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ABSTRACT OF THE DISSERTATION

Graph Varieties

by

Jeremy Leander Martin

Doctor of Philosophy in Mathematics

University of California San Diego, 2002

Professor Nolan R. Wallach, Chair

We study configuration varieties parametrizing plane pictures P of a given graph

G, with vertices v and edges e represented respectively by points P(v) ∈ P2 and

lines P(e) connecting them in pairs. Three such varieties naturally arise: the

picture space X (G) of all pictures of G; the picture variety V(G), an irreducible

component of X (G); and the slope variety S(G), essentially the projection of V(G)

on coordinates me giving the slopes of the lines P(e). In practice, we most often

work with affine open subvarieties X̃ (G), Ṽ(G), S̃(G), in which the points P(v) lie

in an affine plane and the lines P(e) are nonvertical.

We prove that the algebraic dependence matroid of the slopes is in fact the

generic rigidity matroid M(G) studied by Laman et. al. [12], [8]. For each set

of edges forming a circuit in M(G), we give an explicit determinantal formula

for the polynomial relation among the corresponding slopes me. This polyno-

mial enumerates decompositions of the given circuit into complementary spanning

trees. We prove that precisely these “tree polynomials” cut out V(G) in X (G)

set-theoretically. We also show how the full component structure of X (G) can

xi



be economically described in terms of the rigidity matroid, and show that when

X (G) = V(G), this variety has Cohen-Macaulay singularities.

We study intensively the case that G is the complete graph Kn. Describing

S(Kn) corresponds to the classical problem of determining all relations among the

slopes of the
(

n
2

)
lines connecting n general points in the plane. We prove that the

tree polynomials form a Gröbner basis for the affine variety S̃(Kn) (with respect

to a particular term order). Moreover, the facets of the associated Stanley-Reisner

simplicial complex ∆(n) can be described explicitly in terms of the combinatorics

of decreasing planar trees. Using this description, we prove that ∆(n) is shellable,

implying that S(Kn) is Cohen-Macaulay for all n. Moreover, the Hilbert series of

S̃(Kn) appears to have a combinatorial interpretation in terms of perfect match-

ings.

xii



Introduction

The theory of configuration varieties lies at the intersection between algebraic

geometry and combinatorics. A configuration variety is defined as an algebraic

subset of a product of Grassmannian varieties, defined by containment conditions

among the individual factors. A hallmark of the theory is that the geometric

structure of a configuration variety can often be described very explicitly in terms

of the combinatorics of the underlying containment relations.

The simplest configuration variety, and the building block for all others, is the

Grassmannian Gr(n, r), the set of all r-dimensional subspaces of affine n-space over

a field k (typically algebraically closed). More generally, a configuration variety

may be defined as follows. Let

X = Gr(n, d1) × . . .× Gr(n, ds).

A configuration variety is then a set Y ⊂ X defined by a set of conditions of the

form Hi ⊂ Hj on points (H1, . . . , Hs) ∈ X. Perhaps the best-known example is

the (complete) flag variety F ln, defined by letting s = n and di = i for all i, and

imposing the conditions H1 ⊂ H2 ⊂ · · · ⊂ Hn. A classical application of combi-

natorics to algebraic geometry of Grassmannian and flag varieties is the Schubert

calculus , which relates the intersection theory on Grassmannians to partitions and

the symmetric group (see, e.g., [6]).

Much attention has been focused on configuration varieties that can be de-

1
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scribed in terms of the action of an algebraic group A. The flag variety F ln is

perhaps the seminal example: The general linear group GLn(k) acts transitively

on F ln, and the stabilizer of a given point is isomorphic to the Borel subgroup B

of upper triangular invertible matrices, so F ln may be regarded as the quotient

space GLn(k)/B. An important advantage of the algebraic-group approach is that

one can often avoid considering the explicit equations defining the configuration

variety; instead, geometric questions about the configuration variety can often be

reduced to combinatorial questions about the Weyl group of A. However, this

approach has yielded strong results only when the containment relations satisfy

certain conditions. For instance, Lakshmibai and Magyar study configuration va-

rieties arising from the chamber family of the reduced decomposition of a Weyl

group element [11], [13].

This dissertation aims to extend the theory of configuration varieties in a dif-

ferent direction. Specifically, we study algebraic varieties that parametrize plane

pictures P of a given graph G, with vertices v and edges e represented respectively

by points P(v) ∈ P2 and lines P(e) connecting them in pairs.

Three such varieties naturally arise. First of all, there is the picture space X (G)

of all pictures of G. Usually, X (G) is not irreducible. It is therefore natural to

restrict attention to a second variety, namely the irreducible component of X (G)

containing as a dense set those pictures in which the points P(v) are all distinct.

This most generic component of the picture space is called the picture variety

V(G). As we shall see, V(G) is cut out in X (G) purely by equations relating the

slopes of the lines P(e). The crucial matter for the whole study is to understand

the relations among these slopes. This leads us to consider the slope variety S(G),

which is essentially the projection of V(G) on coordinates me giving the slopes of

the lines P(e). In practice, we most often work with affine open subvarieties X̃ (G),

Ṽ(G), S̃(G), in which the points P(v) are required to lie in the affine plane A2 and

the lines P(e) are required to be nonvertical.
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In Chapter 1, we consider the features of varieties associated with an arbitrary

graph G. We shall see that the generic rigidity matroid M(G) studied by Laman

et. al. [12], [8] makes a somewhat surprising appearance here as the algebraic

dependence matroid of the slopes. For each set of edges forming a circuit in

the matroid M(G), we can write down an explicit determinantal formula for the

essentially unique polynomial relation among the corresponding slopes me. We

prove that precisely these relations cut out V(G) in X (G) set-theoretically. We

also show how the full component structure of X (G) can be economically described

in terms of the rigidity matroid, and show that when X (G) = V(G), this variety

has Cohen-Macaulay singularities.

The slope relation induced by each circuit in M(G) turns out to be a very

remarkable polynomial. All its terms are square-free, and they have a beauti-

ful combinatorial interpretation in terms of decompositions of the given circuit

into complementary spanning trees. We conjecture that these “tree polynomials”

should cut out V(G) scheme-theoretically as well as set-theoretically. We further

suspect that they may always form a universal Gröbner basis for the ideal of the

slope variety, and moreover, that both S(G) and V(G) are always Cohen-Macaulay.

In Chapter 2, we study intensively the case where G is the complete graph Kn.

(The problem of describing the slope variety S(Kn) is of a very classical kind: it is

exactly the problem of determining all relations among the slopes of the
(

n
2

)
lines

connecting n general points in the plane.) In this case, the tree polynomials form

a Gröbner basis for the affine variety S̃(Kn) (with respect to a particular term

order). Moreover, the facets of the associated Stanley-Reisner simplicial complex

∆(n) can be described explicitly in terms of the combinatorics of decreasing planar

trees. This description leads to a proof that ∆(n) is shellable (with respect to at

least one term ordering), which means that the variety S(Kn) is Cohen-Macaulay

for all n. Moreover, the Hilbert series of S̃(Kn) appears to have a combinatorial

interpretation in terms of perfect matchings.
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When we first embarked upon the study of graph varieties, before obtaining

the results indicated above, we already had some reasons to think they might be

interesting. Since these reasons remain relevant, let us mention them briefly. Graph

varieties provide the simplest non-trivial examples not fitting into Lakshmibai and

Magyar’s framework. Furthermore, for G = Kn, the graph variety V(G) is a

blowdown of the Fulton-Macpherson compactification of configuration spaces [7],

which desingularizes it. For general G, the same relation holds between V(G)

and the DeConcini-Procesi wonderful model of subspace arrangements [4]. We

expect that V(G) should not only be Cohen-Macaulay but should have rational

singularities. This would be equivalent to a cohomology vanishing theorem for

certain line bundles on the wonderful model, raising an important question for

further study.



Chapter 1

The Geometry of Graph Varieties

1.1 Definitions

We work over an algebraically closed field k. Affine and projective n-space

over k are denoted by An and Pn respectively; the Grassmannian variety of all

r-dimensional subspaces of kn is denoted by Gr(n, r).

The symbol ·∪ denotes a disjoint union. If n is a positive integer, we put

[n] = {1, 2, . . . , n}.

A graph G is a pair (V,E), where V = V (G) is a finite set of vertices and

E = E(G) is a set of edges , or unordered pairs of distinct vertices {v, w}. We

frequently abbreviate {v, w} by vw when no confusion can arise (for instance, when

the vertices are one-digit positive integers). The vertices v, w are the endpoints of

the edge vw. If G′ = (V ′, E′) is a graph with V ′ ⊂ V and E ′ ⊂ E, we say G′ is a

5



6

subgraph of G and write G′ ⊂ G. For W ⊂ V , we define

K(W ) = {vw | v, w ∈W, v 6= w},
E(W ) = E ∩K(W ),

G|W = (W,E(W )) (the induced subgraph on W ).

The complete graph on V is the graph (V,K(V )). We write Kn for the complete

graph on [n]. For E ⊂ E and v ∈ V , we define the valence of v with respect to E

to be

valE(v) = |{e ∈ E | v ∈ e}|
and the support or vertex support of E to be

V (F ) = {v ∈ V | valE(v) > 0} .

If v ∈ V (F ) then we say that F is supported at v.

For vertices v1, . . . , vs, we write

(v1, . . . , vs) = {v1v2, v2v3, . . . , vs−1vs} ⊂ E.

If the vi are all distinct, then (v1, . . . , vs) is called a path. If v1, . . . , vs−1 are distinct

and v1 = vs, then (v1, . . . , vs) is called a polygon or (s−1)-gon. A polygon is more

usually called a “cycle” or “circuit,” but we wish to reserve these words for other

uses.

G is connected if every pair of vertices are joined by a path, and is a forest

if at most one such path exists for every pair. A connected forest is called a

tree. A spanning tree of G (or of V ) is a tree T ⊂ E with V (T ) = V . A

connected component of G is a maximal connected subgraph; every graph has a

unique decomposition into connected components (where some components may

be isolated vertices).

A partition of a finite set V is a set A = {A1, . . . , As} of pairwise disjoint

subsets of V whose union is V . We write ∼A for the equivalence relation on V
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whose equivalence classes are the Ai’s. The sets Ai are called the blocks of A. We

distinguish two extreme cases, the discrete partition DV , all of whose blocks are

singletons, and the indiscrete partition IV , which has only one block. Finally, if A
and B are partitions of V , then we say that A refines B, written A � B, if every

block of A is contained in some block of B.

1.2 The Picture Space and Picture Variety of a

Graph

1.2.1 Pictures and the Picture Space

Throughout this section, we consider a graph G = (V,E) with |V | = n and

|E| = r. We define

Gr(G) =

(∏
v∈V

Gr(3, 1)

)
×
(∏

e∈E

Gr(3, 2)

)
. (1.1)

We may regard Gr(3, 1) and Gr(3, 2) as the sets of points and lines, respectively, in

the projective plane P2. For P ∈ Gr(G), we write P(v) and P(e) for the projections

of P on the indicated factors in (1.1).

Definition 1.2.1. A picture of G is a point P ∈ Gr(G) such that P(v) ∈ P(e)

whenever v ∈ e. The picture space X (G) is the set of all pictures of G. The picture

space is Zariski-closed in Gr(G), since the condition P(v) ∈ P(e) may be expressed

as an equation in homogeneous coordinates.

Note that X (G) ∼= X (G1) × X (G2) × . . . , where the Gi are the connected

components of G.
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1.2.2 The Affine Picture Space

Fix homogeneous coordinates

[a0 : a1 : a2]

on P2, identifying A2 with the points for which a0 6= 0 and giving affine coordinates

on A2

x = a1/a0, y = a2/a0.

The equations defining X (G) in homogeneous coordinates are somewhat awk-

ward to work with. However, all the geometric information we will require about

X (G) can be recovered from the following affine open subset of it, on which the

defining equations assume a more manageable form.

Definition 1.2.2. The affine picture space X̃ (G) is the open subvariety of X (G)

consisting of pictures P such that all points P(v) lie in A2 and no line P(e) is

parallel to the y-axis.

Note that X̃ (G) is open and dense in X (G), and that X (G) is covered by

finitely many copies of X̃ (G). In addition X̃ (G) has affine coordinates

(xv, yv) : v ∈ V,

(me, be) : e ∈ E,
(1.2)

where me and be denote respectively the slope and y-intercept of the line P(e).

Thus X̃ (G) is the vanishing locus (in A2n+2r, identified with an open subset of

Gr(G)) of the ideal generated by the equations

yv = mexv + be,

yw = mexw + be,
(1.3)

for each e = vw. We may eliminate the variables be from (1.3), obtaining r

equations

(yv − yw) = me(xv − xw). (1.4)
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We may also eliminate the variables yv. For every polygon P = (v1, . . . , vs, v1) of

G, we sum the equations (1.4) over the edges of P , obtaining the equation

L(P ) =

s∑
i=1

mei
(xvi

− xvi+1
) = 0. (1.5)

where ei = vivi+1 and the indices are taken modulo s. Given a solution (m,x) of

the equations (1.5), we may choose one y-coordinate arbitrarily and use (1.3) and

(1.4) to recover the coordinates yv and be. Putting

RG = k[me | e ∈ E],

R′
G = k[me, xv | e ∈ E, v ∈ V ],

(1.6)

we see that X̃ (G) ∼= A1 × X, where X is the subscheme of SpecR′
G

∼= A|V |+|E|

defined set-theoretically by the equations (1.5).

1.2.3 Cellules

There is a natural decomposition of X (G) into locally closed irreducible non-

singular subvarieties, which we call cellules . The decomposition is somewhat anal-

ogous to the decomposition of a flag variety into Schubert cells.

Definition 1.2.3. Let A = {A1, . . . , As} be a partition of V . The cellule of A in

X (G) is the quasiprojective subvariety

XA(G) = {P ∈ X (G) | P(v) = P(w) iff v ∼A w}. (1.7)

Unlike a Schubert cell, a cellule XA(G) is not isomorphic to an affine space. It

is, however, a smooth fiber bundle. Consider an edge e = vw with v ∼A w. Given

the point P(v) = P(w), the space of possiblities for the line P(e) is a copy of P1

(one of the q factors appearing in (1.8) below). On the other hand, if v 6∼A w,

then the coordinates of P(e) are determined uniquely by those of P(v) and P(w).
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Therefore XA(G) has the bundle structure

(P1)q → XA(G)

↓
U

(1.8)

where q = |{vw ∈ E | v ∼A w}|, and U = {(p1, . . . , ps) ∈ (P2)s | pi 6= pj for

i 6= j}.

It follows immediately from (1.8) that

dimXA(G) = 2s+ |{vw ∈ E | v ∼A w}| . (1.9)

Definition 1.2.4. Let G = (V,E) and P ∈ X (G). P is called generic if no two

of the points P(v) coincide. The discrete cellule V◦(G) is defined as the set of all

generic pictures. Note that V◦(G) = XD(G), where D is the discrete partition of

V (the partition into singleton sets). The picture variety of G is

V(G) = V◦(G).

By the preceding discussion, V(G) is an irreducible component of X (G) of dimen-

sion 2|V |. The affine picture variety of G is defined as

Ṽ(G) = V(G) ∩ X̃ (G).

Remark 1.2.5. For G = (V,E) and W ⊂ V , the coincidence locus of W is defined

as

CW = CW (G) = {P ∈ X (G) | P(v) = P(w) for all v, w ∈W}. (1.10)

Let G0 be the graph with vertices V = V (G) and no edges. We may regard V(G)

as the simultaneous blowup of (P2)n = X (G0) along the coincidence loci C{v,w}

for vw ∈ E. Indeed, the further blowup of (P2)n along all CW , where W ⊂ V is

connected, is an instance of the “wonderful model of subspace arrangements” of

DeConcini and Procesi [4]. This blowup is a desingularization of V(G). When G

is the complete graph Kn, this is the “compactification of configuration space” of

Fulton and MacPherson [7].
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Note that the only cellule which is closed in X (G) is the indiscrete cellule

XI(G), where I is the indiscrete partition of V (the partition with just one block).

Example 1.2.6. Let G = K2. Denote by D and I respectively the discrete and

indiscrete partitions of V = V (G) = [2]. The picture space X (K2) is the blowup

of P2 × P2 along the diagonal ∆ = {(p1, p2) ∈ P2 × P2 | p1 = p2}. The blowup

map

α : X (K2) → P2 × P2

is just the projection on the vertex coordinates. The exceptional divisor α−1(∆)

is the indiscrete cellule, which has dimension 3. Since there are no partitions of

V other than D and I, the complement of XI(K2) must equal the discrete cellule,

which has dimension 4 and is dense in X (K2). Thus V(K2) = X (K2).

Example 1.2.7. In general, the picture space X (G) is not irreducible. The first

example, and in many ways the fundamental one, is G = K4. Denote by D and

I respectively the discrete and indiscrete partitions of V = V (G) = [4]. By (1.9),

we have

dimV◦(K4) = 8 = dimXI(K4),

so XI(K4) is too big to be contained in the closure of V◦(K4). Hence V(K4) 6=
X (K4). As we will show later, the irreducible components of X (K4) are precisely

V(K4) and XI(K4).

We will soon see that the polynomials defining Ṽ(G) as a subvariety of X̃ (G)

involve only the variables me. In order to study these polynomials in isolation, we

define a third type of graph variety. As before, identify A2 with an open affine

subset of P2.

Definition 1.2.8. Let U be the set of pictures P ∈ V(G) such that all lines P(e)

meet A2; that is, no P(e) equals the line at infinity. Accordingly, every P(e) has

a well-defined “slope” in P1. Forgetting all the data of P except the slopes gives a

map

φ : U → (P1)r. (1.11)
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We define the slope variety S(G) as the image of φ, and the affine slope variety as

S̃(G) = S(G) ∩ (A1)r.

An element m = (me | e ∈ E) of S̃(G) is called an affine slope picture of G.

Remark 1.2.9. Restricting φ to Ṽ(G) produces a map

φ : Ṽ(G) � S̃(G). (1.12)

Note that every fiber of this map has dimension at least 3, because translation and

scaling do not affect slopes of lines.

We will eventually show that S̃(G) is defined set-theoretically by the same ideal

of RG that cuts out Ṽ(G) as a subvariety of X̃ (G). Our next goal is to identify

this ideal, for which we will need tools from the theory of combinatorial rigidity.

1.3 Combinatorial Rigidity Theory

The behavior of graph varieties is governed in various ways by a certain combi-

natorial object, the generic rigidity matroid . Accordingly, we begin this section by

sketching the elements of rigidity theory, collecting several facts which we will need

later. (Our treatment here is necessarily brief; for a detailed exposition, we refer

the reader to the monograph by Graver, Servatius and Servatius [8].) The main

new result of this section, Theorem 1.3.5, describes the fundamental connection

between the purely combinatorial theory of rigidity and the geometry of graph

varieties. As a corollary, we obtain an alternative characterization of the generic

rigidity matroid.

Let G = (V,E) be a connected graph, and P a generic picture of G defined

over R. (For the sake of easy visualization, we abandon for the moment the

requirement that the ground field be algebraically closed.) Imagine a physical
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model of P in which the vertices and edges are represented by “ball joints” and

“rods” respectively. The rods are considered to be fixed in length, but are free to

rotate about the joints in the plane of the picture. Intuitively, G is length-rigid ,

or simply rigid , if the physical realization of any generic picture of G will “hold

its shape.” More precisely, G is rigid if the distance between any two vertices in a

generic picture is determined by the lengths of the edges in E. (This property is

called “generic rigidity” in [8], as distinguished from other types of rigidity which

we will not need here.)

For instance, let G be the 4-gon, i.e., V (G) = [4] and E(G) = 12, 23, 34, 41}.
G is not rigid, since there are infinitely many incongruent rhombuses with equal

side lengths.

1
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Figure 1.1: The 4-gon is not rigid

However, the graph G′ = (V,E ∪{24}) is rigid, because a generic affine picture

of G′ is determined up to isometries of R2 by the lengths of its edges—that is, by

the quantities
√

(xv − xw)2 + (yv − yw)2, where vw ∈ E(G′).

Definition 1.3.1. The length-rigidity matroid M(V ) (called the 2-dimensional

generic rigidity matroid in [8]) is the algebraic dependence matroid on the squares

of lengths of edges

(xv − xw)2 + (yv − yw)2, v, w ∈ V. (1.13)
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We may regard M(V ) as a matroid on K(V ), associating the polynomial (1.13)

with the edge vw. Accordingly, we say that a set of edges is independent in M(V ),

or rigidity-independent, if and only if the corresponding set of squared lengths is

algebraically independent over Q. Thus an edge set E is rigid if and only if E is a

spanning set of M(V ).

A fundamental result of rigidity theory is the following characterization of

the bases and independent sets of M(V ) ([8, Theorem 4.2.1], originally due to

G. Laman). An edge set E ⊂ K(V ) is rigidity-independent if and only if

|F | ≤ 2|V (F )| − 3 for all F ⊂ E. (1.14)

Furthermore, a rigidity-independent set E is a rigidity basis if and only if

|E| = 2|V | − 3. (1.15)

In addition, E is a rigidity circuit—a minimal dependent set of M(V )—if and only

if |E| = 2|V (E)| − 2 and every proper subset F of E satisfies (1.14) [8, Theorem

4.3.1].

The rigidity circuits (called “rigidity cycles” in [8]) may be described another

way. Define a rigidity pseudocircuit to be an edge set E equal to the edge-disjoint

union of two spanning trees of V (E). Then a rigidity circuit is a minimal rigidity

pseudocircuit [8, Lemma 4.9.3 and Theorem 4.9.1].

Example 1.3.2. Let r ≥ 3. The k-wheel is the graph with vertices {v0, v1, . . . , vk}
and edges

{v1v2, v2v3, . . . , vkv1} ∪ {v0v1, v0v2, . . . , v0vk}.
The k-wheel is a rigidity circuit for all k ≥ 3 [8, Exercise 4.13]. (In fact, the

3-wheel, which is isomorphic to K4, and the 4-wheel are the only rigidity circuits

on 5 or fewer vertices.) On the other hand, let G′ be the following graph:

E(G′) is a rigidity pseudocircuit, since it is the disjoint union of the spanning

trees {12, 15, 23, 34} and {13, 14, 24, 25}, but it is not a rigidity circuit since K4 (

G′.
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Figure 1.2: A pseudocircuit which is not a circuit

Definition 1.3.3. Let G = (V,E) be a rigidity pseudocircuit. A special spanning

tree of G is an edge set T ⊂ E such that both T and E \ T are spanning trees of

V . The set of special spanning trees of G is denoted by SST(G). The pair S, T is

called a 2-tree decomposition of E (or of G).

The special spanning trees of a rigidity circuit will play a fundamental role in

describing the equations which define Ṽ(G) and S̃(G).

Our local affine coordinates on X̃ (G) measure the slopes of edges rather than

their lengths, leading to an alternate notion of rigidity.

Definition 1.3.4. The slope-rigidity matroid Ms(V ) on K(V ) is the algebraic

dependence matroid on the rational functions

mvw =
yw − yv

xw − xv

.

Theorem 1.3.5. Let G = (V,E), with n = |V | and r = |E|. The following are

equivalent:

(i) E is independent in M(V );

(ii) E is independent in Ms(V );
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(iii) S̃(G) ∼= (A1)r;

(iv) V(G) = X (G).

Proof. (i) =⇒ (iv): Since X (G) is defined locally by 2r equations among 2n+2r

coordinates, we have

dimX ≥ 2n = dimV(G)

for every irreducible component X of X (G). Therefore V◦(G) is dense in X (G) if

and only if every other cellule has dimension < 2n.

Suppose E is rigidity-independent, hence satisfies (1.14). Let A be a partition

of V which is not the discrete partition; we will show that dimXA(G) < 2n. The

blocks of A may be numbered A1, . . . , As so that

|A1| = · · · = |At| = 1 and |Ai| > 1 for t < i ≤ s.

We may rewrite the cellule dimension formula (1.9) as

dimXA(G) = 2s +

s∑
i=1

|K(Ai) ∩ E|. (1.16)

If i ≤ t, then K(Ai) = ∅, while if i > t, then |K(Ai) ∩ E| ≤ 2|Ai| − 3 by (1.14).

Hence

dimXA(G) ≤ 2s +

s∑
i=t+1

(2|Ai| − 3) = 2s+ (2(n− t) − 3(s− t))

= 2n− s + t.

(1.17)

Since A is not the discrete partition, we have t < s, so dimXA(G) < 2n as desired.

(iv) =⇒ (iii): No nonzero element of RG vanishes on X̃ (G), since the projec-

tion of the indiscrete cellule X̃I(G) on the second factor in (1.1) is surjective. On

the other hand, every element of RG that vanishes on S̃(G) vanishes on Ṽ(G). We

conclude that if (iii) fails, then (iv) fails as well.
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(iii) =⇒ (ii): This is essentially the definition of the slope-rigidity matroid.

(ii) =⇒ (i): Suppose that E is independent in Ms(V ). Let F ⊂ E, and let H

be the graph (V (F ), F ). Then dim Ṽ(H) = 2|V (F )|, and the canonical surjection

Ṽ(H) → S̃(H) has fiber dimension ≥ 3 (since translation and scaling do not affect

slope), whence dim S̃(H) ≤ 2|V (F )| − 3. On the other hand, F is independent in

Ms(V ) as well, so {mf | f ∈ F} is algebraically independent, and these variables

form a system of parameters for S̃(GF ), so |F | ≤ 2|V (F )|−3. Therefore E satisfies

Laman’s condition (1.14) for independence in M(V ).

The equivalence of conditions (i) and (ii) implies the following:

Corollary 1.3.6. For every vertex set V , the length-rigidity matroid M(V ) and

the slope-rigidity matroid Ms(V ) are equal.

1.4 Equations Defining Ṽ(G)

Let G = (V,E) be a connected graph. In this section, we explicitly con-

struct an ideal I = IG defining the affine picture and affine slope varieties of G

set-theoretically. The generators of I turn out to have a beautiful combinatorial

description: their terms enumerate special spanning trees of the rigidity circuit

subgraphs of G.

We begin with some computations which are most conveniently expressed in

terms of the homology of G, considered as a 1-dimensional simplicial complex.

A directed edge of G is a symbol [v, w], where vw ∈ E. An orientation of an

edge e = vw is chosen by putting either e = [v, w] or e = [w, v]. In what follows,

we fix an arbitrary orientation for each edge of G.

Let C be the free Z-module on the directed edges of G, modulo the relations

[w, v] = −[v, w]. (In homological terms, C is the set of 1-chains.) Each vertex
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v ∈ V may be regarded as a linear functional on C by the formula

v ([x, y]) =



−1 v = x

1 v = y

0 otherwise.

(1.18)

Let Z be the submodule of C on which all vertex functionals are zero (homologically

speaking, the 1-cycles of G). Z is generated by the cycles

z(P ) =
s∑

i=1

[vi, vi+1], (1.19)

where P = (v1, . . . , vs, vs+1 = v1) is a polygon of G.

The support supp(γ) of a chain γ =
∑

e∈E cee is the set of edges e for which

ce 6= 0. Note that if γ ∈ Z and supp(γ) is contained in some tree, then γ = 0.

Let T be a spanning tree of G and S = E \ T . For each edge e ∈ S with

e = [v, w], the edge set T ∪ {e} contains a unique polygon of the form

PT (e) = (v = v0, v1, . . . , vs = w, v), (1.20)

to which corresponds the cycle

zT (e) = [v, v1] + · · ·+ [vs−1, w] + [w, v]

= − [v, w] +
s−1∑
i=0

[vi, vi+1]

= − e+
∑
f∈T

cTeff,

(1.21)

where cTef ∈ {0, 1,−1} for all f .

Note that the cycles {zT (e) | e ∈ S} generate Z for every spanning tree T . (If

ζ =
∑

e∈E bee ∈ Z, then let ζ ′ = ζ+
∑

e∈S bezT (e) =
∑

f∈T b
′
ee. Since supp(ζ ′) ⊂ T ,

we have ζ ′ = 0.) Furthermore, there is an injective map of Z-modules C → R′
G

sending [v, w] to mvw(xv − xw) for all directed edges [v, w]. The image of Z under
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this map is the Z-module generated by the polynomials L(P ) defined in (1.5).

Therefore, for every spanning tree T , the ideal defining X̃ (G) is generated by the

set {L(PT (e)) | e ∈ S}.

Put xf = xw − xv for every edge f = [v, w] ∈ T . Let e = [a, b] ∈ S. Then

xb − xa =
∑
f∈T

cTefxf , (1.22)

so

L(PT (e)) =

(
me

∑
f∈T

cTefxf

)
−
(∑

f∈T

cTefmfxf

)
=
∑
f∈T

cTef(me −mf )xf . (1.23)

We may summarize this calculation by a single matrix equation:

LT = [L(PT (e))] = MTXT = (DSCT − CTDT )XT , (1.24)

where
LT = the column vector [L(PT (e))]e∈S ;

CT =
[
cTef
]
e∈S,f∈T

;

MT =
[
cTef(me −mf)

]
e∈S,f∈T

;

DT = the diagonal matrix with entries mf , f ∈ T ;

DS = the diagonal matrix with entries me, e ∈ S;

XT = the column vector [xf ]f∈T .

(1.25)

Moreover, the defining equations (1.5) of X (G) are equivalent to the equation

LT = 0.

Example 1.4.1. Let G = K4. Orient every edge ij ∈ E(G) as [i, j], where i < j.

Let T = {[1, 2], [1, 3], [1, 4]}. For e = [v, w] 6∈ T , we have

PT (e) = [v, w] + [w, 1] + [1, v] = [v, w] − ([1, w] − [1, v]) ,
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so the coefficients cef defined in (1.21) are given by

f

[1, 2] [1, 3] [1, 4]

[2, 3]

e [2, 4]

[3, 4]




−1

−1

0

1

0

−1

0

1

1




(1.26)

and the equations (1.5) are

L(P23) = m23(x3 − x2) +m12(x2 − x1) +m13(x1 − x3) = 0,

L(P24) = m24(x4 − x2) +m12(x2 − x1) +m14(x1 − x4) = 0,

L(P34) = m34(x4 − x3) +m13(x3 − x1) +m14(x1 − x4) = 0.

(1.27)

The linear change of variables x̄v = xv − x1 produces the matrix equation

MTXT =



m12 −m23 m23 −m13 0

m12 −m24 0 m24 −m14

0 m13 −m34 m34 −m14





x̄2

x̄3

x̄4


 (1.28)

and MT = DSCT − CTDT .

If G = (V,E) is a rigidity circuit, then MT , CT , and CS are (|V |−1)× (|V |−1)

square matrices.

Lemma 1.4.2. Let G = (V,E) be a rigidity circuit, T ∈ SST(G) a special spanning

tree, and S = E \ T (which is also a spanning tree of G). Then CT = C−1
S .

Proof. The lemma is equivalent to the following: for all e, g ∈ S,∑
f∈T

cTef c
S
fg = δeg, (1.29)

where δeg is the Kronecker delta. Replacing each f on the right side of (1.21) with

f + z(S)f , we see that

ζ = e−
∑
f∈T

cTef
∑
g∈S

cSfgg = e−
∑
g∈S

g
∑
f∈T

cTefc
S
fg ∈ Z. (1.30)
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But supp(ζ) ⊂ S, so ζ = 0, implying (1.29).

Somewhat more generally, if G is a rigidity pseudocircuit and T, U are two

spanning trees of G, then every member of the set {L(PU(e)) | e ∈ E \ U} may

be expressed as an integer linear combination of the polynomials {L(PT (e)) | e ∈
E \T}, and vice versa. In addition {L(PT (e)) | e ∈ E \T} is linearly independent

(since each variable me, for e 6∈ T , appears in exactly one L(PT (e))). Similarly,

{L(PU(e)) | e ∈ E \ U} is linearly independent. Therefore

MTXT = BMUXU

for some invertible integer matrix B. In particular detB = ±1, so detMT is

independent, up to sign, of the choice of T . Therefore, we are justified in defining

τ(G) = detMT

up to sign. We call τ(G) the tree polynomial of G; the name is justified by the

following result.

Theorem 1.4.3. Let G = (V,E) be a rigidity circuit, |V | = n, and |E| = 2n− 2.

(i) The polynomial τ(G) is homogeneous of degree n−1 and squarefree (that is,

it is a sum of squarefree monomials). In addition, every coefficient of τ(G) is ±1.

(ii) The monomials of τ(G) correspond to the special spanning trees of G, i.e.,

τ(G) =
∑

T∈SST(G)

ε(T )mT . (1.31)

where ε(T ) ∈ {1,−1} for each T and mT =
∏

e∈T me.

(iii) ε(T ) = (−1)n−1ε(E \ T ) for every T ∈ SST(G).

(iv) τ(G) vanishes on Ṽ(G).

(v) τ(G) vanishes on S̃(G).

(vi) τ(G) is irreducible.
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Proof. (i) By the construction of τ(G), each of its monomials is of degree n − 1.

Let e ∈ E. If e ∈ T then me appears in only one column of MT , while if e ∈ S

then me appears in only one row of MT . It follows that τ(G) is squarefree.

(ii,iii) Let T be a spanning tree of G and S = E\T . By the construction of τ(G)

(in particular (1.24)), the monomials mT and mS appear in MT with coefficients

ε(T ) = (−1)n−1 detCT and ε(S) = detCT respectively. If T and S are special,

then CS = C−1
T by Lemma 1.4.2; in particular detCT = detCS = ±1 since CS and

CT have integer entries.

Now suppose that U ⊂ E has cardinality n − 1, but is not a special spanning

tree. Then either U or E \ U is not a tree; without loss of generality we may

assume the former. We will show that the coefficients of mU and mE\U in τ(G)

are both 0.

Let A ⊂ U be a minimal set of edges such that U \ A is a forest. Note that

A 6= ∅. Let T be a spanning tree of G containing U \A; then T ∩ (E \U) 6= ∅. Let

S = E \ T (so S ⊃ A). Construct the matrix MT as in (1.24). Note that

cTab = 0 for all a ∈ A, b ∈ T \ (U \ A) = T ∩ (E \ U), (1.32)

since the unique circuit of T ∪ {a} is contained in U \ A ∪ {a}.

Let a ∈ A. By (1.32), every entry of the row of MT corresponding to a is

either zero or of the form ±(ma −mu), where u ∈ U \A. In particular, no variable

dividing mE\U appears in this row, so the coefficient of mE\U in τ(G) is 0. On

the other hand, if b ∈ T \ (U \ A) = T ∩ (E \ U), we consider the column of MT

corresponding to b; by a similar argument, no variable dividing mU appears in this

column, so the coefficient of mU in τ(G) is 0.

(iv) Since the generic affine pictures are dense in Ṽ(G), it suffices to show

that τ(G) vanishes at each P ∈ V◦(G) ∩ Ṽ(G). Indeed, MT (P)XT (P) = 0 and

XT (P) 6= 0, so τ(G) = detMT vanishes at P.
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(v) This is immediate from (iv) and the definition of S̃(G).

(vi) Suppose that τ(G) = f1 · f2. For every e ∈ E, we have

degme
(τ(G)) = degme

(f1) + degme
(f2) = 1,

so E = E1 ·∪E2, where Ei = {e ∈ E | degme
(fi) = 1}. Let Gi = (V,Ei). Since

S̃(G) is by definition irreducible, either f1 or f2 vanishes on S̃(G) by part (v).

Assume without loss of generality that f1 vanishes on S̃(G). Then f1 vanishes on

S(G1) as well via the natural surjection S(G) → S(Gi). By Theorem 1.3.5, E1

must be rigidity-dependent, so E1 = E (because E contains no proper rigidity-

dependent subset). Therefore E2 = ∅ and the factorization of τ(G) is trivial.

Remark 1.4.4. Given a connected graph G = (V,E) with |E| = 2|V | − 2, not

necessarily a rigidity circuit, and a spanning tree T ⊂ E, we may construct the

matrix MT and define τ(G) = detMT as before. If G is not a rigidity pseudocir-

cuit, then the proof of Theorem 1.4.3 implies that τ(G) = 0. If G is a rigidity

pseudocircuit but not a circuit—say G contains a rigidity circuit G′ = (V ′, E′) as

a proper subgraph—then τ(G) is well-defined, up to sign, over all choices of T ,

and Theorem 1.4.3 goes through as before, with the exception that τ(G) is not

irreducible. Indeed, let T ′ be a spanning tree of G′ and T ⊃ T ′ a spanning tree of

G. Put S = E \ T and S ′ = E ′ \ T ′. Then the matrix MT has the form

[
MT ′ 0

∗ ∗

]

where the |V ′| − 1 uppermost rows correspond to edges in S ′ and the |V ′| − 1

leftmost columns correspond to edges in T ′. It follows that τ(G′) is a proper

divisor of τ(G).

Example 1.4.5. Let G = K4. Let T , MT , XT be as in Example 1.4.1. There are

two kinds of spanning trees of G: paths (a, b, c, d), and “stars,” such as T . The

paths are special; the stars are not. There are 4!/2 = 12 paths, and the sign of a
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path is given by the sign of the corresponding permutation in the symmetric group

S4, that is,

τ(G) = detMT = −1

2

∑
σ∈S4

sgn(σ)mσ1σ2mσ2σ3mσ3σ4 . (1.33)

On the other hand, if G′ is the graph of Example 1.3.2 (a rigidity pseudocircuit

which is not a circuit), then

τ(G′) = (m15 −m25) τ(G).

Theorem 1.4.6. Let G = (V,E) be a graph. Let I = IG be the ideal of RG

generated by all tree polynomials τ(C), where C ⊂ G is a rigidity circuit. Then:

(i) Ṽ(G) is the vanishing locus of IR′
G in X̃ (G).

(ii) S̃(G) is the vanishing locus of I in (A1)r.

Proof. We may assume without loss of generality that G is connected, since every

rigidity circuit is connected and Ṽ(G) is the product of the picture varieties of its

connected components.

(i): Let Y be the vanishing locus of IR′
G in X̃ (G). For every rigidity circuit

C ⊂ G, the tree polynomial τ(C) vanishes on Ṽ(C) by Theorem 1.4.3, so it vanishes

on Ṽ(G) as well. Hence Ṽ(G) ⊂ Y .

We now establish the reverse inclusion, proceeding by induction on n = |V |.
By Theorem 1.3.5, there is nothing to prove when E is rigidity-independent, in

particular when n ≤ 3.

Let P ∈ Y ∩ XA(G), where A = {A1, . . . , As} is a partition of V . If A is the

discrete partition (that is, s = n), then there is nothing to prove.

Next, consider the case that 2 ≤ s ≤ n− 1. For each i ∈ [s], let Gi = G|Ai
be
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the restriction of G to the vertex set Ai (note that |Ai| < n). Also let

U =
⋃
B�A

X̃B(G) =
{
P′ ∈ X̃ (G) | P′(v) 6= P′(w) if v 6∼A w

}
. (1.34)

U is an open subset of X̃ (G) containing P, and there is a natural open embedding

π : U →
s∏

i=1

X̃ (Gi).

Now IGi
⊂ IRG for every i. By induction, Ṽ(Gi) is the vanishing locus of IGi

in

X̃ (Gi). Therefore

P ∈ π−1

(
s∏

i=1

Ṽ(Gi)

)
. (1.35)

The set on the right of (1.35) is irreducible and contains V◦(G) as an open, hence

dense, subset. Therefore P ∈ Ṽ(G), as desired.

Finally, suppose that A is the indiscrete partition of V . Thus s = 1 and

A1 = V . Fix a spanning tree T of G and let MT be the matrix defined in (1.24).

Recall that MT is an (r−n+1)× (n− 1) matrix, with rows indexed by E \T and

columns indexed by T , and that X̃ (G) is defined by the equations MTXT = 0, and

that XT (P) = 0.

We claim that MT (P) has rank < n− 1. If MT has fewer than n− 1 rows then

there is nothing to prove. Otherwise, consider any (n − 1) × (n − 1) submatrix

M ′ of MT with rows indexed by the elements of some S ⊂ E \ T . Then T ∪ S

does not satisfy (1.14), so it contains a rigidity circuit C, and τ(C) divides detM ′

by Remark 1.4.4, establishing the claim. Thus the nullspace of MT (P) contains a

nonzero vector X ′. For every λ ∈ k, we have (MT )(λX ′) = 0, so there is a picture

Pλ with the same slope coordinates as P and x-coordinates of vertices given by

λX ′. The Pλ form an affine line in Y with P0 = P. Moreover, if λ 6= 0, then

Pλ 6∈ XA(G), hence Pλ ∈ Ṽ(G) as shown previously. Therefore P0 = P ∈ Ṽ(G) as

well.



26

(ii) Let Z be the vanishing locus of I in (A1)r. It is immediate from the definition

of the slope variety that Z ⊃ S̃(G). Now suppose that the tree polynomials vanish

at some affine slope picture m. Fix a spanning tree T of G and let X be a nullvector

of the matrix MT (m). The data m and X define an affine line in X̃ (G); by part

(i) of the theorem, the line is contained in Ṽ(G). Therefore m ∈ S̃(G).

In scheme-theoretic terms, we have proven that

Ṽ(G) ∼= A1 × SpecR′
G/

√
JG and

S̃(G) ∼= SpecRG/
√
IG

(1.36)

as reduced schemes, where JG = IGR
′
G + (L(P )). However, we do not know at

this point whether every function vanishing on Ṽ(G) or S̃(G) lies in JG or IG

respectively; i.e., whether these ideals are radical. In the special case that G is

a rigidity cycle, the ideal IG is radical because it is principal, generated by the

irreducible polynomial τ(G). We will prove in Chapter 2 that IG is radical when

G is the complete graph Kn.

1.5 Geometric Properties of X (G) and V(G)

In this section, we use the algebraic results of the previous sections to prove

certain geometric facts about the picture space. First, we give a combinatorial

condition which describes when one cellule of X (G) is contained in the closure of

another cellule. Using this result, we can give a complete combinatorial description

of the irreducible components of the picture space. Second, we prove that V(G) is

Cohen-Macaulay when G is rigidity-independent.

Definition 1.5.1. Let G = (V,E) be a graph, F ⊂ E, and A a partition of V .

We say A collapses F if V (F ) is contained in some block of A. In this case, the

equations defining X (G) impose no restrictions on the slopes of the lines P(e) for

pictures P ∈ XA(G) and edges e ∈ F .
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Theorem 1.5.2. Let G = (V,E) be a graph and A a partition of V . Then

XA(G) ⊂ V(G) if and only if no rigidity circuit of G is collapsed by A.

Proof. We first consider two special cases. If E is rigidity-independent, then

V(G) = X (G) by Theorem 1.3.5, so there is nothing to prove. Now suppose that E

is a rigidity circuit. The only partition of V which collapses E is the indiscrete par-

tition I. The cellule dimension formula (1.9) gives dimXI(G) = 2n = dimV◦(G),

so XI(G) 6⊂ V◦(G) = V(G). On the other hand, if A is neither the discrete nor

indiscrete partition, then dimXA(G) < 2n by (1.17) (since the inequality (1.14)

holds for every proper subset of a rigidity circuit). The indiscrete cellule is it-

self closed, and all components of X (G) have dimension ≥ 2n, so it follows that

XA(G) ⊂ V(G).

We turn now to the general case. By Theorem 1.4.6, it is enough to prove that

for every rigidity circuit C of G, τ(C) vanishes on X̃A(G) if and only if A does

not collapse C. One direction is immediate: if A collapses C, then τ(C) does not

vanish on X̃A(G) and consequently X̃A(G) 6⊂ Ṽ(G). On the other hand, suppose

that A does not collapse C. Consider the natural map X̃A(G) → X̃ (C). The image

Z of this map does not intersect the indiscrete cellule of X̃ (C). By the special case,

τ(C) vanishes on Z, hence on XA(G).

Given a graph G = (V,E) and a partition A = {A1, . . . , As} of V , we define a

graph G/A with vertices {Ai} and edges

{{Ai, Aj} | vw ∈ E for some v ∈ Ai, w ∈ Aj

}
.

Also, if A and B are partitions of V with A � B, then we write B/A for the

partition on the blocks of A setting two blocks equivalent if both are subsets of

the same block of B.

Theorem 1.5.3. Let G = (V,E) be a graph, and let A,B be partitions of V . Then

XB(G) ⊂ XA(G) if and only if the following conditions hold:
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(a) A � B;

(b) No rigidity circuit of G/A is collapsed by B/A; and

(c) If Ai and Aj are distinct blocks of A contained in the same block of B, then

there is at most one edge of E with one endpoint in Ai and one in Aj.

Proof. It is sufficient to prove the corresponding statement for the affine cellules

X̃B(G) = XB(G) ∩ X̃ (G) and X̃A(G) = XA(G) ∩ X̃ (G).

Suppose that XB(G) ⊂ XA(G). If v ∼A w, the equation P(v) = P(w) holds on

XB(G), so v ∼B w, which establishes (a). For every rigidity circuit C of G/A, the

function τ(C) vanishes on XB(G), so B/A cannot collapse C. Finally, if Ai and Aj

are contained in the same block of B and e, e′ form a counterexample to (c), then

the equation P(e) = P(e′) holds on XA(G) but not on XB(G), a contradiction.

Now suppose that conditions (a), (b) and (c) hold. Let E ′ = {vw ∈ E | v ∼A

w}, U = A|E′|, and

Z =
⋃
B�A

X̃B(G) =
{
P ∈ X̃ (G) | P(v) = P(w) if v ∼A w

}
. (1.37)

Observe that an affine picture P ∈ Z is equivalent to a picture of G/A, together

with the slopes of the lines P(e) for e ∈ E′. That is, we have an isomorphism

π : Z → X̃ (G/A) × U, (1.38)

Restricting π to the cellules under consideration, we have a commutative diagram

of quasiaffine varieties:

X̃A(G) ⊂ X̃A(G) ⊂ Z ⊃ X̃B(G)

↓ ↓ ↓ ↓
Ṽ◦(G/A) × U ⊂ Ṽ(G/A) × U ⊂ X̃ (G/A) × U ⊃ X̃B/A(G/A) × U

(1.39)
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where the vertical arrows are isomorphisms. From the diagram, X̃B(G) ⊂ X̃A(G)

if and only if X̃B/A(G/A) ⊂ Ṽ(G/A). By Theorem 1.5.2, this is equivalent to the

condition that no rigidity circuit of G/A is collapsed by B/A, as desired.

Remark 1.5.4. The notion of a pseudocircuit may be extended to multigraphs: a

multigraph (V,E) is called a pseudocircuit if |E| = 2|V |−2 and |F | ≤ 2|V (F )|−2

for all ∅ 6= F ⊂ E [8, p. 118]. For instance, a double edge is a pseudocircuit. In the

previous theorem, we may consider G/A as a multigraph, in which the multiplicity

of an edge {Ai, Aj} is the number of edges in E with one endpoint in each of Ai

and Aj . Then conditions (b) and (c) together are equivalent to the single condition

that B/A collapse no (multigraph) pseudocircuit of G/A.

An immediate consequence of Theorem 1.5.3 is the following characterization

of the irreducible components of X (G).

Theorem 1.5.5. Let G = (V,E). Then the irreducible components of X (G) are

exactly the subvarieties XA(G), where A is maximal with respect to the partial

order described in Theorem 1.5.3.

We now investigate the Cohen-Macaulay property. Our main tool is the fact

that if X is a Cohen-Macaulay scheme and Z is a “strongly Cohen-Macaulay”

subscheme of X, then the blowup of X along Z is Cohen-Macaulay [9, Theorem

4.2] (see also [16]). One example of a strongly Cohen-Macaulay subscheme is a

local complete intersection.

Lemma 1.5.6. Let G = (V,E), e = vw ∈ E, and H = (V,E \ {e}). Suppose that

V(H) is Cohen-Macaulay and that V(H) ∩ XA(H) has codimension ≥ 2 in V(H)

for all partitions A of V with v ∼A w. Then V(G) is Cohen-Macaulay.

Proof. Let Z be the (possibly non-reduced) intersection V(H)∩Ce(H), defined in

local affine coordinates by the equations xv = xw, yv = yw. Z is defined locally by

two equations, so each of its components has codimension ≤ 2. On the other hand,
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speaking set-theoretically, Ce(H) is the union of cellules XA(H) with v ∼A w; by

assumption, Ce(H) has codimension ≥ 2, so Z does as well. Therefore Z is a local

complete intersection in V(H), and V(G) is the blowup of V(H) along Z, so V(G)

is Cohen-Macaulay.

Theorem 1.5.7. Let G = (V,E), e = vw ∈ E, and H = (V,E \ {e}). If V(H) is

Cohen-Macaulay and e is not contained in any rigidity circuit subgraph of G, then

V(G) is Cohen-Macaulay.

Proof. Let A be a partition of V with v ∼A w. The cellule VA(G) = XA(G)∩V(G)

has positive codimension in V(G). Since no rigidity circuit contains e, the equations

defining VA(G) impose no constraints on the line P(e). Therefore

VA(G) ∼= VA(H) × P1.

In particular VA(H) has codimension ≥ 2 in V(H), since dimV(G) = dimV(H) =

2|V |. Thus V(G) is Cohen-Macaulay by Lemma 1.5.6.

Theorem 1.5.8. Let G = (V,E). If G is rigidity-independent, then V(G) is

Cohen-Macaulay.

Proof. If E = ∅, the result is trivial since V(G) ∼= (P2)|V |. Otherwise, we add one

edge at a time, applying Theorem 1.5.7 at each stage.



Chapter 2

The Slope Variety of the

Complete Graph

2.1 Introduction

In this chapter, we study the graph varieties V(G) and S(G) in the special case

that G is the complete graph Kn. Our results are summarized in Theorem 2.5.1.

First, we study the degree of the affine slope variety S̃(Kn). We set up a

bivariate recurrence giving a lower bound on the degree of the “flattened slope

variety” S(n, k), whose points correspond to pictures of Kn in which the vertices

1 . . . k are required to be collinear. We then show that this geometric recurrence

is equivalent to a purely combinatorial one enumerating decreasing planar trees,

allowing us to conclude that

deg S̃(Kn) ≤ (2n− 4)!

2n−2(n− 2)!
. (2.1)

It is possible to prove directly that the tree polynomials of all wheel subgraphs

of Kn (cf. Example 1.3.2) generate the ideal In = IKn of Theorem 1.4.6. In this

31
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chapter, we will prove a stronger statement: the tree polynomials of wheels are a

Gröbner basis for In under a large class of term orderings.

We begin with a detailed examination of the tree polynomials of wheels and

their leading monomials (fixing a convenient term order). We obtain an explicit

combinatorial characterization of the initial ideal in(In) (Theorem 2.3.14) and

of the maximal monomials not divisible by any such leading monomial (Theo-

rem 2.4.8). There is a bijection between these monomials and the decreasing

planar trees with n− 1 nodes. The number of such trees is given by the right side

of (2.1); therefore, the monomials are precisely the facets of the Stanley-Reisner

simplicial complex ∆(n) of in(In).

The Stanley-Reisner theory provides a powerful combinatorial tool for deter-

mining geometric properties of an ideal [3], [17]. In the present case, the complex

∆(n) is pure and shellable, which implies that S̃(Kn) is Cohen-Macaulay. The

proof of shellability allows us to give a recurrence for the h-vector of ∆(n), which

appears to have an unexpected connection to the combinatorics of perfect match-

ings.

2.2 A Lower Bound for the Degree of S̃(Kn)

2.2.1 The Recurrence

We derive a recurrence giving a lower bound for the degree of the affine slope

variety S̃(Kn). We will make use of the following facts about degree:

1. Degree is defined (set-theoretically) as follows. If X is a d-dimensional algebraic

subset of affine n-space, then a general hyperplane of codimension d will intersect

X in finitely many points. The degree ofX, degX, is then defined as the maximum

number of intersection points.
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2. If H is any hyperplane (of arbitrary codimension), then

deg(X ∩H) ≤ degX. (2.2)

3. For all varieties X and Y , we have deg(X × Y ) = (degX)(deg Y ).

4. If C1, . . . , Ck are the irreducible components of X, with dimCi = dimX for

1 ≤ i ≤ r and dimCi < dimX for i > r, then then

degX =

r∑
i=1

degCi. (2.3)

We will actually compute the degree of a slightly more general variety than

S̃(Kn), the “flattened slope variety” defined by

S̃(n, k) = {P ∈ S̃(Kn) | mij(P ) = 0 for 1 ≤ i < j ≤ k}. (2.4)

(Thus S̃(n, 1) = S̃(Kn), and S̃(n, n) consists of a single point.) We will derive

a recurrence giving lower bounds e(n, k) for the degrees of the varieties S̃(n, k).

Note that for a picture in S̃(n, k), the first k vertices lie on a common horizontal

line.

Our procedure is as follows. We intersect a sequence of hyperplanes with S̃(Kn)

by requiring a sequence of linear forms to vanish, one at a time. At each stage,

one of two things will happen. The first possibility is that the dimension drops by

one; in this case, the degree either remains unchanged or decreases. The second

possibility is that the algebraic set under consideration breaks into several com-

ponents. Each of these can be shown to be isomorphic to a variety of the form

S̃(i, j) × S̃(i′, j′). Summing the degrees of the components of maximal dimension

then yields the desired recurrence.

We will make frequent use of the canonical surjection φ : Ṽ(Kn) → S̃(Kn)

defined in (1.12).
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Lemma 2.2.1. dim S̃(n, k) =


0 k = n

2n− k − 2 k < n.

Proof. When k = n, S̃(n, k) is a point. Otherwise, consider a picture P ∈
φ−1(S̃(n, k)). We have two degrees of freedom in choosing P(v1), one for each

of the points P(v2), . . . ,P(vk) (since they must lie on the same horizontal line as

P(v1)) and two for each of the points P(vk+1), . . . ,P(vn). This totals 2n− k + 1.

Subtracting 3 for translation and scaling gives 2n− k − 2 as claimed.

Theorem 2.2.2. Let n ≥ 2 and k ∈ [n]. Then

deg S̃(n, k) ≥ e(n, k), (2.5)

where e(n, k) is defined recursively by

e(n, n) = 1,

e(n, k) = e(n, k + 1) + e(n− 1, k − 1) +
k−1∑
w=1

n−k−2∑
x=0

(
k − 1

w

)(
n− k − 1

x

)
e(w + x+ 1, w) e(n− w − x, k + 1 − w).

(2.6)

Proof. Let

S ′(n, k) = {m ∈ S(n, k) | mk,k+1(m) = 0} . (2.7)

Note that

dimS ′(n, k) = dimS(n, k) − 1 = 2n− k − 3 (2.8)

and that

deg S ′(n, k) ≤ deg S(n, k) (2.9)

by (2.2). If P ∈ φ−1(S ′(n, k)), then P(mk,k+1) = 0, so P(vk+1) must lie on the

same horizontal line as do P(v1), . . . ,P(vk). The next step is to break S ′(n, k) into
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pieces depending on which vertices other than P(v1) coincide with P(vk) (again,

for all P ∈ φ−1(S ′(n, k))).

Let W ⊂ [2, k], X ⊂ [k + 2, n], and Y = [k + 2, n] \ X. Set w = |W | and

x = |X| (so |Y | = n− k − x− 1). Define

S ′(n, k)W,X =

S ′(n, k) ∩ φ{P ∈ Ṽ(Kn) | P(vi) = P(vk+1) iff i ∈W ∪X}.
(2.10)

Case 1: W = ∅. In this case, it does not matter what X is, since the linear forms

m2,k+1, . . . , mk,k+1 must all vanish on S ′(n, k)W,X . Therefore

⋃
X

S ′(n, k)∅,X = S(n, k + 1). (2.11)

Note that this set has dimension 2n− k − 3.

Case 2: W 6= ∅. Consider the map π1 projecting S ′(n, k)W,X on the coordinates

of edges with both endpoints in W ∪X ∪ {k + 1}. A typical point in the image is

a slope picture of Kw+x+1 in which every mij vanishes for i, j ∈W . Therefore

π1 (S ′(n, k)W,X) ∼= S(w + x+ 1, w). (2.12)

Now consider the map π2 projecting S ′(n, k)W,X on the coordinates of edges with

both endpoints in [n] \ (W ∪ X) = [k + 1] \W ∪ Y . Note that the coordinates

mi,k+1 must all vanish for i 6∈ w, since for every P ∈ φ−1(S ′(n, k)W,X), the vertices

P(vi) and P(vk+1) lie on a common horizontal line but are not equal. Therefore, a

typical point in the image is a slope picture of Kn−w−x in which every mij vanishes

for i, j ∈ [k + 1] \W . Therefore

π2 (S ′(n, k)W,X) ∼= S(n− w − x, k + 1 − w). (2.13)

Combining (2.12) and (2.13) gives

S ′(n, k)W,X
∼= S(w + x+ 1, w) × S(n− w − x, k + 1 − w). (2.14)
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The dimension of the right side of (2.14) is
2n− k − 3 + (w − k + 1) X = [k + 2, n]

2n− k − 3 otherwise.

So S ′(n, k)W,X is a maximal-dimensional component of S(n, k) unless

Y = ∅ and W 6= [2, k]. (2.15)

By (2.3), we can now obtain a lower bound for degS ′(n, k) by summing the contri-

butions from all components not excluded by (2.15). The same lower bound holds

for deg S(n, k) by (2.9).

The lower bound is given by the recurrence (2.6). The term e(n, k + 1) comes

from (2.11), and the term e(n−1, k−1) comes from the component S ′(n, k)W,X with

W = [2, k] and X = [k + 2, n]. Finally, the double sum gives the contributions of

the components S ′(n, k)W,X described in case 2, with X 6= [k+2, n]. The binomial

coefficients count the number of ways to choose the sets W and X.

2.2.2 Decreasing Planar Trees

The recurrence (2.6) of Theorem 2.2.2 has a combinatorial interpretation in

terms of decreasing planar trees. We begin by defining decreasing planar trees and

listing some of their basic properties, then show that they are enumerated by a

recurrence equivalent to (2.6).

Definition 2.2.3. A rooted planar tree is a tree T = (V,E) with the following

additional structure.

(1) We designate a unique vertex v ∈ V as the root of T , writing v = rt(T ). For

w,w′ in T , we say that w is an ancestor of w′ (equivalently, w′ is a descendant of

w) iff there is a path in E of the form (rt(T ), . . . , w, . . . , w′). If w is an ancestor

of w′ and {w,w′} ∈ E, then w is the parent of w′ and w′ is a child of w. The root
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vertex has no parent; each other vertex has a unique parent. If two vertices have

the same parent, they are said to be siblings. A vertex with no children is called

a leaf ; a vertex that is not a leaf is internal .

(2) For every v ∈ V , the set of children of v is equipped with a total ordering

>v. Typically, we think of the children as being arranged left to right.

We will frequently use the term “nodes” to refer to the vertices of a planar tree,

in order to avoid confusion when the nodes are labeled with sets of vertices of Kn.

Definition 2.2.4. A binary tree is a rooted planar tree T in which every node has

either 0 or 2 children.

Definition 2.2.5. Let V be a finite set and > a total ordering of V (typically,

V ⊂ N). A rooted planar tree T on V is a decreasing planar tree if v > w whenever

v is an ancestor of w. (Note that there are no restrictions on the orderings >v.)

We set
Dec(V ) = {decreasing planar trees on V },
Dec(n) = Dec([n]),

d(n) = |Dec(n)|.
(2.16)

Note that rt(T ) = max(V ) for all T ∈ Dec(V ).

Note that |Dec(1)| = |Dec(2)| = 1. In addition, if T = (V,E) ∈ Dec(n−1), we

may construct a tree T ′ ∈ Dec(n) by incrementing all node labels and attaching a

new node labeled 1. The number of ways in which this can be done is |V |+ |E| =

2n− 3 (because 1 is either the first child of a vertex v, or the edge connecting 1 to

its parent is immediately to the right of some edge e), so

|Dec(n)| = (2n− 3)(2n− 5) . . . (3)(1) =
(2n− 2)!

(n− 1)! 2n−1
. (2.17)

A rooted planar tree on V can be represented by a diagram in which the children

of each vertex v are placed immediately below their parents, ordered left to right

according to >v. In the figure below, the two trees on the right are not equal.



38

9
� @

8
� A
7 2

5 6
� A
4

1

3

4
� @

1 3 2

4
� @

2 1 3

Figure 2.1: Examples of decreasing planar trees

We denote by T |v the subtree of T consisting of the node v and all its descen-

dants. The subtrees of rt(T ) are called principal subtrees. We denote the parent

of v by the symbol vP , and its ith child by vi. This notation can be iterated: for

instance, vP2 is the second child of the parent of v.

Let v and w be vertices of a binary tree T . We say that w is a left descendant

of v if

w ∈ {v1, v11, . . . },
and w is a right descendant of v if

w ∈ {v2, v22, . . . }.

Each set W of nodes of T has a well-defined supremum sup(W ), the “youngest

common ancestor” of its members.

The largest leaf of a decreasing planar tree T is

L(T ) = max{v ∈ V | v is a leaf}.

Finally, we define an operation which combines two decreasing planar trees.

Definition 2.2.6. Let T1 ∈ Dec(V1) and T2 ∈ Dec(V2), with V1 ∩ V2 = ∅ and

max(V1) < max(V2). The decreasing planar tree

T1 ∗ T2
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on V1 ∪ V2 is constructed by attaching rtT1 as the leftmost child of rt(T2).

4
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2 1
∗

7
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6 5

3

=
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� @

4
�A

2 1

6 5

3

Figure 2.2: The ∗ operation on decreasing planar trees

Lemma 2.2.7. For 1 < K ≤ N ,

d(N,K − 1) =

K−1∑
a=1

(
K − 1

a

)
d(a, a) d(N − a,K − a). (2.18)

Proof. The right side of (2.18) counts trees T ∈ Dec(N) of the form T = T ′ ∗ T ′′,

where
V (T ′) = A ⊆ [K − 1],

|A| = a,

L(T ′′) ≤ K.

(2.19)

Given such a tree T , form a tree f(T ) by detaching T ′ and reattaching it as the

leftmost subtree of K. Thus f(T ) ∈ Dec(N,K − 1).

On the other hand, let U ∈ Dec(N,K − 1). Note that K is an internal vertex

of U , and all descendants of K are in [K − 1]. Let U1 be the leftmost subtree of

K and form the tree g(U) = U1 ∗ (U − U1); i.e., detach U1 and reattach it as the

leftmost subtree of N . The result is a tree of type (2.19). The functions f and g

are inverses, so we have a bijection which establishes (2.18).
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Figure 2.3: An example with N = 9 and K = 7

Lemma 2.2.8. For 1 < K ≤ N ,

K−1∑
a=1

N−K−1∑
c=1

(
K − 1

a

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a) =

K−2∑
w=0

N−K−1∑
y=1

(
K − 1

w

)(
N −K − 1

y

)
d(w + y, w + 1) d(N − w − y,K − w − 1).

(2.20)

Proof. The left side of (2.20) counts trees T = T ′ ∗ T ′′ ∈ Dec(N) such that

V (T ′) = A ·∪C,
V (T ′′) = B ·∪ {K} ·∪D ·∪ {N},
A ·∪B = [K − 1],

|A| = a, |B| = K − a− 1, 1 ≤ a ≤ K − 1,

C ·∪D = [K + 1, N − 1],

|C| = c, |D| = N −K − c− 1, 1 ≤ c ≤ N −K − 1,

L(T ′) ∈ A,

L(T ′′) ∈ B ∪ {K}.

(2.21)
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Meanwhile, the right side of (2.20) counts trees U = U ′ ∗ U ′′ ∈ Dec(N) such that

V (U ′) = W ·∪Y,
V (U ′′) = X ·∪ {K} ·∪Z ·∪ {N},
W ·∪X = [K − 1],

|W | = w, |X| = K − w − 1, 0 ≤ w ≤ K − 2,

Y ·∪Z = [K + 1, N − 1],

|Y | = y, |Z| = N −K − y − 1, 1 ≤ y ≤ N −K − 1,

L(T ′) ∈ W ∪ {min(Y )},
L(T ′′) ∈ X.

(2.22)

Let T = T ′ ∗ T ′′, where T ′ and T ′′ are as in (2.21). Define a tree f(T ) as

follows. If K is not a leaf of T , then f(T ) = T . Otherwise, detach all descendants

of min(C) and reattach them to K in the same order. The resulting tree satisfies

(2.22), with

W = A \ {descendants of min(C)},
X = B ·∪ {descendants of min(C)},
Y = C,

Z = D.

(2.23)

A = {1, 2}
B = {3, 4}
C = {6}

D = {7, 8}

T

9
@�

6 4 8
� A
1 2

� A
5 7

3

f(T )

9
@�

6 4 8
� A
5

�
1 2

7

3

W = ∅
X = {1, 2, 3, 4}
Y = {6}
Z = {7, 8}

Figure 2.4: An example of the “otherwise” case with N = 9 and K = 5

Let U = U ′ ∗ U ′′, where U ′ and U ′′ are as in type (2.22). Define a tree g(U)

as follows. If min(Y ) is not a leaf of U , then g(U) = U . Otherwise, detach all
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descendants of K and reattach them to min(Y ) in the same order. The resulting

tree satisfies (2.21), with

A = W ·∪ {descendants of min(Y )},
B = X \ {descendants of min(Y )},
C = Y,

D = Z.

(2.24)

Note that for all T = T ′ ∗ T ′′ ∈ Dec(N) satisfying (2.21), min(C) is not a

leaf of T , because L(T ′) ∈ A, so all leaves of T ′ are in A. Similarly, for all

U = U ′∗U ′′ ∈ DPT (N) satisfying (2.22), K is not a leaf of U , because L(U ′′) ∈ X,

so all leaves of U ′ are in X. So if f(T ) = T , then g(f(T )) = T , and if g(U) = U ,

then f(g(U)) = U . Meanwhile, in the “otherwise” cases, the two surgeries are

inverse operations by definition. It follows that f and g are inverse functions,

hence bijections, establishing (2.20).

Lemma 2.2.9. For 1 < K ≤ N ,

d(N,K) = d(N − 1, K)

+

K−1∑
a=1

N−K−1∑
c=0

(
K

a

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a)

(2.25)

Proof. The set of trees in Dec(N,K) in which N has only one child is in bijection

with Dec(N − 1, K); the bijection is simply erasing node N . On the other hand, if

T ∈ Dec(N,K) is a tree in which N has more than one child, then we may write
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T as T ′ ∗ T ′′, where

V (T ′) = A ·∪C,
V (T ′′) = B ·∪D ·∪ {N},
A ·∪B = [K],

|A| = a, |B| = K − a, 1 ≤ a ≤ K − 1,

C ·∪D = [K + 1, N − 1],

|C| = c, |D| = N −K − c− 1, 0 ≤ c ≤ N −K − 1,

L(T ′) ∈ A,

L(T ′′) ∈ B,

(2.26)

and such trees are counted by the double sum in (2.25).

Lemma 2.2.10. For 1 < K ≤ N ,

d(N,K) = d(N − 1, K) + d(N,K − 1)

+
K−2∑
x=0

N−K−1∑
y=0

(
K − 1

x

)(
N −K

y

)

× d(N −K + x− y, x+ 1) d(K − x+ y,K − x− 1).

(2.27)

Proof. Using the Pascal relation(
K

a

)
=

(
K − 1

a

)
+

(
K − 1

a− 1

)
, (2.28)

we rewrite (2.25) as

d(N,K) = d(N − 1, K)

+

K−1∑
a=1

N−K−1∑
c=0

(
K − 1

a

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a)

+

K−1∑
a=1

N−K−1∑
c=0

(
K − 1

a− 1

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a).

(2.29)
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Breaking off the c = 0 term of the first sum, we obtain

d(N,K) = d(N − 1, K)

+

K−1∑
a=1

(
K − 1

a

)
d(a, a) d(N − a,K − a)

+
K−1∑
a=1

N−K−1∑
c=1

(
K − 1

a

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a)

+

K−1∑
a=1

N−K−1∑
c=0

(
K − 1

a− 1

)(
N −K − 1

c

)
d(a+ c, a) d(N − a− c,K − a).

(2.30)

Applying Lemma 2.2.7 to the single sum and Lemma 2.2.8 to the first double sum,

and putting a = z, c = y in the second double sum gives

d(N,K) = d(N − 1, K) + d(N,K − 1)

+

K−2∑
z=0

N−K−1∑
y=1

(
K − 1

z

)(
N −K − 1

y

)
d(z + y, z + 1) d(N − z − y,K − z − 1)

+

K−1∑
z=1

N−K−1∑
y=0

(
K − 1

z − 1

)(
N −K − 1

y

)
d(z + y, z) d(N − z − y,K − z).

(2.31)

In the first double sum, put x = z and w = y. Note that the summand is zero if

y = N−K, so we may change the upper limit of summation to N−K. Meanwhile,

in the second double sum, put x = z − 1 and w = y + 1. We obtain

d(N,K) = d(N − 1, K) + d(N,K − 1)

+

K−2∑
x=0

N−K∑
w=1

(
K − 1

x

)(
N −K − 1

w

)
d(x+ w, x+ 1) d(N − x− w,K − x− 1)

+
K−2∑
x=0

N−K∑
w=1

(
K − 1

x

)(
N −K − 1

w − 1

)
d(x+ w, x+ 1) d(N − x− w,K − x− 1).

(2.32)

Now applying the Pascal identity (2.28) gives (2.25) as desired.

Putting e(i, j) = d(i− 1, i− j) in (2.27) and setting

n = N + 1, k = N −K + 1, N = n− 1, K = n− k,
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we recover the recurrence (2.6). We have proved the following combinatorial lower

bound for degree:

Theorem 2.2.11.

deg S(n, k) ≥ d(n− 1, n− k). (2.33)

In particular, since S(n, 1) = S̃(Kn), we have

deg S̃(Kn) ≥ d(n− 1, n− 1) = |Dec(n− 1)| =
(2n− 4)!

2n−2(n− 2)!
.

As we will soon see, equality holds in (2.33). Some of the values of d(n, k) are

as follows:

Table 2.1: Some values of d(n, k)

k

1, 2 3 4 5 6 7 8 9

n = 2 1

3 1

4 3 1

5 15 7 1

6 105 57 15 1

7 945 561 195 31 1

8 10395 6555 2685 633 63 1

9 135135 89055 40725 12105 1995 127 1

10 2027025 1381905 684495 237555 52605 6177 255 1
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2.3 Tree Polynomials of Wheels

In this and the following sections, we investigate the algebraic properties of the

ideal IKn cutting out S̃(Kn) set-theoretically.

2.3.1 Preliminaries

Definition 2.3.1. Let V = {v0, . . . , vk} ⊂ [n]. The k-wheel W = W (v0; v1, . . . , vk)

is the graph with vertices V and edges

E = {v0v1, . . . , v0vk} ∪ {v1v2, . . . , vk−1vk, vkv1) . (2.34)
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Figure 2.5: Wheels

Note that there are 2k equivalent notations for every k-wheel. The vertex v0 is

called the center of W , and v1, . . . , vk are its spokes. An edge between two spokes

is called a chord ; an edge between a spoke and the center is a radius . We denote

the sets of chords and radii by Ch(W ) and Rd(W ) respectively. It is convenient

to put vk+1 = v1, so that

Ch(W ) = {vivi+1 | i ∈ [k]}.
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2.3.2 Special Spanning Trees of Wheels

Let W = W (v0; v1, . . . , vk) ⊂ Kn, and let SST(W ) be the set of special spanning

trees of W . For all i ∈ [k] and all T ∈ SST(W ), we have

valT (vi) = 1 or valT (vi) = 2. (2.35)

Note that not all spokes vi have the same valence with respect to T . Moreover,

1 ≤ valT (v0) = 2k + 2 −
k∑

i=1

valT (vi) ≤ k − 1. (2.36)

Lemma 2.3.2. Let T ∈ SST(W ) and i, j ∈ [k]. Then at least one of the four

edges

v0vi, v0vj , vivi+1, vj−1vj

lies in the complementary tree T = E(W ) \ T .

Proof. Suppose not. Let i, j be a counterexample such that j − i is as small as

possible. If necessary, we may reindex the spokes so that i ≤ j. Note that

if j − i = 0, then valT (vi) = 3;

if j − i = 1, then T contains the polygon (v0, vi, vj);

if j − i = 2, then T contains the polygon (v0, vi, vi+1, vj).

In each case we have a contradiction. Now suppose j − i > 2. The chords

vi+1vi+2, . . . , vj−2vj−1 cannot all be in T , or else (v0, vi, . . . , vj) ⊂ T . Let k and

l be the least and greatest indices, respectively, such that vkvk+1, vl−1vl 6∈ T and

i < k ≤ l < j. Now v0vk 6∈ T , or else (v0, vi, . . . , vk) ⊂ T . For the same reason

v0vl 6∈ T . But then the pair vk, vl constitutes a counterexample, and |l−k| < |j−i|,
contradicting the choice of i and j.
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Lemma 2.3.3. Let T ∈ SST(W ). At least one of the following statements is true:

For all i ∈ [k], v0vi ∈ T iff vivi+1 ∈ T , or

For all i ∈ [k], v0vi ∈ T iff vi−1vi ∈ T .

Proof. Suppose that both (2.3.3) and (2.3.3) fail. By Lemma 2.3.2, the only pos-

sibility is that

v0vi ∈ T, vivi+1 ∈ T, v0vj ∈ T , vj−1vj ∈ T (2.37)

for some i, j. Assume without loss of generality that i < j (reversing the indexing

if necessary). that j − i 6= 1, for then vivi+1 ∈ T ∩ T = ∅. Also, j − i 6= 2, for then

i+ 1 = j − 1 and either

{v0vi, vivi+1, v0vi+1} ⊂ T

or else

{v0vj , vj−1vj, v0vj−1} ⊂ T ,

both of which are impossible. Therefore j − i ≥ 3.

The chords vi+1vi+2, . . . , vj−2vj−1 cannot all be in T , or else T would contain

a polygon. Let h be the greatest number in [i+ 1, j − 2] such that

vh−1vh ∈ T.

The radii v0vh, . . . , v0vj−1 must all lie in T to prevent T from containing a polygon.

But then

{v0vi, v0vh, vivi+1, vh−1vh} ⊂ T,

violating Lemma 2.3.2.

In this sense, each T ∈ SST(W ) is oriented either “clockwise” or “counterclock-

wise.” Note that T and T always have the same orientation; see, e.g., Example 2.3.5

below.
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Proposition 2.3.4. Let d : [k] → [2] be a nonconstant function. There exist

exactly two special spanning trees of W = W (v0; v1, v2, . . . , vk) for which val(vi) =

d(i).

Proof. Put T = Rd(W ) in (1.24). The resulting matrix MRd(W ) has the form

mv0v1 −mv1v2 mv1v2 −mv0v2 0 . . . 0

0 mv0v2 −mv2v3 mv2v3 −mv0v3 . . . 0
...

...
. . .

...

mv0vk
−mvkv1 0 . . . . . . mvkv1 −mv0v1


 (2.38)

Taking the determinant, we obtain the formula

τ(W ) =
k∏

i=1

(mv0vi
−mvivi+1

) + (−1)k−1
k∏

i=1

(mvivi+1
−mv0vi+1

), (2.39)

(where the indices of spokes are taken modulo k), or equivalently

τ(W ) =

k∏
i=1

(mv0vi
−mvivi+1

) −
k∏

i=1

(mv0vi+1
−mvivi+1

). (2.40)

No two monomials coming from the same product in (2.40) cancel. In addition, if

T is a special spanning tree of W , then the monomial mT cannot appear in both

products in (2.40). Indeed, there is certainly a spoke vi which is incident to both

a chord and a radius in T ; that is, either

{v0vi, vivi+1} ⊂ T,

when mT cannot appear in the first product in (2.40), or else

{v0vi, vi−1vi} ⊂ T.

when mT cannot appear in the second product in (2.40).

The only cancellation that does occur involves the monomials mCh(W ) and

mRd(W ). Each of these appears in both products in (2.40), once with coefficient +1



50

and once with coefficient −1, so it cancels. Accordingly, to enumerate the number

of special spanning trees by the valences of spokes, we may substitute zizi+1 for

mvivi+1
and zi for mv0vi

in (2.40) (where the zi are indeterminates) and change all

the −’s to +’s. This yields the expression

k∏
i=1

(zi + zizi+1) +
k∏

i=1

(zi+1 + zizi+1) − 2

(
k∏

i=1

zi +
k∏

i=1

z2
i

)
= 2

∑
d

z
d(i)
i (2.41)

where the sum is taken over all nonconstant functions d : [k] → [2].

Example 2.3.5. Let d : [8] → [2] be given by

d(4) = d(6) = d(7) = d(8) = 1,

d(1) = d(2) = d(3) = d(5) = 1.

By Proposition 2.3.4, there are exactly two special spanning trees T, S of W =

W (0; 1, 2, . . . , 8) such that valT (i) = valS(i) = d(i) for all i ∈ [8]. In the figures

below, the edges in T and S are indicated by solid lines, and those in T and S by

dotted lines.

T = {03, 05, 06, 07, 12, 23, 45, 81}
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S = {01, 05, 07, 08, 12, 23, 34, 56}

•

• •

•

•

••

•

•
0

1 2

3

4

56

7

8

L
L

L
L

LL

L
L
L
L
LL

!!!!!

aaaaa

@
@

@··················
·········

····
····
·

···
···
···

······
···

·········

···
···
···

Figure 2.6: Special spanning trees of wheels

Observe that for all spokes v with {0, v} ∈ T , the chord {v−1, v} may be in T ,

but {v, v + 1} is definitely not. In other words, all paths in T consisting of chords
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(for instance, (3, 2, 1, 8)) proceed counterclockwise from a radius (in that case, 03).

The same is true for T . On the other hand, S and S are “oriented clockwise.”

Let d : [k] → [2] be a nonconstant function. Define the type of a chord vivi+1

with respect to d to be

t(vivi+1) = {d(i), d(i+ 1)}. (2.42)

For brevity we speak of “type-11”, “type-12,” and “type-22” chords. Note that

there must be a positive even number of type-12 chords. E.g., for the function d

defined in Example 2.3.5, we have

t (34) = t (45) = t (56) = t (81) = 12,

t (12) = t (23) = 22,

t (67) = t (78) = 11.

Lemma 2.3.6. Let i ∈ [k].

(i) If t(vivi+1) = 22, then vivi+1 ∈ T .

(ii) If t(vivi+1) = 11, then vivi+1 ∈ T .

Proof. If (i) is false, then the edges vi−1vi, vi+1vi+2, v0vi, v0vi+1 all lie in T , violating

Lemms 2.3.2. If (ii) is false, those edges all lie in T , again violating Lemma 2.3.2.

Define the type of a radius v0vi to be

t(v0vi) = {d(i− 1), d(i+ 1)}. (2.43)

As before, we will refer to “type-11” radii, etc. For the function d of Example 2.3.5,

we have
t (01) = t (03) = t (06) = t (08) = 12,

t (02) = t (04) = 22,

t (05) = t (07) = 11.
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Lemma 2.3.7. Let d : [k] → [2] be nonconstant, and i ∈ [k].

(i) If t(v0vi) = 22, then v0vi ∈ T .

(ii) If t(v0vi) = 11, then v0vi ∈ T .

Proof. The two statements are equivalent (just switch T and T ). We will prove

(i). If d(i) = 2, then vivi+1, vi−1vi ∈ T by Lemma 2.3.6, so to have valT (vi) = 2

we must have v0vi ∈ T . On the other hand, suppose d(i) = 1 and v0vi ∈ T . Then

vivi+1, vi−1vi ∈ T , and to have valT (vi±1) = 2 the edges vi−2vi−1, vi+1vi+2, v0vi−1,

v0vi+1 must all lie in T , violating Lemma 2.3.2.

Suppose now that

d(i) = 1, d(i+ 1) = d(i+ 2) = · · · = d(j) = 2, d(j + 1) = 1.

Then vi+1vi+2, . . . , vj−1vj ∈ T . If vivi+1 and vjvj+1 lie in T , then {vivi+1, . . . ,

vjvj+1} is a connected component of T , which is impossible. On the other hand, if

both vivi+1 and vjvj+1 lie in T , then v0vi+1 and v0vj lie in T ; those two radii, to-

gether with vi+1vi+2, . . . , vj−1vj , form a polygon in T , also a contradiction. There-

fore, exactly one of the chords vivi+1, vjvj+1 lies in T . The same argument goes

through if we switch “2” with “1” and T with T . Indeed, if we traverse the cir-

cumference of W , ignoring type-11 and type-22 chords and coloring type-12 chords

alternately red and blue, then T contains all the chords of one color and T contains

all those of the other color.

If it is given which chords lie in T and which in T , then each radius v0vi lies in

T iff

d(i) − |T ∩ {vi−1vi, vivi+1}| = 1.

By the previous remark, requiring that a single type-12 chord lie in T or T suffices

to determine T .

Alternatively, it suffices to specify whether a single type-12 radius v0vi lies in
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T or T . Without loss of generality t(vi−1vi) = 11 or 22 and t(vivi+1) = 12. We

know whether vi−1vi ∈ T , and the value of d(i) determines whether vivi+1 ∈ T .

To summarize:

Proposition 2.3.8. Let d : [k] → [2] be a nonconstant function, and T a spanning

tree of W (v0; v1, . . . , vk). Suppose that valT (vi) = d(i) for all i, and define the

type of each edge as in (2.42) and (2.43). Then T can be described as follows: it

consists of all type-22 chords, all type-11 radii, half the type-12 chords and half the

type-12 radii.

Finally, we will need the following “exchange rules.”

Lemma 2.3.9. Let T ∈ SST(W ). Suppose vi−1vi, vivi+1 ∈ T , so that v0vi ∈ T

perforce. Assume without loss of generality that the path in T from vi to v0 passes

through vi+1. Then

T \ {v0vi} ∪ {vivi+1}, T \ {vivi+1} ∪ {v0vi}
is a 2-tree decomposition of W .

Proof. Since vi is a leaf of T , it is clear that T \ {v0vi} ∪ {vivi+1} is a spanning

tree of W . Meanwhile, vi and v0 are in different components of T \ {vivi+1}, so

T \ {vivi+1} ∪ {v0vi} is a tree.

Lemma 2.3.10. Let T ∈ SST(W ). Suppose vi−1vi, vivi+1 ∈ T , so that v0vi ∈ T

perforce. Assume without loss of generality that the path in T from vi to v0 passes

through vi+1. Then v0vi−1 ∈ T , and

T \ {v0vi−1} ∪ {vi−1vi}, T \ {vi−1vi} ∪ {v0vi−1}
is a 2-tree decomposition of W .

Proof. vi−1 and vi are in different components of T \ {v0vi−1}, and vi−1 and v0 are

in different components of T \{vi−1vi}, so T \{v0vi−1}∪{vi−1vi} and T \{vi−1vi}∪
{v0vi−1} are both spanning trees of W .
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Lemma 2.3.11. Let T ∈ SST(W ). Suppose vi−1vi ∈ T and v0vi, vivi+1 ∈ T , so

that v0vi+1 ∈ T perforce. Then:

(i) If v0vi is not the only radius in T , then

T \ {v0vi} ∪ {vi−1vi}, T \ {vi−1vi} ∪ {v0vi}

is a 2-tree decomposition of W .

(ii) If v0vi+1 is not the only radius in T , then

T \ {vivi+1} ∪ {v0vi+1}, T \ {v0vi+1} ∪ {vivi+1}

is a 2-tree decomposition of W .

Proof. (i) vi is a leaf of T , so T \{vi−1vi}∪{v0vi} is a spanning tree of W . If the

path from vi−1 to vi in T does not go through v0, then it must be Ch(W )\{vi−1vi}.
But then T contains at least k−1 chords and 2 radii, which is impossible. Therefore

vi−1 and vi lie in different components of T \ {v0vi}, and T \ {v0vi} ∪ {vi−1vi} is a

tree.

(ii) The path from v0 to vi+1 in T is just (v0, vi, vi+1), so v0 and vi+1 are in

different components of T \ {vivi+1}. If the path from vi to vi+1 in T does not go

through v0, then it must be Ch(W )\{vivi+1}, which again is impossible. So vi and

vi+1 are in different components of T \ {v0vi+1}. Therefore T \ {vivi+1} ∪ {v0vi+1}
and T \ {v0vi+1} ∪ {vivi+1} are trees.

2.3.3 Leading Trees of Wheels

We now consider the problem of determining the leading monomial of the tree

polynomial of a wheel, using the tools just developed. We fix the following ordering

on the variables mij :

m12 > m13 > m14 > . . . > m1n > m23 > . . . (2.44)
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Many of our results hold more generally for orderings “compatible” with the num-

bering of vertices, in the sense that

v′ < v′′ =⇒ mvv′ > mvv′′ (2.45)

for all v, v′, v′′ ∈ [n].

We now extend > to a term ordering on Rn. This can be done in many ways;

the two most important cases are as follows:

1. Graded lexicographic order, in which

∏
i,j

m
aij

ij >lex

∏
i,j

m
bij

ij (2.46)

iff either
∑
aij >

∑
bij , or else aij > bij for the greatest edge ij (with respect

to >) for which aij 6= bij . For instance,

m12m13m34 >lex m12m23m24, (2.47)

because m13 appears with degree 1 in the first monomial and 0 in the second.

2. Reverse lexicographic order, in which

∏
i,j

m
aij

ij >rlex

∏
i,j

m
bij

ij

iff either
∑
aij >

∑
bij , or else aij < bij for the least edge ij (with respect

to >) for which aij 6= bij . For instance, the inequality (2.47) goes the other

way with respect to >rlex because m34 appears with degree 1 in the first

monomial and 0 in the second.

We order the edges of Kn according to (2.44):

{1, 2} > {1, 3} > {1, 4} > . . . > {1, n} > {2, 3} > . . . , (2.48)
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and regard the chosen ordering of monomials (such as graded-lex or reverse-lex) as

an ordering of the subsets of E(Kn) (equivalently, the subgraphs ofKn), associating

an edge set E ⊂ E(Kn) with the squarefree monomial

mE =
∏
e∈E

me. (2.49)

Specifically, graded-lex order induces the following ordering on edge sets: for

E, F ⊂ E(Kn), E >lex F iff

either |E| > |F |
or |E| = |F | and max(E#F ) ∈ E.

(2.50)

where the symbol # denotes symmetric difference, and the maximum of an edge

set is defined with respect to the ordering (2.48). Meanwhile, reverse-lex order

induces the following ordering: E >rlex F iff

either |E| > |F |
or |E| = |F | and min(E#F ) ∈ F,

(2.51)

Given a wheel W ⊂ Kn, we wish to identify the leading tree LT (W ) of W , that

is, the special spanning tree of W corresponding to the leading monomial of τ(W ).

We begin by computing the valence of each spoke of LT (W ). By Proposition 2.3.8,

this will rule out all but two possibilities for the leading tree.

Proposition 2.3.12. (1) If v0 6∈ {min(V ),max(V )}, then for all i ∈ [k],

valLT (W )(vi) =


1 vi > v0

2 vi < v0.
(2.52)

Hence valLT (W )(v0) = r− 1, where v0 is the rth largest [equivalently, (k + 2 − r)th

smallest] vertex of V .

(2) If v0 = min(V ), then valLT (W )(v0) = k − 1.

(3) If v0 = max(V ), then valLT (W )(v0) = 1.
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Proof. (1) Suppose that v0 6∈ {min(V ),max(V )}. Let T be a special spanning tree

of W not satisfying (2.52); we will show that there exists a special spanning tree

T ′ ∈ SST(W ) with mT ′ > mT .

Suppose first that valT (vi) = 1 for some vi < v0.

Case 1: vi−1vi, vivi+1 ∈ T and v0vi ∈ T . Without loss of generality we may assume

that the path from vi to v0 in T passes through vi+1. Now v0vi−1 ∈ T , so the tree

T ′ = T \ {v0vi−1} ∪ {vi−1vi}

is special by Lemma 2.3.10. Since vi < v0, we have vi−1vi > v0vi−1 and thus

T ′ > T .

Case 2: v0vi, vivi+1 ∈ T and vi−1vi ∈ T . Then v0vi+1 ∈ T perforce. By

Lemma 2.3.11, either

T ′ = T \ {v0vi+1} ∪ {vivi+1}

is special (hence T ′ > T ) or else v0vi+1 is the only radius in T , when

T = Ch(W ) \ {vivi+1} ∪ {v0vi+1}.

In this case, the tree

T \ {vjvj+1} ∪ {v0vj+1}

is special for all j 6= i. If T = LT (W ), then we must have v0 > vj for each j 6= i.

Since v0 > vi it follows that v0 = max(vi), which contradicts our assumption.

The proof that valLT (W )(vi) = 1 for vi > v0 is analogous.

(2), (3) Suppose that v0 = min(V ) and valS(v0) < k− 1 for some special spanning

tree S ∈ SST(W ). Then S contains at least two radii, say v0vi and v0vj. At least

one of the chords vi−1vi, vivi+1 lies in S. If both do, then by Lemma 2.3.9, one of

S1 = S \ {vi−1vi} ∪ {v0vi}, S2 = S \ {vivi+1} ∪ {v0vi}
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is special. If vi−1vi ∈ S and vivi+1 ∈ S, then by Lemma 2.3.11 S1 is special, since

v0vi is not the only radius in S. Now S1, S2 > S, so S cannot be the leading tree

of W . The proof of (3) is analogous.

The preceding result is valid for any term ordering that respects (2.45). Hence-

forth, however, we will consider only the case that the variables me are ordered

by (2.44) and monomials by graded strict lexicographic order (2.46), (2.50). As

it happens, the initial ideals with respect to >lex and >rlex have very similar

descriptions. However, the Stanley-Reisner complex of In with respect to >lex is

easier to describe. We shall investigate that case in detail, and merely state without

proof the analogous results for leading trees with respect to reverse lexicographic

order.

Let Jn be the ideal of Rn generated by all monomials mLT (W ), where W ranges

over all subwheels of Kn and the leading tree is taken with respect to >lex .

Proposition 2.3.13. Let W = W (v0; v1, . . . , vk) ⊂ Kn. Put V = V (W ) =

{v0, v1, . . . , vk}.

(1) Suppose v0 = min(V ). Reindex the spokes of W so that v1 = max{v1, . . . , vk}
and v2 > vk. Then

LT (W ) = Rd(W ) \ {v0v1} ∪ {vkvk+1}. (2.53)

(2) Suppose v0 = max(V ). Reindex the spokes of W so that v1v2 = min(Ch(W ))

and v1 > v2. Then

LT (W ) = Ch(W ) \ {v1v2} ∪ {v0v2}. (2.54)

Proof. (1) By Proposition 2.3.12 (2), LT (W ) contains exactly one chord. Since

v0vi > vjvj+1 for all i, j, the unique radius not in LT (W ) must be

min(Rd(W )) = v0v1,
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which implies (2.53) because vkvk+1 > v1v2.

(2) Define

Ti = Ch(W ) ∪ {v0vi} \ {min(vi−1vi, vivi+1)}. (2.55)

By Proposition 2.3.12 (3), LT (W ) contains exactly one radius, so LT (W ) = Ti for

some i. Note that

T1 = Ch(W ) ∪ {v0v1} \ {v1v2} (2.56)

and

T2 = Ch(W ) ∪ {v0v2} \ {v1v2}. (2.57)

Therefore

max(T1#T2) = v0v2 ∈ T2. (2.58)

On the other hand, if i > 2, then

max(Ti#T2) = max {v0vi, v0v2, v1v2, min(vi−1vi, vivi+1)}
= min(vi−1vi, vivi+1) ∈ T2.

Therefore LT (W ) = T2, giving (2.54).

In the case that v0 6∈ {min(V ),max(V )}, we set

d(i) =


1 vi > v0

2 vi < v0.
(2.59)

By Proposition 2.3.12 (1) we have valLT (W )(vi) = d(i). By Proposition 2.3.4,

there are exactly two special spanning trees T, T ′ ∈ SST(W ) satisfying these va-

lence conditions, containing all type-22 chords and type-11 radii. Furthermore,

T#T ′ is the set of type-12 edges (both chords and radii). Define the critical edge

of W to be

ce(W ) = max(T#T ′); (2.60)

by (2.50), whichever of T, T ′ contains ce(W ) is the leading tree of W .
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We can now describe precisely the set of square-free monomials which appear

as leading terms of wheels.

Theorem 2.3.14. Let T be a tree with vertex support V ⊂ [n]. There exists a

wheel W ⊂ Kn such that T = LT (W ) (with respect to graded strict-lex order), if

and only if T contains a path (v1, . . . , vk) satisfying the conditions

k ≥ 4;

max{v1, . . . , vk} = v1;

max{v2, . . . , vk} = vk;

v2 > vk−1.

(2.61)

Proof. First, given a path P satisfying (2.61), we will construct a wheel W such

that LT (W ) = P . Second, we will show that for all W , the tree LT (W ) contains

a path satisfying (2.61).

Suppose P = (v1, . . . , vk) satisfies (2.61). Let W = W (vk; v1, v2, . . . , vk−1). By

Proposition 2.3.12, LT (W ) is a path from vk to v1. The two possibilities for LT (W )

are P and

P ′ = (vk, v2, v3, . . . , vk−2, vk−1, v1).

Now v1 > vk > v2 > vk−1, so

ce(W ) = max(P#P ′)

= max {v1v2, vk−1vk, vkv2, vk−1v1}
= vk−1vk ∈ P

so P = LT (W ).

For the second part of the proof, let W = W (v0; v1, . . . , vk) and T = LT (W ).

We will find a path P ⊂ T satisfying (2.61).

Case 1: v0 = min(V ). Reindex the spokes of W so that v1 = max{v1, . . . , vk} and

v2 > vk. Then by (2.53)

LT (W ) = Rd(W ) \ {v0v1} ∪ {vkvk+1}. (2.62)
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Since v0 < vk < v2 < v1, we may take

P = (v1, vk, v0, v2).

Case 2: v0 = max(V ). Reindex the spokes of W so that v1v2 = min(Ch(W ))

and v1 > v2. Then LT (W ) = Ch(W ) \ {v1v2} ∪ {v0v2} by (2.54). Let vj =

max{v1, . . . , vk}. Obviously j 6= 2. Also j 6= 3 (since v1v2 < v2v3, implying

v1 > v3). Consider the path

P = (v0, v2, v3, . . . , vj).

The two largest vertices of P are v0 and vj , and if v2 < vj−1 then vj−1vj < v1v2, a

contradiction. So P satisfies (2.61).

Case 3: v0 6∈ {min(V ),max(V )}. Let e = ce(W ).

Case 3a: e ∈ Ch(W ). We may assume e = v1v2, d(1) = 1, d(2) = 2 (so v1 > v0 >

v2). Now v0v2 > v1v2, so t(v0v2) 6= 12; hence t(v0v2) = 11 and v0v2 ∈ T . Then

v2v3 ∈ T , and d(3) = 1 (otherwise t(v2v3) = 22 and v2v3 ∈ T , which is false). Then

t(v2v3) = 12. Since v1v2 is the critical edge, we have v1v2 > v2v3 and v1 < v3. In

particular v1 6= max(V ). Let vj = max(V ), and let P be the path from v1 to vj in

T . If v0vj ∈ T , then

P = (v1, v2, v0, vj),

which satisfies (2.61) because vj > v1 > v0 > v2. Otherwise,

P = (v1, v2, v0, vi, vi−1, . . . , vj).

for some i. Then

d(vi) = d(vi−1) = · · · = d(vj−1) = 2,

so vj and v1 are respectively the largest and second largest vertices of P . Moreover,

t(vj+1vj) = 12, and v1v2 is the critical edge, so vj+1 > v2. So P satisfies (2.61).
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Case 3b: e ∈ Rd(W ). We may assume e = v0v1, d(2) = 2, d(k) = 1. Then

vk > v0 > v2 and v0v1 < v1v2; hence t(v1v2) 6= 12 and d(1) = 2. Let j be the

smallest number in [k] such that d(j) = 1, and let

P = {vj−1vj , vj−2vj−1, . . . , v1v2, v0v1}.

The chords v1v2, . . . , vj−2vj−1 are all of type 22, hence lie in T . Therefore all radii

v0v2, v0v3, . . . , v0vj−1

lie in T (otherwise T contains a polygon), so vj−1vj ∈ T (because d(j − 1) = 2).

Thus P ⊂ T . Moreover, j ≥ 3, so P contains at least three edges. Also, the

endpoints of P , namely vj and v0, are respectively its largest and second largest

vertex, and vj−1 > v1 (else v0vj−1 is the critical edge instead of v0v1). Thus P

satisfies (2.61).

The initial ideal with respect to reverse-lex order has an analogous description.

We omit the proof, which is similar to that of Theorem 2.3.14.

Theorem 2.3.15. Let T be a tree with vertex support V ⊂ [n]. There exists a

wheel W ⊂ Kn such that T = LT (W ) (with respect to reverse-lex order), if and

only if T contains a path P = (v1, . . . , vk) satisfying the conditions

k ≥ 4;

max{v1, . . . , vk} = v1;

max{v2, . . . , vk} = vk;

v2 < vk−1.

(2.63)

2.4 The Stanley-Reisner Complex

2.4.1 Preliminaries

We briefly summarize the definition of a simplicial complex and some related

terminology. For more detail, see for instance [3, ch.5].
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Definition 2.4.1. Let V be a finite set. A simplicial complex on V is a set ∆

of subsets of V which contains as members all singleton sets {v}, v ∈ S, and

with the property that if F ∈ ∆ and F ′ ⊂ F , then F ′ ∈ ∆. The elements of ∆

are called faces. A maximal face is called a facet . The dimension of a face F is

dimF = |F | − 1, and the dimension of ∆ is

dim ∆ = max{dimF | F ∈ ∆}. (2.64)

∆ is a simplex if it has exactly one facet, and is pure if all its facets have the same

cardinality. The f -vector f(∆) = (f0, f1, . . . ) is defined by

∑
i

fit
i =

∑
F∈∆

tdimF (2.65)

and the h-vector h(∆) = (h0, h1, . . . ) is defined by

hj =

j∑
i=0

(−1)j−i

(
d− i

j − i

)
fi−1 (2.66)

[3, p. 213].

Recall the definitions

Rn = k[mi,j | 1 ≤ i < j ≤ n],

In = (τ(G) | G ⊂ Kn a rigidity circuit) ⊂ Rn,

Jn = (mLT (W ) | W ⊂ Kn a wheel) ⊂ in(In),

(2.67)

where in(In) denotes the initial ideal with respect to graded lexicographic order,

as defined in (2.44) and (2.46).

We will prove that Jn = in(In), i.e., the tree polynomials of wheels form a

Gröbner basis for In under graded lexicographic order. We devote this section to

studying the ideal Jn. Our main tool in doing so is the following combinatorial

object.
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Definition 2.4.2. The Stanley-Reisner complex of Jn is the simplicial complex

∆(n) on E(Kn) defined by

∆(n) = {E ⊂ E(Kn) | mE 6∈ Jn}. (2.68)

That is, an edge set E is a face of ∆(n) if and only if E contains no path of the

form (2.61). For this reason, we refer to a path satisfying (2.61) as forbidden. The

Stanley-Reisner ring of ∆(n) is

R̃n = Rn/Jn. (2.69)

If V = {v1 < · · · < vn} is a finite totally ordered set (typically, V ⊂ N), then

we may define a simplicial complex ∆(V ) on E(K(V )), isomorphic to ∆(n), by

replacing the edge ij with vivj for all i, j.

We will use the following facts about Stanley-Reisner complexes (see [17], [3]).

First,

1 + dim ∆(n) = dim R̃n. (2.70)

In addition, the Hilbert series of R̃n is given by the h-vector of ∆(n):

HilbR̃n
(t) =

h0 + h1t+ . . .

(1 − t)dim R̃n
, (2.71)

No path with fewer than 3 edges satisfies (2.61). Therefore ∆(2) is the (0-

dimensional) simplex on E(K2), and ∆(3) is the (2-dimensional) simplex on E(K3).

In particular

dim ∆(n) = 2n− 4 for n ≤ 3. (2.72)

Lemma 2.4.3. Suppose n ≥ 4. Let E be a polygon on [n] not containing the edge

{1, n}. Then E contains a forbidden path.

Proof. We proceed by induction on n. If n = 4, then the only possibility is

E = {12, 34, 42, 21},
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which contains the forbidden path (4, 2, 1, 3).

Now, suppose n > 4. If {1, n− 1} ∈ E, then (n− 1, 1, . . . , n) ⊂ E is forbidden.

Otherwise, we may write without loss of generality

E = (v1 = n, v2, . . . , vi = n− 1, . . . , vj = 1, . . . , vn).

In particular i+ 1 < j < n, so r = n− i+ 1 ≥ 4 and

E′ = (vi, vi+1, . . . , vn).

is an r-gon. By induction, E ′ contains a forbidden path P ′. If {n − 1, vn} 6∈ P ′

then P ′ ⊂ E. Otherwise, n − 1 is a terminal of P ′, and E contains the forbidden

path

P ′ \ {{n− 1, vn}} ∪ {{n, vn}}.

In addition, we will need several facts about connected and 2-connected graphs.

For details, see [2].

Let G = (V,E) be a connected graph. A vertex v ∈ V is called an articulation

point if the graph G−v = G|V \{v} is disconnected. In this case, v is said to separate

w and x if w and x lie in different connected components of G− v. Equivalently,

if P ⊂ E is a path and w, x ∈ V (P ), then v ∈ V (P ). G is called 2-connected if it

has no articulation point.

If G = (V,E) is connected and v ∈ V is an articulation point, then G is the

edge-disjoint union of r ≥ 2 connected subgraphs

G1 = (V1, E1), . . . , Gr = (Vr, Er),

where Ei ∩ Ej = ∅ and Vi ∩ Vj = {v} for i 6= j. The subgraphs Gi are called the

v-articulation components of G.

If G = (V,E) is connected and v ∈ V is not an articulation point, then we may

define the 2-connected component of G containing v to be the unique maximal
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2-connected subgraph G′ = (V ′, E′) of G containing v. We may realize G′ as the

intersection of all graphs Ga, where a ranges over all articulation points of G and

Ga is the a-articulation component of G containing v. In this case E ′ is the union of

all polygons supported at v. The subgraph G′ is called the 2-connected component

of G containing v. If (V ′, E′) and (V ′′, E′′) are distinct 2-connected components

of G, then either V ′ ∩ V ′′ = ∅ or V ′ ∩ V ′′ = {a}, where a is an articulation point

of G. Moreover, G is the edge-disjoint union of its 2-connected components.

Menger’s Theorem [2, p. 35] states that if v, w are vertices of a graph G = (V,E)

and n ∈ N, then either there are n + 1 edge-disjoint paths between v and w, or

else there is a set of n vertices in V \ {v, w} whose deletion disconnects v and w.

In the case n = 1, this becomes the statement that

if no polygon in E is supported on both v and w,

then there exists an articulation point separating v and w.
(2.73)

2.4.2 The Structure of Facets

Theorem 2.4.4. Let n ≥ 3, F a facet of ∆(n), and G = ([n], F ). Then:

(1) G is connected.

(2) F contains the edges {1, n} and {n− 1, n}.

(3) The face

F̂ = F \ {{1, n}} (2.74)

is connected.

(4) F̂ has an articulation point a ∈ {2, 3, . . . , n− 1} which separates 1 and n.
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(5)

F = F̂ ·∪ {{1, n}} = F 1 ·∪F 2 ·∪ {{1, n}}, where

V (F 1) ∪ V (F 1) = [n],

V (F 1) ∩ V (F 2) = {a},
1 ∈ V (F 1),

n ∈ V (F 2).

(2.75)

(6) The vertex 1 is not an articulation point of F̂ or F .

(7) We may choose the articulation point a such that

a = max(V 1). (2.76)

(8) F 1 and F 2 are facets of ∆(V 1) and ∆(V 2) respectively.

(9) |F | = 2n−3. In particular, ∆(n) is pure of dimension 2n−4, and by (2.70)

we have

codim Jn = 2n− 3. (2.77)

(10) F is 2-connected.

(11) The decomposition (2.75) is unique.

Proof. (1) Suppose F is disconnected. Let v, w be the largest vertices of their

respective connected components. Then F ∪ {{v, w}} ∈ ∆(n), so F is not a facet.

(2) No path satisfying (2.61) can contain either {1, n} or {n − 1, n}, so both

those edges must lie in every maximal element of ∆(n).

(3) Suppose that F̂ is disconnected. Let C be the connected component of F̂

containing the edge {n − 1, n}; then 1 6∈ V (C) and in particular {1, n − 1} 6∈ F .

Let F ′ = F̂ ∪{{1, n−1}}. If F ′ contains a forbidden path P , then P must include
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the edge {1, n−1}, but in that case P must be of the form (n−1, 1, . . . , v, n), and

P \ {{1, n− 1}} ⊂ F , which is impossible. So F ′ ∈ ∆(n). But then F ′ ·∪ {1, n} =

F ·∪ {1, n− 1} ∈ ∆(n), contradicting the hypothesis that F is a facet.

(4) Immediate from Lemma 2.4.3 and (2.73).

(5) Immediate from (4).

(6) Suppose that 1 is an articulation point of F̂ . Let G2 = (V 2, E2) be the

1-articulation component of F̂ containing the vertex n, and G1 = (V 1, E1) the

union of all the other 1-articulation components. Let

x = max(V 1)

and

y = min{v ∈ V 2 | {1, v} ∈ F̂}.

Case 1: x < y. Suppose that F̂ ∪ {{x, y}} contains a forbidden path P . Then

{x, y} ∈ P , since F̂ ∈ ∆(n) and P 6⊂ F̂ . Both endpoints of P are ≥ y > x, hence

lie in V 2. Therefore, P is of the form

(br, . . . , b1, 1 = a1, . . . , as, x, y = c1, . . . , ct)

with
r, s, t ≥ 1,

ai ∈ V 1,

bi, ci ∈ V 2

and either

br = max(V (P )), ct = max2(V (P )), br−1 > ct−1

or

ct = max(V (P )), br = max2(V (P )), br−1 < ct−1,

where max2(S) denotes the second largest element of the set S. Note that b1 >

y > x > 1, so either r > 1 or t > 1. Hence the path

(br, br−1, . . . , b1, 1, y = c1, . . . , ct) ⊂ F̂
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has at least four vertices, and is forbidden, which is a contradiction. Thus F ∪
{x, y} ∈ ∆(n), contradicting the hypothesis that F is a facet.

Case 2: x > y. There is a path from y to x of the form

(y, 1, x1, . . . , xr = x).

Let i be the least index such that xi > y. If i > 1 then the subpath (y, 1, x1, . . . , xi)

is forbidden, so i = 1 and x1 > y > 1. Since 1 is not an articulation point of F 2,

there exists a path in F 2 from y to n which is not supported at 1. Truncating this

path at the first vertex greater than x1 produces a path

(y = y1, . . . , yr)

with r ≥ 2 and y1, . . . , yr−1 < x1 < yr. Then

(x1, 1, y, . . . , yr)

is a forbidden path in F̂ , which is impossible.

Hence 1 is not an articulation point of F̂ . The same is true for F , because

adding an edge incident to 1 (namely {1, n}) cannot change whether 1 is an artic-

ulation point.

(7) We adopt the notation of part (5). We may take F 1 to be the 2-connected

component of G supported at 1, and a the unique articulation point separating 1

and n. Let

m = max(V (F 1));

in particular m ≥ a. Suppose m > a. The edge set F 1 contains a polygon

supported at both 1 and m, so {1, m} ∈ F 1 by Lemma 2.4.3. Deleting m does not

disconnect F 1, so F 1 contains a path

P = (m, 1, . . . , a).
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On the other hand, there is a path in F 2 of the form

P ′ = (a = y1, . . . , yr)

with r ≥ 1 and a, y1, . . . , yr−1 < m < yr. Then P ∪ P ′ ⊂ F is a forbidden path,

which is impossible.

(8) Suppose that there is some edge e ∈ K(V (F 1)) \ F 1 such that

F 1 ·∪ {e} ∈ ∆(V (F 1)).

Since F is a facet of ∆(n), the edge set F ∪ {e} must contain a forbidden path

P . Certainly {1, n} 6∈ P , so P ⊂ F̂ ∪ {e}. On the other hand, P 6⊂ F 1 ·∪ {e}
and P 6⊂ F 2. Since a is an articulation point of F̂ ∪ {e}, the path P must be

supported at a and have one terminal in each of V (F 1) \ {a} and V (F 2) \ {a}.
But this contradicts (2.61), since a = max(V (F 1)). Therefore no such e exists. It

follows that F 1 is a facet of ∆(V (F 1)), as desired. The proof that F 2 is a facet of

∆(V (F 2)) is analogous.

(9) We induct on n. The case n = 3 is trivial. If n ≥ 4, then |V 2| = n−|V 1|+1.

By induction,

|F | = 1 + |F 1| + |F 2| = 1 + (2|V 1| − 3) + (2n− 2|V 1| − 1) = 2n− 3. (2.78)

(10) We induct on n. The statement is trivial for n = 2 and n = 3. For the

inductive step, we write

F = F̂ ·∪ {{1, n}} = F 1 ·∪F 2 ·∪ {{1, n}}

as in (2.75). By induction F 1 and F 2 are 2-connected, so they are exactly the

2-connected components of F̂ , and F is 2-connected because the edge {1, n} has

one endpoint in each of V (F 1) and V (F 2).

(11) By (10), the face F̂ has a unique articulation point, so F 1 must be the

2-connected component of F̂ supported at 1 and F 2 must be the 2-connected

component supported at n.
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Theorem 2.4.5. Let V 1, V 2 ⊂ N, with

V 1 ∪ V 2 = [n], 1 ∈ V 1 \ V 2,

n ∈ V 1 \ V 2,

V 1 ∩ V 2 = {max(V 1)},
(2.79)

and let F 1 and F 2 be facets of ∆(V 1) and ∆(V 2) respectively. Then

F = F 1 ·∪F 2 ·∪ {{1, n}}

is a facet of ∆(n).

Proof. The vertex a = max(V 1) is an articulation point of F 1 ∪ F 2. Suppose

that F contains a forbidden path P . Note that {1, n} 6∈ P and neither F 1 nor

F 2 contains P as a subset, so P must have one terminal in each of V 1 \ {a} and

V 2 \ {a}. Thus P passes through a, which is impossible since a = max(V 1). So

F ∈ ∆(n). In addition, |F | = 2n− 3 by (2.78), so F is a facet.

2.4.3 Admissible Trees

Applying the decomposition (2.75) recursively allows us to represent a facet

F ∈ ∆(V ) by a binary tree T = T(F ) = (V,E). If |V | = 2, then V = {V } and

E = ∅. Otherwise, T is the tree with root V , left principal subtree T(F 1), and

right principal subtree T(F 2). The nodes X of T(F ) are labeled by subsets of [n].

They correspond to the edges e of F via the bijections

ε(X) = {min(X),max(X)},
ν(e) = νT (e) = ε−1(e).

(2.80)

We extend this notation to sets of nodes and of edges, writing

ε({X1, . . . , Xr}) = {ε(X1), . . . , ε(Xr)},
νT ({e1, . . . , er}) = {νT (e1), . . . , νT (er)}.

(2.81)
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Figure 2.7: A facet F of ∆(6)

123456

134 2456

13 34 245 56

24 45

� @

� A � @

� A

Figure 2.8: The admissible tree T corresponding to F

Example 2.4.6. Consider the facet F ∈ ∆(6) given by the following figure:

The corresponding admissible binary tree T(F ) is

For instance, ν(26) = 2456 and ε({134, 45}) = {14, 45} ⊂ F .
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A node X is a leaf if and only if it is labeled by a 2-element set. Otherwise,

1. |X| > 2;

2. min(X) ∈ X1 \X2;

3. max(X) ∈ X2 \X1;

4. X1 ∪X2 = X;

5. X1 ∩X2 = {max(X1)}.

(2.82)

where X1 and X2 denote respectively the left and right children of X.

Definition 2.4.7. Let T be a binary tree and X a node of T . T is admissible at

X if the pair (T,X) satisfies (2.82). T is admissible if it is admissible at each of

its nodes.

Note that if T is admissible at X and |X| > 2, then

max(X) > max(X1) (2.83)

and

X2 = X \X1 ∪ {max(X1)}. (2.84)

Theorem 2.4.8. Let T = (V,E) be an admissible tree with root V . Then ε(E)

is a facet of ∆(V ). Consequently, the function T is a bijection from facets to

admissible trees.

Proof. Since |ε(E)| = 2|V|−3, we need only show that no path P = (v1, . . . , vs) ⊂
ε(E) is forbidden. Let Xi be the node of T corresponding to the edge {vi, vi+1},
and Y the greatest common ancestor of the nodes νT ({vi, vi+1}). If Y = Xi for

some i, then ε(Y ) = {min(V (P )),max(V (P ))}. No forbidden path whose support

is contained in V (P ) can include this edge, so P is not forbidden.
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2.4.4 Counting the Facets

Let V be a set of positive integers, |V | = n ≥ 2. Denote the sets of admissible

binary trees on V and decreasing planar trees on V by the symbols Adm(V ) and

Dec(V ) respectively, and define

V̂ = V \ {min(V )}. (2.85)

Given T ∈ Adm(T ), define a tree φ(T ) as follows.

If n = 2, then φ(T ) is a tree with one node, labeled {max(V )}, and no edges.

If n > 2, then construct a tree ψ(T ) by relabeling the nodes of φ(T 2) with the

elements of V̂ \ V (T 1), preserving their relative order. We then define

φ(T ) = φ(T 1) ∗ ψ(T ), (2.86)

where ∗ is as in Definition 2.2.6.

Example 2.4.9. Let F and T be as in Example 2.4.6. Then

φ(T 1) =
4

3
, φ(T 2) =

6

5

4

,

Figure 2.9: φ(T 1) and φ(T 2)

and

V̂ \ V (T 1) = {2, 3, 4, 5, 6} \ {3, 4} = {2, 5, 6}.

Thus to form ψ(T ), we change the labels of φ(T 2) from 4,5,6 to 2,5,6 respectively.

That is,
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ψ(T ) =

6

5

2

and φ(T ) =

6
� A
4 5

3 2

.

Figure 2.10: ψ(T ) and φ(T )

Theorem 2.4.10. The function φ is a bijection from Adm(V ) to Dec(V̂ ).

Proof. We proceed by induction on |V |. The base case |V | = 2 is obvious.

Now suppose |V | > 2. Let T and S be distinct elements of Adm(V ). If T 1 6= S1,

then φ(T )1 6= φ(S)1, so φ(T ) 6= φ(S). If T 1 = S1, then T 2 6= S2. Changing the

labels of these two trees to V̂ \ V (T 1) = V̂ \ V (S1) does not change the fact that

they are unequal, so ψ(T ) 6= ψ(S) and φ(T ) 6= φ(S). Therefore φ is injective.

For surjectivity, let U ∈ Dec(V̂ ). By induction, there exist admissible trees

T and T ′ with φ(T ) = U1 and φ(T ′) = U \ U1. Note that | rt(T )| + | rt(T ′)| =

|V | + 1. Construct a new tree T ′′ by relabeling T ′ as follows: change rt(T ′) to

the set V \ rt(T ) ∪ {max(rt(T ))} and adjust all other labels accordingly. Then

U = φ(T ∗ T ′′).

Corollary 2.4.11. (1) The simplicial complex ∆(n) has
(2n− 4)!

2n−2(n− 2)!
facets.

(2) The ideal Jn has degree
(2n− 4)!

2n−2(n− 2)!
.

2.4.5 Shellability

Let ∆ be a pure simplicial complex. A linear ordering F1, . . . , Fs of the facets

of ∆ is called a shelling order (and ∆ is called shellable) if each Fi has a subset
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sh(Fi), called its shelling set , such that

If i, j ∈ [s] and j < i, then sh(Fi) 6⊂ Fj (2.87)

and

If i ∈ [s] and e ∈ sh(Fi), then Fi \ Fk = {e} for some k ∈ [i− 1]. (2.88)

Let T be an admissible tree. We say that a node X of T is firstborn if it is the

first child of its parent. In addition we define

L(T ) = {rt(T )} ∪ {X | X is firstborn}, (2.89)

and, for a facet F ,

L(F ) = ε(L(T )).

Example 2.4.12. Let F and T be as in Example 2.4.6. In the figure below, the

nodse in L(T ) are enclosed in boxes.

T = T(F ) =

123456

134 2456

13 34 245 56

24 45

� @

� A � @

� A

,

Figure 2.11: L(T )

Thus ε(L(T )) = {16, 25, 34, 24, 13}.
Lemma 2.4.13. Let F be a facet of ∆(n) and T = T(F ). Then S = ε(L(T )) is

a spanning tree of Kn.

Proof. Since |S| = n−1, it suffices to prove that S contains no polygons. Suppose

that P = (v1, . . . , vs) ⊂ S. Let V = V (P ) = {v1, . . . , vs}, A = νT (P ), and
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Y = sup(A), so that ε(Y ) = {min(V ),max(V )}. If Y ∈ A, then by (2.83), Y is

the only node in L(T ) ∩ T |Y such that ε(Y ) has max(Y ) as an endpoint, which

implies that P is not a polygon. On the other hand, if Y 6∈ A then the existence

of P contradicts Lemma 2.4.3.

Definition 2.4.14. Define a total order on finite sets X, Y of positive integers as

follows: X > Y if either

either |X| > |Y |
or |X| = |Y | and min(X#Y ) ∈ X.

(2.90)

While this ordering is most convenient for our purposes, the only property

really necessary for the proof of shellability is that A 6⊃ B whenever A < B.

Definition 2.4.15. Let T be a binary tree. The traversal order on the nodes of

T is defined as follows: X < Y if either X is a descendant of Y , or X ∈ T |Z2 and

Y ∈ T |Z1, where Z is the youngest common ancestor of X and Y . The traversal

trav(T ) is the list of nodes of T , written in decreasing traversal order.

For example, if T is the tree of Example 2.4.12, we have

trav(T ) = (123456, 134, 13, 34, 2456, 245, 24, 45, 56).

Definition 2.4.16. Define a total order < on facets F,G of ∆(n) as follows.

Suppose

T = T(F ), trav(T ) = (X1, . . . , XN),

T ′ = T(G), trav(T ′) = (X ′
1, . . . , X

′
N).

(2.91)

(where N = 2n− 3). Then G < F if for some k we have

Xk < X ′
k

and

Xi = X ′
i for i < k.
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Theorem 2.4.17. The order < of Definition 2.4.16 is a shelling order on the

facets of ∆(V ). The shelling sets sh(F ) are defined (recursively) by the formula

sh(F ) =



∅ |V | ≤ 3

sh(F 2) V (F 1) = {min(V ),min2(V )}
sh(F 2) ∪ L(F 1) otherwise,

(2.92)

where min2(V ) denotes the second smallest element of V .

Proof. We will prove that the ordering on facets satisfies conditions (2.87) and

(2.88).

Assume without loss of generality that V = [n]. Let F,G be facets of ∆(n),

with T = T(F ) and U = T(G). Suppose that F > G, and that trav(T ) and

trav(U) first differ in nodes X, Y respectively. That is, X > Y , and if X ′ > X

and Y ′ > Y are nodes in the same position in their respective traversals, then

X ′ = Y ′. In particular, XP and Y P are labeled by the same set of integers,

which must have cardinality at least 4 (otherwise X = Y ). If XP1 = Y P1 then

XP2 = Y P2 by (2.84). Therefore X = XP1 and Y = Y P1. In particular E ⊂ sh(F ),

where E = ε(L(T |X)) is the set of firstborn descendants of X. If ε(X) 6∈ E, then

X must consist of the two smallest elements of XP = Y P , which contradicts the

assumption that X > Y . So ε(X) ∈ E.

We will show that E 6⊂ G. If Z is a node of U \ U |Y P , then ε(Z) has an

endpoint outside XP = Y P , so ε(Z) 6∈ E. Hence it suffices to prove that

E 6⊂ ε(U |Y P ).

Suppose first that max(X) > max(Y ). In particular max(X) 6∈ Y . Together

with the fact that min(X) = min(Y ) 6∈ Y PP2, this implies that

ε(X) = {min(X),max(X)} 6∈ U |Y P . (2.93)
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On the other hand, suppose that max(X) ≤ min(Y ). Since X > Y , there exists a

vertex v ∈ X \ Y . By Lemma 2.4.13, E is a spanning tree of the vertices in X. In

particular, E contains a path E′ from min(X) = min(Y ) to v. The vertex max(Y )

is either a leaf of E (if max(X) = max(Y )) or not in V (E) (if max(X) < max(Y ));

in either case, max(Y ) 6∈ V (E ′). Note that

v ∈ Y P2 \ Y and min(Y ) ∈ Y \ Y PP2.

Since max(Y ) is an articulation point of ε(U |Y P )\{ε(U)} by Theorem 2.4.4, every

path from min(Y ) to v in ε(U |Y P ) must either pass through max(Y ) or include

the edge ε(Y P ). Since E ′ does neither of these things, we have E 6⊂ ε(U |Y P ) as

desired.

We now prove that the order < of Definition 2.4.16 satisfies condition (2.88).

For a facet F of ∆(n) and an edge e ∈ sh(F ), we must show that ∆(n) has a facet

G satisfying

G < F and F \G = {e}. (2.94)

Let T = T(F ) and and X = νT (e). We proceed by induction on n. There is

nothing to prove if n ≤ 3, since then ∆(n) has a unique facet, whose shelling set

is empty.

Suppose first that e ∈ sh(F 2). By induction, the simplicial complex ∆(V (F 2))

has a facet G2 such that

G2 < F 2 and F 2 \G2 = {e}, (2.95)

so the facet of ∆(n) given by

G = F 1 ∪G2 ∪ {{min(V (F )),max(V (F ))}} (2.96)

satisfies (2.94).

Now suppose that e ∈ L(F 1).
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Case 1: X has children. Let
Y = XP ,

E = ε(T |Y ).
(2.97)

By Theorem 2.4.4, the face

E′ = E1 \ {e} (2.98)

is 1-connected but not 2-connected (because it has m = max(X1) as an articulation

point). Let

F1 = ε(T |X1) ∈ ∆(X1), (2.99)

and

F2 = ε(T |X2) ∪ ε(T |Y 2) ∈ ∆(X2 ∪ Y 2). (2.100)

Let F ′
2 be a facet of ∆(X2 ∪ Y 2) which contains F ′

2. (By a routine calculation,

|F2| = 2|X2∪Y 2|−4, so F ′
2 consists of F2 and one additional edge by Theorem 2.4.4

(9).) Moreover, we have

X1 ∪ (X2 ∪ Y 2) = V, (2.101)

and

X1 ∩ (X2 ∪ Y 2) = {max(X1)}, (2.102)

so G′ = F1 ∪F ′
2 ∪ {ε(Y )} is a facet of ∆(Y ). Let G be the facet of ∆(V ) obtained

by replacing T |Y with T(G′). Then F \G = {e}. Moreover, the traversals of T(F )

and T(G) first differ at the left child of Y , which is X in T(F ) and X1 in T(G).

Now X1 ( X, so G < F in traversal order. Therefore G satisfies (2.94).

Case 2: X has no children. Define

X0 = X, (2.103)

Xi = (Xi−1)
P for i ≥ 1, (2.104)

s = min
{
t ≥ 2 | (Xt)

1 = Xt−1

}
, and (2.105)

Y = Xs. (2.106)

In other words, Y is the youngest ancestor of X, other than XP , such that the

path from Y to X begins by moving down to the left.
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Let E = ε(T |Y ). The face

E′ = E1 \ {e} = ε(T |Y 1) \ {e} (2.107)

is 1-connected because E1 is 2-connected by Theorem 2.4.4. We claim that E ′ is

not 2-connected; specifically, that the vertex

m = max(Y 1) (2.108)

is an articulation point of E ′. Define

Ei = ε(T |Xi) \ {e} (2.109)

for 1 ≤ i ≤ s−1 (so that Es−1 = E ′ and Es = E \{e}). We will show by induction

that for every i, the vertex m is an articulation point separating the endpoints of

e, namely min(X) and max(X). If i = 1, then the vertex min(X) has valence 2 in

E1, so deleting e makes it into a leaf with stem m. Now suppose 1 < i < s. Then

Ei = ε(T |(Xi)
1) ∪ ε(T |Xi−1) ∪ {ε(Xi)} \ {e}

= Ei−1 ∪ ε(T |(Xi)
1) ∪ {ε(Xi)}.

(2.110)

Suppose that ε(T |(Xi)
1) contains a path P between the two m-articulation com-

ponents of Ei−1 containing min(X) and max(X) respectively. Since ε(T |(Xi)
1) is

2-connected, we may assume that P is supported at l = min((Xi)
1) = min(Xi). Let

P ′ be a path in Ei−1 from min(X) to max(X). Then m ∈ V (P ′), and Q = P ∪ P ′

is a polygon supported at no fewer than four vertices. But min(V (Q)) = l,

max(V (Q)) = m, and {l,m} 6∈ Q, which contradicts Lemma 2.4.3. Therefore

no such P exists, and m is an articulation point of the face

E ′′
i = Ei−1 ∪ ε(T |(Xi)

1). (2.111)

The edge ε(Xi) has m as an endpoint (since m = max(Xi) = m), so adding it to

E′′
i does not connect any two m-articulation components of Ei.

Finally,

Es = ε(T |Xs−1) ∪ ε(T |Y 2) ∪ {ε(Y )} \ {e}
= Es−1 ∪ ε(T |Y 2) ∪ {ε(Y )}.

(2.112)
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We have already seen that m is an articulation point of Es−1; in addition, m is the

only vertex supporting both Es−1 and ε(T |Y 2). Therefore Es−1∪ε(T |Y 2) separates

each pair of the vertices min(X), max(X) and max(Y ). When we add the edge

ε(Y ) to form Es, the endpoints of X remain separated by m.

Define

F1 = the 2-connected component of E ′ containing min(Y ), (2.113)

F2 = (E ′ \ F1) ∪ ε(T |Y 2). (2.114)

Note that

V (F1) ( Y 1 = Xs−1, (2.115)

V (F1) ∪ V (F2) = Y, and (2.116)

V (F1) ∩ V (F2) = {m}. (2.117)

For i = 1, 2, let F ′
i be a facet of V (Fi) containing Fi. Then

G′ = F ′
1 ∪ F ′

2 ∪ {ε(Y )}

is a facet of ∆(Y ). As in Case 1, let G be the facet of ∆(V ) obtained by replacing

T |Y with T(G′). Then F \ G = {e}, and (2.115) implies that G < F in traversal

order. Therefore G satisfies (2.94).

2.5 The Main Theorem

The following summarizes the facts we have proved about the slope variety and

affine slope variety of Kn.

Theorem 2.5.1. Let n ≥ 2.

(1) The affine slope variety S̃(Kn) is defined scheme-theoretically by the ideal

In. That is, In is reduced, hence S̃(Kn) ∼= SpecRn/In.
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(2) The set

{τ(W ) | W ⊂ Kn is a wheel} (2.118)

is a Gröbner basis for In with respect to graded lexicographic order.

(3) Equality holds in the lower bounds established in (2.5); that is, deg S(n, k)

equals the number of decreasing planar trees on [n − 1] with largest leaf ≤ n − k.

In particular,

deg S(Kn) =
(2n− 4)!

2n−2(n− 2)!
.

(4) The varieties S̃(Kn) and S(Kn) are Cohen-Macaulay.

Proof. The variety S̃(Kn) is irreducible and reduced, hence is defined scheme-

theoretically by the prime ideal
√
In. In addition, we have

Jn ⊂ in(In) ⊂ in(
√
In). (2.119)

By (9) of Theorem 2.4.4 we have

codim Jn = 2n− 3 = dimS(Kn) = codim
√
In

and by Theorems 2.4.11 and 2.2.11 we have

deg Jn =
(2n− 4)!

2n−2(n− 2)!
≤ deg

√
In.

Since the ideal Jn is Cohen-Macaulay, it is unmixed. Therefore, any ideal strictly

larger than Jn has either larger codimension or smaller degree. Combined with the

previous two assertions, and the fact that codimension and degree are unchanged

upon passing to the initial ideal [5, Thm. 15.26], we see that equality holds in

(2.119). It follows that the tree polynomials of the wheels form a Gröbner basis

for
√
In. In particular In =

√
In. To make the bounds in Theorem 2.2.11 sharp,

equality must hold in (2.5). Finally, S̃(Kn) is Cohen-Macaulay because ∆(n) is

shellable [3, Thm. 5.1.13]. Since Cohen-Macaulayness is a local condition, S(Kn)

is Cohen-Macaulay as well.
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Using the computer algebra system Macaulay [1], it can be shown that for every

n ≤ 9, the ideal In is generated by the polynomials

{τ(G) | G ⊂ Kn, G ∼= K4}. (2.120)

Equivalently, for every wheel W on 9 or fewer vertices, the polynomial τ(W ) can

be written in the form ∑
Q⊂[n], |Q|=4

aQτ(KQ), (2.121)

with aQ ∈ Rn. However, we have not found a formula for the coefficients aQ. Note,

by the way, that if the polynomials (2.120) do indeed generate In, then they are

a minimal set of generators, because they are all homogeneous of degree 3 and no

monomial appears in more than one generator.

2.6 The h-vector of ∆(n)

When ∆ is a shellable complex with facets F1, . . . , Fs, we have a combinatorial

interpretation of the h-vector h(∆) = (h0, h1, . . . ), and therefore of the Hilbert

series of R̃n [3, Corollary 5.1.14]:

hk = |{i ∈ [s] | | sh(Fi)| = k}| . (2.122)

Note that this is independent of the shelling order.

Accordingly, we can derive a recurrence defining h(∆(n)) = (hn
0 , h

n
1 , . . . ). It is

convenient to work with the associated generating function

Hn(t) = hn
0 + hn

1 t+ . . . =

s∑
i=1

tFi . (2.123)

Recall that the Hilbert series of the Stanley-Reisner ring of ∆(n), and therefore of

R̃n, is
Hn(t)

(1 − t)2n−3
.
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Theorem 2.6.1. h(∆(n)) is defined recursively by

H2(t) = 1,

H3(t) = 1,

Hn(t) = Hn−1(t) + (n− 3)tHn−1(t)

+
n−1∑
a=3

(
n− 2

a− 1

)
ta−1 (2a− 4)!

2a−2 (a− 2)!
Hn−a+1(t).

(2.124)

Therefore, for n ≥ 4, the coefficients hn
k are given by

hn
k = hn−1

k + (n− 3)hn−1
k−1 +

n−1∑
a=3

(
n− 2

a− 1

)
(2a− 4)!

2a−2 (a− 2)!
hn−a+1

k−a+1 . (2.125)

Proof. Let s(F ) = | sh(F )|. By the formula (2.92), we have

s(F ) =




0 n ≤ 3

s(F 2) V (F 1) = {n− 1, n}
s(F 2) + |V (F 1)| − 1 otherwise

(2.126)

The base cases n = 2 and n = 3 are obvious because the corresponding Stanley-

Reisner complexes are simplices. Now suppose n ≥ 4. Fix A ⊂ [n − 1] with

2 ≤ a = |A| ≤ n− 2. If A = {n− 1, n}, then

∑
F : V (F 1)=A

ts(F ) = Hn−1(t). (2.127)

Otherwise, ∑
F : V (F 1)=A

ts(F ) = ta−1 Ha(1) Hn−a+1(t). (2.128)

Now Ha(1) is just the number of facets in ∆(A). By (2.17) and Theorems 2.4.8

and 2.4.10, we have

Ha(1) =
(2a− 4)!

2a−2 (a− 2)!
. (2.129)

Now summing over all possible A yields (2.124), and taking the tk coefficients of

both sides yields (2.125).
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2.6.1 A Combinatorial Interpretation of hn
k

For small n, k, the values of hn
k are as follows:

Table 2.2: Some values of hn
k

n k=0 1 2 3 4 5 6 7
2 1
3 1
4 1 1 1
5 1 3 6 5
6 1 6 21 41 36
7 1 10 55 185 365 329
8 1 15 120 610 2010 3984 3655
9 1 21 231 1645 7980 25914 51499 47844

It appears that hn
k equals the number of matchings on [2n − 4] containing k

long pairs (i.e., pairs not of the form {i, i + 1}). For example, the matchings on

[6] are as follows:

Table 2.3: Matchings on [6]

k Matchings on [6] with k long pairs
0 {12, 34, 56}
1 {12, 36, 45}, {16, 23, 45}, {14, 23, 56}
2 {12, 35, 46}, {13, 24, 56}, {13, 26, 45}, {15, 26, 34}, {15, 23, 46}, {16, 25, 34}
3 {13, 25, 46}, {14, 25, 36}, {14, 26, 35}, {15, 24, 36}, {16, 24, 35}
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Kreweras and Poupard [10] gave several formulas for the number of matchings

on [2n−4] containing k short pairs. The numbers agree with ours up to n = 9, but

we have not yet been able to verify that our recurrences are equivalent to theirs,

nor have we been able to establish a bijection between facets and matchings in

which edges of sh(F ) correspond to long pairs.
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