order).
$\overbrace{\text { Dehn }}^{1905} \overbrace{\text { Sommerville }}^{1927}$
$\overbrace{\text { Dehn }}-\overbrace{\text { Sommerville }}$ equations. (The reverse of a Barg-Mani shelling is still a shelling, and "old" \leftrightarrow "new")

