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Abstract. A long-standing conjecture of Stanley states that every Cohen–
Macaulay simplicial complex is partitionable. We disprove the conjecture by

constructing an explicit counterexample. Due to a result of Herzog, Jahan and

Yassemi, our construction also disproves the conjecture that the Stanley depth
of a monomial ideal is always at least its depth.

1. Introduction

Cohen–Macaulay simplicial complexes are ubiquitous in algebraic and topolog-
ical combinatorics. They were introduced in 1975 by Stanley in his celebrated
proof of the Upper Bound Conjecture for spheres [Sta75b].1 The theory of Cohen–
Macaulay rings has long been of great importance in algebra and algebraic ge-
ometry; see, e.g., [Ree57, ZS60, Gro64, Hoc72, Hoc80, BH93]. The connection
to combinatorics via what is known as Stanley–Reisner theory was established by
Hochster [Hoc72], Reisner [Rei76], and Stanley [Sta75a]; standard references for
this subject are [Sta96] and [BH93].

The focus of this article is the following conjecture, described by Stanley as “a
central combinatorial conjecture on Cohen–Macaulay complexes” [Sta96, p. 85]. It
was originally proposed by Stanley [Sta79, p. 149] in 1979 and independently by
Garsia [Gar80, Remark 5.2] in 1980 for order complexes of Cohen–Macaulay posets.

Conjecture 1.1 (Partitionability Conjecture). Every Cohen–Macaulay simplicial
complex is partitionable.

We explicitly construct a Cohen–Macaulay complex that is not partitionable,
thus disproving the Partitionability Conjecture. In fact, we give a general method
for constructing counterexamples and an explicit infinite family of non-partitionable
Cohen–Macaulay complexes. We begin by giving some background for the conjec-
ture, which will also be directly relevant in our construction.

Two basic invariants of a simplicial complex ∆ are its f - and h-vectors

f(∆) = (f−1(∆), f0(∆), . . . , fd(∆)), h(∆) = (h0(∆), h1(∆), . . . , hd+1(∆)),
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where d = dim ∆. The number fi = fi(∆) is the number of i-dimensional faces
(simplices) in ∆. The h-vector is more subtle. It carries the same information
as the f -vector (the two are related by an invertible linear transformation), and
arises naturally in algebra: the Hilbert series of the Stanley–Reisner ring of ∆ is
(1−t)−d

∑
j hj(∆)tj . (See Section 2 for precise definitions.) It is not at all apparent

if the numbers hj(∆) have a combinatorial interpretation; for instance, they need
not be positive in general.

A partitioning of a pure simplicial complex ∆ is a decomposition into pairwise-
disjoint Boolean intervals whose maximal elements are exactly the facets (maximal
faces) of ∆. Partitionability was introduced by Provan [Pro77] and Ball [Bal77]
in the context of reliability analysis. For a partitionable complex, the h-numbers
enumerate the minimum elements of the intervals by size. In particular, shellable
complexes are easily seen to be partitionable, and hence their h-vectors have this
interpretation. The strict inclusions

{shellable complexes} ( {constructible complexes} ( {Cohen–Macaulay complexes}

are also well known. For example, the nonshellable balls constructed by Rudin [Rud58]
and Ziegler [Zie98] are constructible (see also [Lut04a]), and any triangulation of
the dunce hat is Cohen–Macaulay but not constructible [Hac08, §2]. On the other
hand, the possible h-vectors of Cohen–Macaulay, constructible, and shellable com-
plexes are all the same [Sta77, Theorem 6], suggesting that their entries ought to
count something explicit. The Partitionability Conjecture would have provided a
combinatorial interpretation of the h-vectors of Cohen–Macaulay complexes.

The idea of our construction is to work with relative simplicial complexes. Sup-
pose Q = (X,A) is a relative simplicial complex that is not partitionable, but
with X and A Cohen–Macaulay. Theorem 3.1 gives a general method of gluing
together sufficiently many copies of X along A to obtain a counterexample to the
Partitionability Conjecture, provided that A is an induced subcomplex of X. This
reduces the problem to finding an appropriate pair (X,A). Our starting point is
the nonshellable simplicial 3-ball Z constructed by Ziegler [Zie98], in which we
find a suitable subcomplex A and in turn the desired relative complex Q (Theo-
rem 3.3). By refining the construction, we are able to obtain, in Theorem 3.5, a
Cohen–Macaulay non-partitionable complex that is much smaller than predicted
by Theorem 3.1, with f -vector (1, 16, 71, 98, 42) and h-vector (1, 12, 29).

The existence of a Cohen–Macaulay nonpartitionable complex has an important
consequence in commutative algebra. For a polynomial ring S = k[x1, . . . , xn]
and a Zn-graded S-module M , many fundamental algebraic invariants of M , such
as its dimension and multigraded Hilbert series, can be profitably studied using
combinatorics. On the other hand, the combinatorial properties of the depth of
M are less well understood. In [Sta82], Stanley proposed a purely combinatorial
analogue of depth, defined in terms of certain vector space decompositions of M .
This invariant, now known as the Stanley depth and written sdepthM , has attracted
considerable recent attention (see [PSFTY09] for an accessible introduction to the
subject, and [Her13] for a comprehensive survey), centering around the following
conjecture of Stanley [Sta82, Conjecture 5.1]:

Conjecture 1.2 (Depth Conjecture). For all Zn-graded S-modules M ,

sdepthM ≥ depthM.
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Herzog, Jahan, and Yassemi proved [HJY08, Corollary 4.5] that when I is the
Stanley–Reisner ideal of a Cohen–Macaulay complex ∆, the inequality sdepthS/I ≥
depthS/I is equivalent to the partitionability of ∆. Therefore, our counterexample
to the Partitionability Conjecture disproves the Depth Conjecture as well. We
exhibit a smaller counterexample to the Depth Conjecture using a relative complex
in Remark 3.6; see Section 3.2.

It was also previously not known whether all constructible complexes were par-
titionable; see, e.g., [Hac00, §4]. The counterexample we obtain is not only Cohen–
Macaulay, but in fact constructible. Therefore, even constructibility does not imply
partitionability.

2. Preliminaries

2.1. Simplicial and relative simplicial complexes. Throughout the paper, all
complexes will be finite. Let V be a finite set. A simplicial complex on V is a
collection ∆ of subsets of V such that whenever σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆.
Equivalently, ∆ is an order ideal in the Boolean poset 2V . The symbol |∆| denotes
the standard geometric realization of ∆. The elements of ∆ are called the faces
of ∆, and the elements of V are vertices. Maximal faces are called facets. The
dimension of a face σ is dimσ = |σ| − 1, and the dimension of ∆ is dim ∆ =
max{dimσ | σ ∈ ∆}. We often write ∆d to indicate that dim ∆ = d. A complex
is pure if all maximal faces have the same dimension. A subcomplex of ∆ is a
simplicial complex Γ with Γ ⊆ ∆. A subcomplex is an induced subcomplex if it is
of the form

∆|W := {σ ∈ ∆ | σ ⊆W}
for some W ⊆ V .

In the construction of our counterexample, we will work with the more general
class of relative simplicial complexes. A relative complex Φ on V is a subset of 2V

that is convex : if ρ, τ ∈ Φ and ρ ⊆ σ ⊆ τ , then σ ∈ Φ. We sometimes refer to
simplicial complexes as “absolute” to distinguish them from relative complexes.

Every relative complex can be expressed as a pair Φ = (∆,Γ) := ∆ \Γ, where ∆
is a simplicial complex and Γ ⊆ ∆ is a subcomplex. Topologically, Φ corresponds
to the quotient space |∆|/|Γ|. Note that there are infinitely many possibilities for
the pair ∆,Γ. The unique minimal expression is obtained by letting ∆ = Φ̄ be the
combinatorial closure of Φ, i.e., the smallest simplicial complex containing Φ as a
subset, and setting Γ = ∆ \ Φ. Note that in this case dim Γ < dim ∆, because the
maximal faces of ∆ are precisely those of Φ.

The notation H̃i(∆) denotes the ith reduced simplicial homology group with
coefficients in Z. (The underlying ring does not matter for our purposes.) The

simplicial homology groups H̃i(Φ) of a relative complex Φ = (∆,Γ) are just the

relative homology groups H̃i(∆,Γ) in the usual topological sense (see, e.g., [Hat02]);
in particular, the homology groups of ∆, Γ, and Φ fit into a long exact sequence.

The f -vector of an (absolute or relative) complex ∆d is f(∆) = (f−1, f0, . . . , fd),
where fi = fi(∆) is the number of i-dimensional faces of ∆. Note that f−1(∆) = 1
for every absolute complex other than the void complex ∆ = ∅. The h-vector
h(∆) = (h0, h1, . . . , hd+1) is defined by

hk =

k∑
i=0

(−1)k−i
(
d+ 1− i
k − i

)
fi−1, 0 ≤ k ≤ d+ 1.
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In particular, the f - and h-vectors determine each other.
The link of a face σ ∈ ∆ is defined as

link∆(σ) := {τ ∈ ∆ | τ ∩ σ = ∅, τ ∪ σ ∈ ∆}.
Observe that if ∆d is pure and dimσ = k, then dim link∆(σ) = d− k − 1. If σ is a
facet of ∆ then link∆(σ) = {∅}, the trivial complex with only the empty face, and
if σ 6∈ ∆ then we set link∆(σ) to be the void complex with no faces.

If Φ = (∆,Γ) is a relative complex and σ ∈ ∆, we can define the relative link by

linkΦ(σ) = (link∆(σ), linkΓ(σ)).

It is easy to check that this construction is intrinsic to Φ, i.e., it does not depend
on the choice of the pair ∆,Γ. Note that linkΦ(σ) is not necessarily a subset of Φ.

2.2. Cohen–Macaulay simplicial complexes. A ring is Cohen–Macaulay if its
depth equals its (Krull) dimension. Reisner’s criterion [Rei76, Theorem 1] states
that Cohen–Macaulayness of the Stanley–Reisner ring [Sta96, §II.1] of a simplicial
complex can be expressed in terms of simplicial homology, and we will take this
criterion as our definition. The relative version of Reisner’s criterion is Theorem 5.3
of [Sta87].

Theorem 2.1. [Rei76, Sta87] A simplicial complex ∆ is Cohen–Macaulay if for
every face σ ∈ ∆,

H̃i(link∆(σ)) = 0 for i < dim link∆(σ). (1)

Similarly, a relative complex Φ = (∆,Γ) is Cohen–Macaulay if for every σ ∈ ∆,

H̃i(link∆(σ), linkΓ(σ)) = 0 for i < dim link∆(σ).

In fact, Cohen–Macaulayness is a topological invariant: it depends only on the
homeomorphism type of the geometric realization |∆|. This was proved by Munkres
[Mun84]. Topological invariance holds for relative complexes as well [Sta96, Corol-
lary III.7.3]. Importantly, if |∆| is homeomorphic to a ball or to a sphere, then ∆
is Cohen–Macaulay [Mun84, §2].

The following technical lemma will be central to our construction.

Lemma 2.2. Let ∆1 and ∆2 be d-dimensional Cohen–Macaulay simplicial com-
plexes on disjoint vertex sets. Let Γ be a Cohen–Macaulay simplicial complex of
dimension d or d− 1, and suppose that each ∆i contains a copy of Γ as an induced
subcomplex. Then the complex Ω obtained by identifying the two copies of Γ (or
“gluing together ∆1 and ∆2 along Γ”) is Cohen–Macaulay.

Proof. It is clear that Ω is a CW-complex. The requirement that each copy of Γ is
an induced subcomplex of ∆i means that Ω is in fact a simplicial complex (because
faces with the same underlying vertex set will be identified). It remains to show
that Ω is Cohen–Macaulay. Henceforth, to simplify the notation, we will identify
Γ with ∆1 ∩∆2, so that Ω is identified with ∆1 ∪∆2.

Let σ be a face of Ω. Note that

linkΩ(σ) = {τ ∈ Ω | τ ∩ σ = ∅, τ ∪ σ ∈ Ω} = link∆1(σ) ∪ link∆2(σ),

linkΓ(σ) = {τ ∈ Γ | τ ∩ σ = ∅, τ ∪ σ ∈ Γ} = link∆1
(σ) ∩ link∆2

(σ).
(2)

First, suppose that σ ∈ ∆1 \∆2. Then Reisner’s criterion (1) holds for σ because
linkΩ(σ) = link∆1

(σ), and ∆1 is Cohen–Macaulay. Likewise, Reisner’s criterion
holds for faces of ∆2 \∆1.
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On the other hand, suppose that σ ∈ Γ. Then the observations (2) give rise to
a reduced Mayer-Vietoris sequence

· · · → H̃i(link∆1
(σ))⊕ H̃i(link∆2

(σ))→ H̃i(linkΩ(σ))→ H̃i−1(linkΓ(σ))→ · · · .
But since ∆1,∆2,Γ are Cohen–Macaulay and dim Γ ≥ dim ∆1 − 1, the Mayer-
Vietoris sequence implies that H̃i(linkΩ(σ)) = 0 for all i < d − dimσ − 1. This is
precisely the statement that Reisner’s criterion holds for σ. �

Iterating Lemma 2.2, we obtain immediately:

Proposition 2.3. Let ∆1, . . . ,∆n be d-dimensional Cohen–Macaulay simplicial
complexes on disjoint vertex sets. Let Γ be a Cohen–Macaulay simplicial complex
of dimension d − 1 or d, and suppose that each ∆i contains a copy of Γ as an
induced subcomplex. Then the complex Ω obtained from ∆1, . . . ,∆n by identifying
the n copies of Γ is Cohen–Macaulay.

2.3. Shellability, partitionability, and constructibility.

Definition 2.4. Let ∆ be a pure simplicial complex. A shelling of ∆ is a total
ordering F1, . . . , Fn of its facets so that for every j, the set

{σ ⊆ Fj | σ 6⊆ Fi for all i < j}
has a unique minimal element Rj .

The h-vector of a shellable complex has a simple combinatorial interpretation:

hk(∆) = #{j | #Rj = k}. (3)

In particular hk(∆) ≥ 0 for all k, and in fact hk(∆) = 0 implies h`(∆) = 0 for all
` > k (a consequence of [BH93, Theorem 5.1.15]). Shellable complexes are Cohen–
Macaulay, although the converse is not true: well-known counterexamples include
any triangulation of the dunce hat, as well as the nonshellable balls constructed
by Rudin [Rud58] and Ziegler [Zie98]. On the other hand, Cohen–Macaulay com-
plexes satisfy the same conditions on the h-vector, so it is natural to look for a
combinatorial interpretation of their h-vectors.

Definition 2.5. Let ∆ be a pure simplicial complex with facets F1, . . . , Fn. A
partitioning P of ∆ is a decomposition into pairwise-disjoint Boolean intervals

∆ =

n⊔
i=1

[Ri, Fi]

where [Ri, Fi] = {σ ∈ ∆ | Ri ⊆ σ ⊆ Fi}. We say that each Fi is matched to the
corresponding Ri.

Clearly, shellable complexes are partitionable. If ∆ is partitionable, then its
h-vector automatically carries the combinatorial interpretation (3) [Sta96, Propo-
sition III.2.3]. Moreover, Definitions 2.4 and 2.5, and the interpretation of the
h-vector, carry over precisely from absolute to relative complexes.

Example 2.6. A partitionable complex need not be Cohen–Macaulay, much less
shellable. The following example is due to Björner [Sta96, p. 85]. Let ∆ be the pure
2-dimensional complex with facets 123, 124, 134, 234, 156 (abbreviating {1, 2, 3} by
123, etc.). This complex is not Cohen–Macaulay because vertex 1 fails Reisner’s
criterion (1), but it is partitionable:

∆ = [∅, 156] ∪ [2, 123] ∪ [3, 134] ∪ [4, 124] ∪ [234, 234].
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In particular, h(∆) = (1, 3, 0, 1), which is not the h-vector of any Cohen–Macaulay
complex (since h2 = 0 and h3 > 0).

Constructibility, introduced by Hochster [Hoc72], is a combinatorial condition
intermediate between shellability and Cohen–Macaulayness.

Definition 2.7. A complex ∆d is constructible if it is a simplex, or if it can be
written as ∆ = ∆1∪∆2, where ∆1, ∆2, and ∆1∩∆2 are constructible of dimensions
d, d, and d− 1 respectively.

Hachimori [Hac00] investigated the question of whether constructibility implies
partitionability. Our counterexample to the Partitionability Conjecture is in fact
constructible, resolving this question as well.

3. The counterexample

We first give a general construction that reduces the problem of finding a coun-
terexample to the problem of constructing a certain kind of non-partitionable
Cohen–Macaulay relative complex.

Theorem 3.1. Let Q = (X,A) be a relative complex such that

(i) X and A are Cohen–Macaulay;
(ii) A is an induced subcomplex of X of codimension at most 1; and
(iii) Q is not partitionable.

Let k be the total number of faces of A, let N > k, and let C = CN be the simplicial
complex constructed from N disjoint copies of X identified along the subcomplex A.
Then C is Cohen–Macaulay and not partitionable.

Proof. First, C is Cohen–Macaulay by Proposition 2.3. Second, suppose that C
has a partitioning P. Let X1, X2, . . . , XN be the N copies of X. By the pigeonhole
principle, since N > k, there is some copy of X, say XN , none of whose facets is
matched to a face in A. Let [R1, F1], . . . , [R`, F`] be the intervals in P for which
Fi ∈ XN ; then ⋃̀

i=1

[Ri, Fi] ⊆ XN \A. (4)

No other interval in P can intersect XN \ A nontrivially, so in fact equality must
hold in (4). But then (4) is in fact a partitioning of XN \A = Q, which was assumed
to be non-partitionable. �

Remark 3.2. It is easy to see that a subcomplex A ⊂ X is an induced subcomplex
if and only if every minimal face of X \A has dimension 0. Therefore, this condition
may be viewed as a restriction on the relative complex (X,A).

3.1. The construction. Throughout, we abbreviate the simplex on vertices {v1, . . . , vk}
by v1 · · · vk. Our construction begins with Ziegler’s nonshellable 3-ball Z, which is
a nonshellable triangulation of the 3-ball with 10 vertices labeled 0, 1, . . . , 9, and
the following 21 facets [Zie98, §4]:

0123, 0125, 0237, 0256, 0267, 1234, 1249,
1256, 1269, 1347, 1457, 1458, 1489, 1569,
1589, 2348, 2367, 2368, 3478, 3678, 4578.
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Figure 1. A perspective view of the 1-skeleton of Q̄ from the top.
Dark edges are exterior edges visible from the top; light edges are
interior edges, or exterior edges at the bottom. Light vertices are
in A.

The complex Z is not shellable, but it is partitionable, Cohen–Macaulay and, in
fact, constructible [Hac01].

Let B be the induced subcomplex Z|{0,2,3,4,6,7,8}. That is, B is the pure 3-
dimensional complex with facets

0237, 0267, 2367, 2368, 2348, 3678, 3478.

The given order is a shelling of B; in particular B is Cohen–Macaulay. Define Q to
be the relative complex Q = (Z,B). Then Q is also Cohen–Macaulay by [Duv96,
Corollary 3.2].

The facets of Q are

1249, 1269, 1569, 1589, 1489, 1458, 1457,
4578, 1256, 0125, 0256, 0123, 1234, 1347.

(5)

The minimal faces of Q are just the vertices 1, 5, 9. We can picture Q easily
by considering its combinatorial closure Q̄, that is, the 3-dimensional simplicial
complex generated by the facets (5). In fact Q̄ is a shellable ball; the ordering of
facets given in (5) is a shelling. The complement A = Q̄ \Q = Q̄|{0,2,3,4,6,7,8} is the
shellable 2-ball with facets

026, 023, 234, 347, 478. (6)

Thus Q = (Q̄, A). The f - and h-vectors of these complexes are

f(Q̄) = (1, 10, 31, 36, 14), h(Q̄) = (1, 6, 7, 0, 0),

f(A) = (1, 7, 11, 5, 0), h(A) = (1, 4, 0, 0, 0),

f(Q) = (0, 3, 20, 31, 14), h(Q) = (0, 3, 11, 0, 0).

The 1-skeleton of Q̄ is shown in Figure 1. The triangles on the boundary of Q,
i.e., those contained in exactly one facet, are illustrated in Figure 2, which shows
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Figure 2. Left: A front view of Q. Right: A back view of Q. The
shaded and dashed faces are in A.

the boundary of Q as seen from the front (left) and back (right). The five shaded
triangles are the facets of A, and hence are missing from Q.

In what follows, we will use the fact that the triple transposition τ = (0 7)(2 4)(6 8)
is a simplicial automorphism of Q̄. This symmetry is apparent as a reflection
through the plane containing vertices 1, 3, 5, and 9 in Figure 1, and as a vertical
reflection in each part of Figure 2.

Theorem 3.3. The relative complex Q is not partitionable.

Proof. Suppose that Q admits a partitioning P. We will show that a particular
minimal face, namely vertex 5, must simultaneously belong to two intervals of the
partitioning, which is a contradiction.

For each facet F ∈ Q, denote by IF = [RF , F ] the interval of P with top
element F .

For each triangle T on the boundary, there is only one interval that can contain T .
In particular, 489 ∈ I1489. It follows that 148 6∈ I1489, for otherwise 148 ∩ 489 =
48 ∈ I1489, but 48 6∈ Q. Therefore 148 ∈ I1458, since 1458 is the only other facet
containing 148. Then 458 6∈ I1458, again because 148 ∩ 458 = 48 6∈ Q, and thus
45 /∈ I1458. The other two facets that contain 45 are 4578 and 1457. Therefore,
either 45 ∈ I4578 or 45 ∈ I1457. On the other hand, these are also the only two
facets that contain the edge 57. Since

45, 57 ⊂ 457 ⊂ 1457, 4578

the edges 45 and 57 must belong to the same interval of P (namely, whichever one
of I1457, I4578 contains 457). But then that interval must also contain 45 ∩ 57 = 5.
We have shown that

either 5 ∈ I1457 or 5 ∈ I4578. (7)

By applying the automorphism τ to the above argument, we conclude that

either 5 ∈ I0125 or 5 ∈ I0256. (8)

But (7) and (8) cannot both be true, and we have reached a contradiction. �

We can now give an explicit description of our counterexample to the Parti-
tionability Conjecture. Since X = Q̄ and A are both shellable balls, they are
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Cohen–Macaulay. We may therefore apply Theorem 3.1, with N = 25 (since A has
24 faces total).

Theorem 3.4. Let X = Q̄ be the combinatorial closure of Q, and let A = X \Q.
That is, X and A are the absolute simplicial complexes whose facets are listed in (5)
and (6), respectively. Then the simplicial complex C25 constructed in Theorem 3.1
is Cohen–Macaulay and non-partitionable.

The f -vector is f(C25) = f(A) + 25f(Q) = (1, 82, 511, 780, 350).
For this particular construction, the full power of Theorem 3.1 is not necessary;

there is a much smaller counterexample.

Theorem 3.5. Let Q, A, and X = Q̄ be as described above. Then the simpli-
cial complex C3 obtained by gluing together three copies of X along A is Cohen–
Macaulay and non-partitionable.

Proof. Suppose that C3 is partitionable. By the pigeonhole principle, at least one
of the three copies of Q inside C3 has no facets matched to either edge 48 or its
image under τ , edge 26. These two edges are the only two faces of A that occur in
the argument of Theorem 3.3. Therefore, that argument applies to this copy of Q,
and once again we conclude that (7) and (8) must both hold, a contradiction. �

The f -vector is f(C3) = f(A) + 3f(Q) = (1, 16, 71, 98, 42). We do not know
if there exists a smaller counterexample (for example, the complex C2 obtained
by gluing two copies of X together along A is partitionable). In particular, it is
still open whether every two-dimensional Cohen–Macaulay simplicial complex is
partitionable; see Hachimori [Hac08].

We have previously observed that X and A are shellable. We note that X and
A are contractible, and it is easily seen that X deformation-retracts onto A, so C3

is contractible as well, although it is not homeomorphic to a ball.

Remark 3.6. There is a much smaller relative simplicial complex that is Cohen–
Macaulay but not partitionable, with f -vector (0, 0, 5, 10, 5). This complex can be
written as Q′ = (X ′, A′), where X ′ = Q′ = Z|{1,4,5,7,8,9} is the complex with facets

1589, 1489, 1458, 1457, 4578,

and A′ is the (non-induced) subcomplex of X ′ with facets

489, 589, 578, 157.

These complexes are shellable balls of dimensions 3 and 2 respectively (the given
orders of facets are shelling orders), and A′ is contained in the boundary of X ′

(note that each facet in A′ is contained in only one facet of X ′), so Q′ is Cohen–
Macaulay by [Sta87, Corollary 5.4]. On the other hand, one can check directly that
there is no partitioning of Q′. Because A′ is not an induced subcomplex, it is not
possible to obtain a counterexample to the Partitionability Conjecture by applying
Theorem 3.1.

Remark 3.7. It is easily seen that C3 is constructible. Therefore, it furnishes a
counterexample not only to the Partitionability Conjecture, but also to the conjec-
ture that every constructible simplicial complex is partitionable [Hac00, §4]. Fur-
thermore, since all constructible complexes are Cohen–Macaulay [BH93, p. 219],
the constructibility and non-partitionability of C3 are sufficient to disprove the
Partitionability Conjecture.
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3.2. Stanley depth. Let k be a field and S = k[x1, . . . , xn], and let M be a Zn-
graded S-module. A Stanley decomposition D of M is a vector space decomposition

M =

r⊕
i=1

k[Xi] ·mi

where each Xi is a subset of {x1, . . . , xn} and each mi is a homogeneous element
of M . The Stanley depth of M is defined as

sdepthM = max
D
{min(|X1|, . . . , |Xr|)} ,

where D ranges over all Stanley decompositions of M . If Φ is an (absolute or
relative) simplicial complex, then we define its Stanley depth to be the Stanley
depth of its associated Stanley–Reisner ring or module. This invariant has received
substantial recent attention [PSFTY09, Her13], centering on the Depth Conjecture
of Stanley [Sta82, Conjecture 5.1], which we now restate.

Conjecture 1.2 (Depth Conjecture). For all Zn-graded S-modules M ,

sdepthM ≥ depthM.

Herzog, Jahan and Yassemi [HJY08, Corollary 4.5] proved that if ∆ is a Cohen–
Macaulay simplicial complex whose Stanley–Reisner ring [Sta96, §II.1] is k[∆] :=
S/I∆ (so that depth k[∆] = dimk[∆] = dim ∆ + 1), then Conjecture 1.2 holds
for k[∆] if and only if ∆ is partitionable. Therefore, our construction provides
a counterexample to the Depth Conjecture. Katthän has conjectured that the
inequality sdepthS/I ≥ depthS/I − 1 holds for every monomial ideal I; for a
detailed exposition and the evidence for this conjecture, see [Kat16].

A smaller counterexample to Conjecture 1.2 is provided by the relative complex
Q′ in Remark 3.6. The depth of each of C3 and Q′ is easily seen to be 4, but the
Stanley depth of each of C3 and Q′ is 3. The Stanley depth computations were
made by Katthän [Kat], using the algorithm developed by Ichim and Zarojanu
[IZ14].

4. Open questions

Now that we know that Cohen–Macaulayness and even constructibility are not
sufficient to guarantee partitionability, it is natural to ask what other conditions
do suffice. Hachimori defined a related but more restricted class of strongly con-
structible complexes and showed that they are always partitionable [Hac00, Corol-
lary 4.7]. Here are two additional possibilities, inspired by what our counterexample
C3 is not. First, C3 is not homeomorphic to a ball, because the triangles in A are
each contained in three facets. On the other hand, balls are Cohen–Macaulay,
motivating the following question:

Question 4.1. Is every simplicial ball partitionable?

This conjecture is true if we further assume the ball is convexly realizable, by
[Sta96, Proposition III.2.8]; see also [KS91]. On the other hand, there exist non-
convex simplicial balls in dimensions as small as 3; see, e.g., [Lut04b, Lut08].

Garsia [Gar80, Remark 5.2] proposed the Partitionability Conjecture for the
special class of order complexes of Cohen–Macaulay posets (see also [Bac76, Bac80,
BGS82]), which give rise to balanced Cohen–Macaulay simplicial complexes. Recall
that a d-dimensional simplicial complex is balanced if its vertices can be colored with
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d + 1 colors so that every facet has one vertex of each color. For instance, if P is
a ranked poset, then its order complex is easily seen to be balanced by associating
colors with ranks. The complex Q̄ with facets listed in (5) is not balanced (because
its 1-skeleton is not 4-colorable), hence neither is C3 or C25, nor indeed CN for
any N .

Question 4.2. Is every balanced Cohen–Macaulay simplicial complex partitionable?

Although Cohen–Macaulay complexes are not necessarily partitionable, their
h-vectors are still nice; they are always non-negative and in fact coincide with
the h-vectors of shellable complexes. Without the Partitionability Conjecture, the
question remains:

Question 4.3. What does the h-vector of a Cohen–Macaulay simplicial complex
count?

One answer is given by [DZ01], where it is shown that every simplicial com-
plex can be decomposed into Boolean trees indexed by iterated Betti numbers;
see [DZ01, Corollary 3.5]. The starting point of that paper is a conjecture of Kalai
[Kal02, Conjecture 22] that any simplicial complex can be partitioned into intervals
in a way related to algebraic shifting. Kalai’s conjecture would have implied that
simplicial complexes could be decomposed into Boolean intervals. Such a decompo-
sition into intervals, however, would have implied the Partitionability Conjecture.
Hence our result provides a counterexample to Kalai’s conjecture. Moreover, the
decomposition in [DZ01] may be best possible at this level of generality.
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