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ABSTRACT. We study pure ordered simplicial complexes (i.e., simplicial complexes with
a linear order on their ground sets) from the Hopf-theoretic point of view. We define a
Hopf class to be a family of pure ordered simplicial complexes that give rise to a Hopf
monoid under join and deletion/contraction. The prototypical Hopf class is the family of
ordered matroids. The idea of a Hopf class allows us to give a systematic study of simpli-
cial complexes related to matroids, including shifted complexes, broken-circuit complexes,
and unbounded matroids (which arise from unbounded generalized permutohedra with 0/1
coordinates).

We compute the antipodes in two cases: facet-initial complexes (a much larger class than
shifted complexes) and unbounded ordered matroids. In the latter case, we embed the
Hopf monoid of ordered matroids into the Hopf monoid of ordered generalized permuto-
hedra, enabling us to compute the antipode using the topological method of Aguiar and
Ardila. The calculation is complicated by the appearance of certain auxiliary simplicial
complexes that we call Scrope complexes, whose Euler characteristics control certain coeffi-
cients of the antipode. The resulting antipode formula is multiplicity-free and cancellation-
free.
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1. INTRODUCTION

1.1. Background: Matroids and combinatorial Hopf theory. The study of Hopf alge-
bras and related structures in combinatorics dates back to the seminal work of Rota in
the 1970s, notably his work with Joni [JR79] on coalgebras and bialgebras. The underly-
ing idea is simple: joining and breaking of combinatorial objects — graphs, trees, posets,
matroids, symmetric and quasisymmetric functions — are modeled algebraically by mul-
tiplication and comultiplication. Major works include Schmitt’s study of incidence Hopf
algebras [Sch94] and Aguiar, Bergeron and Sottile’s theory of combinatorial Hopf alge-
bras [ABS06], as well as the monograph by Grinberg and Reiner [GR14]. More recently,
the subject has turned in a more category-theoretic direction with the introduction of Hopf
monoids by Aguiar and Mahajan [AM10]; a survey of the subject accessible to combina-
torialists appears in SS2–4 of [AA17]. Broadly speaking, a Hopf algebra is generated by
unlabeled combinatorial objects while a Hopf monoid is generated by labeled objects, so
the latter keeps track of more information.

A key to the structure of a Hopf algebra or a Hopf monoid is its antipode. Every group
algebra is a Hopf algebra in which the antipode is (the linearization of) inversion in the
group [GR14, Ex. 1.31], [AM10, p.88], so the antipode can be regarded as a generalization
of group inversion. The antipode is defined via a certain commutative diagram and the
general formula, known as the Takeuchi formula, typically exhibits massive cancellation,
so one of the fundamental problems in studying a given Hopf algebra or monoid is to
give a cancellation-free formula for its antipode.

Before going on, we give a brief working definition of a Hopf monoid; the full details
are in §2.5 below. A vector species is a functor H from finite sets I with bijections to sets
HrIs with bijections; one should think of HrIs as the space spanned by the set hrIs of
combinatorial objects of a given type labeled by I (for example, graphs with vertices I or
matroids on ground set I). A Hopf monoid in vector species is a vector species H equipped
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with linear maps µS,T : HrSs bHrT s Ñ HrIs (product) and ∆S,T : HrIs Ñ HrSs bHrT s
(coproduct) for all decompositions I “ S \ T ; the maps must satisfy certain compatibility
conditions.

The Hopf algebra of matroids was introduced by Crapo and Schmitt [CS05a, CS05b, CS05c].
The corresponding Hopf monoid was described by Aguiar and Mahajan [AM10, §13.8.2]
and has attracted recent interest; see, e.g., [San20, Sup20, AS20, Bas20]. There are many
definitions of a matroid (see, e.g., [Oxl11, Section 1]), but for our purposes the most con-
venient definition is that a matroid is a simplicial complex Γ on vertex set I such that the
induced subcomplex Γ|S “ tσ P Γ : σ Ď Su is pure for every S Ď I (i.e., every facet
of Γ|S has the same size). In fact the following condition, which we call link-invariance, is
equivalent: for every S Ď I , all facets of Γ|S have identical links. (Recall that the link of a
face in a simplicial complex is defined as linkΓpφq “ tσ P Γ : σX φ “ H, σYϕ P Γu.) This
characterization of matroid complexes appears to be new (Theorem 2.10).

Link-invariance is crucial to the definition of the Hopf monoid Mat of matroids: prod-
uct is given by direct sum and coproduct by restriction/contraction. Specifically, for ma-
troids Γ1,Γ2,Γ on ground sets S, T, I one defines

µS,T pΓ1,Γ2q “ Γ1 ˚ Γ2 “ tσ1 Y σ2 : σ1 P Γ1, σ2 P Γ2u,

∆S,T pΓq “ Γ|S b Γ{S (1.1)

where Γ{S “ linkΓpϕq for any facet ϕ P Γ|S. Since link-invariance characterizes matroid
complexes, no larger subspecies of SC can be made into a Hopf monoid in this way.1

1.2. Ordered simplicial complexes. One of the goals of our work is to use combinatorial
Hopf theory to study pure simplicial complexes that generalize or behave similarly to ma-
troids, or that exhibit similar behavior. Two well-known examples of such classes include
pure shifted complexes [Kal02, BK88] and broken-circuit complexes of matroids [Bry77]. How-
ever, as we have just seen, there are two major difficulties to defining a Hopf structure on
any species containing Mat. Difficulty 1, as mentioned above, is that link-invariance
characterizes matroids, meaning that Mat cannot be extended within SC. Difficulty 2 is
that even the class of pure complexes is not closed under restriction; indeed, the largest
class of pure complexes closed under restriction is precisely the set of matroid complexes.

To resolve these difficulties, we introduce a linear order w on the vertex set of Γ. On
a technical level, we can now overcome Difficulty 1 by defining Γ{S unambiguously as
the link of the lexicographically minimal facet of Γ|S with respect to w (following the ideas
of [Sam20]). Introducing an order on the ground set is actually quite natural in the con-
text of matroids and related structures. Matroids are characterized by uniform behav-
ior in many ways with respect to all possible ground set orderings, while both shifted
complexes and broken-circuit complexes (as well as the special class of matroids known
as positroids; see [Pos07]) are controlled strongly by linear orderings of their vertex sets.
As discussed in, e.g., [HS20, Sam20], it would be convenient to extend matroids to a
larger class of complexes to facilitate various inductive arguments. As one example, one
would like to attack Stanley’s notorious conjecture on pure O-sequences [Sta96, Conjec-
ture III.3.6] by induction on the number of bases. Removing a basis does not in general

1Benedetti, Hallam and Machacek [BHM16] considered a different Hopf structure on simplicial com-
plexes, motivated by an analogous Hopf structure for graphs, in which product is given by disjoint union
rather than join. Note that the disjoint union of matroids is in general not a matroid.
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preserve the property of being a matroid complex, but it may preserve membership in a
larger class. Another motivation for extending matroids arises in the theory of combina-
torial Laplacians of simplicial complexes. The Laplacians of matroid complexes [KRS99]
and shifted complexes [DR02] are known to have integer eigenvalues and satisfy a com-
mon recurrence relation [Duv05], raising the question of determining the largest class of
simplicial complexes satisfying the recurrence.

Thus we are now looking for Hopf monoids in species whose standard bases are tensors
w b Γ, where w is a linear order on the vertex set of the simplicial complex Γ. That
is, these species are subspecies of a Hadamard product of linear orders with SC, with
product and coproduct of simplicial complexes defined as just explained. There are two
basic Hopf monoid structures on the species of linear orders, called L and L˚ in [AA17,
Examples 8.16 and 8.24]. The product in L is given by concatenation, while in L˚ it is
shuffle product.

The shuffle product is much better for our purposes, for several reasons. First and
most importantly, the coproduct ∆S,T in L˚ is nonzero only on linear orders w in which
every element of S precedes every element of T . This resolves Difficulty 2: rather than
requiring that Γ be a matroid, we need only require that it be prefix-pure, that is, that
every subcomplex induced by an initial segment of w is pure. (This is in practice a mild
restriction; many classes of complexes of interest, including broken-circuit complexes
and pure shifted complexes, are prefix-pure.)Second, shuffle product (but not concate-
nation) is commutative, meaning that the inherent commutativity of join is preserved in
the Hadamard product. Third, using L˚ rather than L turns out to be a more natural
choice from the geometric viewpoint that we will describe soon.2

Accordingly, we define a Hopf class as a class of ordered complexes that is closed
under initial restriction, initial contraction, and ordered join. All the Hopf classes we will
consider in this paper consist of prefix-pure complexes. Our main results about Hopf
classes are as follows.

Theorem A. (Proposition 3.4 + Theorem 3.16) Every Hopf class H gives rise to a vector species
H Ď L˚ ˆ SC with the structure of a commutative Hopf monoid under the operations (1.1).
Moreover, the Hopf class PRE of prefix-pure ordered complexes is the largest Hopf class all of
whose members are pure complexes, so that the Hopf monoid Pre can be regarded as the universal
Hopf monoid of pure ordered complexes.

Theorem B. (Section 3.2) The following collections (among others) are Hopf classes of prefix-pure
ordered complexes.

(1) Ordered matroids;
(2) Strongly lexicographically shellable complexes, i.e., those for which every ordering on the

ground set induces a shelling order on every restriction to an initial segment;3

(3) Broken-circuit complexes and their contractions;
(4) Pure shifted simplicial complexes and their joins;
(5) Color-shifted complexes in the sense of Babson and Novik [BN06];

2On the other hand, positroids are closed under contractions and restrictions [ARW16, Prop. 3.5], but
only under join if the orders are concatenated rather than shuffled.

3This definition of lex-shellability is not to be confused with CL- or EL-shellability of the order complex
of a poset as in, e.g., [Bjö80, BW82].
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(6) Any complex in a quasi-matroidal class in the sense of [Sam20];
(7) Gale truncations of ordered matroids.

The known inclusions between these Hopf classes are shown in Figure 2.

The condition of prefix-purity actually appears (without a name) in the work of Bry-
lawski [Bry77, p. 430] on broken-circuit complexes. There it is observed that matroids are
strictly contained in the class of (reduced) broken-circuit complexes, which in turn are
strictly contained in prefix-pure complexes.

In the course of this work, we have checked computationally that there exists simpli-
cial complex (Lockeberg’s simplicial 3-sphere) that is shellable but not lexicographically
shellable under any order (Remark 3.6). We believe this observation to be new.

1.3. Polyhedra. Having developed a purely algebraic and combinatorial theory of Hopf
monoids of ordered simplicial complexes extending matroids, we now move to geometry.
Every matroid M has an associated base polytope pM defined as the convex hull of the
characteristic vectors of its bases (and thus contains all the data of M ). A far-reaching
result of Gelfand, Goresky, MacPherson and Serganova [GGMS87, Thm. 4.1] states that
a polyhedron p Ă RE is a matroid base polytope for some matroid on E if and only if p
satisfies the following three conditions:

(M1) p is bounded;
(M2) p is an 0/1-polyhedron, that is, the coordinates of all vertices consist entirely of

0/1 vectors;
(M3) Every edge of p is parallel to some ei ´ ej , where teiuiPE is the standard basis of

RE . Equivalently, the normal fan of p is a coarsening of the fan defined by the braid
arrangement.

Conditions (M1) and (M3) define the class of generalized permutohedra, an important family
of polytopes introduced under that name by Postnikov [Pos09] and equivalent to the poly-
matroids studied by Edmonds [Edm70]. Generalized permutohedra form a Hopf monoid
GP that was studied intensively by Aguiar and Ardila [AA17]; in particular, the antipode
of a generalized permutohedron p has an elegant formula [AA17, Thm. 7.1] in terms of the
faces of p. The Aguiar-Ardila formula is both cancellation-free (all summands are distinct)
and multiplicity-free (all coefficients are ˘1). This theory carries over with little change to
the family of extended generalized permutohedra, or possibly-unbounded polyhedra satisfy-
ing condition (M3). Moreover, the map M ÞÑ pM identifies Mat with a Hopf submonoid
of GP. Meanwhile, every polyhedron p that satisfies (M2) and whose vertices have fixed
coordinate sum gives rise to a pure simplicial complex Υppq, its indicator complex, whose
facets are the supports of vertices of p.

Accordingly, we next study Hopf monoid structures on species of more general ordered
polyhedra than matroid base polytopes. (Here “ordered polyhedron” means “polyhe-
dron whose ambient space is equipped with a linear order on its coordinates.”) We do
not wish to drop (M3) which is fundamental to the structure of matroid polytopes. In
fact, GP` cannot be extended to any larger Hopf monoid of polyhedra with the same
product and coproduct [AA17, Theorem 6.1], so we really are restricted to subspecies
of L˚ ˆ GP`; that is, whose basis elements are tensors w b p, where p is an (extended)
generalized permutohedron in RI and w is a linear order on I . On the other hand, it is
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possible to drop one or both of conditions (M1) and (M2) to get interesting Hopf monoids
of ordered polyhedra that generalize matroid polytopes.

Theorem C. (Theorem 5.2 + Theorem 4.5) The following relaxations of the conditions (M1) and
(M2), while retaining (M2), produce Hopf monoids:

(1) Retaining (M2) but dropping (M1) yields the species OIGP` Ď L˚ ˆGP`, of ordered
0/1 extended generalized permutohedra. The map sending a polyhedron to its in-
dicator complex gives rise to a Hopf morphism Υ̃ : OIGP` Ñ Pre. The image is a
Hopf monoid OMat` that arises from a Hopf class OMAT` of complexes that we call
unbounded matroids.

(2) Retaining (M1) but dropping (M2) yields the Hopf monoid OGP of ordered generalized
permutohedra, which is just the Hadamard product L˚ ˆGP.

(3) Dropping both (M1) and (M2) yields the Hopf monoid OGP` spanned by pairs w b p
such that p is bounded in the direction defined by w.

Two different 0/1 polyhedra can have the same indicator complex (Example 2.1). This
implies that the map Υ̃ : OIGP` Ñ Pre mentioned above has a nontrivial kernel, which
remains mysterious.

1.4. Antipodes. Having constructed a large family of Hopf monoids, we now wish to
compute their antipodes; that is, to specialize the general Takeuchi formula to a cancellation-
and multiplicity-free expression, if possible. We focus our attention on the special cases
of shifted complexes and ordered generalized permutohedra.

In Section 6, we first focus on the class of ordered simplicial complexes that are facet-
initial, i.e., whose lex-minimal facet is an initial segment of the order. This condition is
much milder than being shifted, and in fact is enough to expand the Takeuchi formula
and track most or all of the cancellation. The results may be summarized as follows:

Theorem D. (Theorem 6.3 + Section 6.3)
(1) Equation (6.5) gives a simple (but not entirely cancellation-free) formula for the antipode

of a facet-initial ordered complex.
(2) For a shifted complex without loops or coloops, the formula (6.5) is cancellation-free.
(3) Equation (6.11) gives a cancellation-free (but more complicated) antipode formula for facet-

initial complexes. In particular, every coefficient in the antipode of a facet-initial complex
is ˘1.

(4) For a shifted complex Γ, equation (6.13) gives a slightly less complicated cancellation-
free formula for the antipode. Moreover, each term in this formula can be interpreted
geometrically as a face of a matroid polytope, for any matroid containing Γ as a subcomplex.

In Section 7, we compute the antipode in the Hopf monoid OGP` of ordered extended
generalized permutohedra, and thus for its Hopf submonoid OMat of ordered matroids.
Our argument is inspired by the topological approach of Aguiar and Ardila: expand the
Takeuchi formula in the standard basis for OGP`, interpret each coefficient as the Eu-
ler characteristic of a simplicial complex obtained by intersecting some faces of the braid
arrangement with the unit sphere, then use geometric arguments (e.g., convexity) to ob-
serve that these complexes are topological balls or spheres. However, the interaction be-
tween L˚ and GP` produces considerable unforeseen complications. In particular, some
of the terms in the antipode are governed by the Euler characteristics of certain auxiliary
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simplicial complexes that we call Scrope complexes, generated by complements of intervals
(see Section 7.1). A simple inductive argument (Proposition 7.2) shows that every Scrope
complex is a homotopy ball or sphere, hence has Euler characteristic 1, 0, or ´1; however,
it is not clear how to “see” the topological type of a Scrope complex from its list of genera-
tors. Nevertheless, these complexes enable us to track all the cancellation in the Takeuchi
formula.

Theorem E. (Theorem 7.15) There is a multiplicity-free and cancellation-free formula for the
antipode of the Hopf monoid OGP`.

In light of Theorems D and E, we make the following conjecture.

Conjecture F. (Conjecture 6.1) The antipode for the Hopf monoid of the universal Hopf class PRE
is multiplicity-free.

The organization of the paper is as follows.
Section 2 reviews background material on simplicial complexes, matroids, general-

ized permutohedra and Hopf monoids. A reader familiar with the literature (particu-
larly [AM10] and [AA17]) may wish to skip this section and refer to it as needed.

Section 3 defines the main objects of study: Hopf classes of ordered complexes. We give
numerous examples and show how Hopf classes give rise to Hopf monoids.

Section 4 defines the Hopf monoids OGP and OGP` of ordered (extended) general-
ized permutohedra, which extend OMat and enable us to study it geometrically on the
level of ordered matroid polytopes.

Section 5 describes the new class of unbounded matroids, defined as ordered sim-
plicial complexes obtained from 0/1-generalized permutohedra that are not necessarily
bounded.

Sections 6 and 7 contain the antipode formulas for facet-initial complexes and ordered
generalized permutohedra, respectively.

Section 8 studies antipodes of special classes of generalized permutohedra for which
the Scrope complexes can be understood explicitly. These polyhedra include hypersim-
plices (Proposition 8.4) and certain graphical zonotopes (Proposition 8.5); notably, in both
of these cases, the Scrope complexes arise from certain spider preposets.

Section 9 concludes with several open questions.

2. BACKGROUND AND NOTATION

We begin by setting up definitions and notation for the objects we will need, including
preposets, polytopes, generalized permutohedra, and Hopf monoids. Our presentation
owes a great deal to [AA17] and [PRW08], although our notation and terminology dif-
fers from theirs in some cases. Generalized permutohedra were introduced by Postnikov
[Pos09], and the connection to preposet combinatorics was developed in [PRW08]. For
general references on polytopes and polyhedra, see [Grü03] and [Zie95]; for hyperplane
arrangements, see [Sta07]. Hopf monoids are treated comprehensively in [AM10]; a more
compact “user’s guide” appears in [AA17, §2].

Throughout, we will adhere to the notational conventions in the following table.
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Object Font Examples
Set compositions Roman capital letters A, D, . . .
Albums (families of set compositions) Sans-serif capital letters E, F, . . .
Fans Calligraphic letters E , F , . . .
Simplicial complexes Capital Greek letters Γ, Σ, . . .
Polytopes Fraktur p, q, . . .
Hopf monoids in set species Boldface lower-case `̀̀, . . .
Hopf monoids in vector species Boldface upper-case L, Mat, GP, . . .

The symbol ă always denotes the natural order on R; other partial orderings are de-
noted by symbols such as ă and C. The symbol J denotes the end of an example.

2.1. Simplicial complexes. For a general reference on simplicial complexes, see, e.g.,
[Sta96, §0.3] or [KN16]. A simplicial complex Γ on a finite set I is a (possibly empty) sub-
set of 2I closed under inclusion. The elements of I are vertices, the elements of Γ are faces
and the maximal (under inclusion) faces are facets. A collection of faces γ1, . . . , γr Ď I
generates the complex xγ1, . . . , γry, namely the union of their power sets. The dimension
of a face γ P Γ is dim γ “ |γ| ´ 1; the dimension of Γ is the maximum dimension of a
face; and Γ is pure if all facets have the same dimension. The reduced Euler character-
istic of Γ is χ̃pΓq “

ř

γPΓp´1qdim γ . This coincides with the reduced Euler characteristic of
the standard topological realization |Γ|. It is necessary to distinguish between the void
complex Γ “ tu, with reduced Euler characteristic 0, and the trivial complex Γ “ tHu,
with reduced Euler characteristic ´1.

For any non-void pure simplicial complex Γ on I of dimension d, we define the indi-
cator polytope pΓ Ă RI to be the convex hull of the indicator vectors of the facets of Γ.
(This is the same construction that produces a base polytope from a matroid complex.)
Note that dimppΓq ď |I| ´ 1, since the assumption that Γ is pure implies that pΓ lies in
the affine hyperplane tx P RI :

ř

i xi “ d ` 1u. Conversely, for any 0{1-polyhedron
p Ă tx P RI :

ř

i xi “ ru Ă RI , its indicator complex Υppq is defined as the pure simplicial
complex generated by the supports of the vertices of p.

Example 2.1. Different 0/1-polyhedra may have identical indicator complexes. As the
simplest example, consider the point p “ p1, 1q P R2 and the ray q emanating from p in
direction e1 ´ e2; both are 0/1-polyhedra, and Υppq “ Υpqq is a two-vertex simplex. J

In general ΥppΓq “ Γ for all simplicial complexes Γ, but pΥppq “ p if and only if p is a
polytope.

If Γ1,Γ2 are simplicial complexes on vertex sets I1, I2 then the join Γ1 ˚Γ2 is the complex
on I1 \ I2 defined by

Γ1 ˚ Γ2 “ tγ1 Y γ2 : γ1 P Γ1, γ2 P Γ2u. (2.1)
(Here and subsequently I1\ I2 means the set-theoretic disjoint union, or equivalently the
coproduct in the category of sets.) At the level of polytopes we have

pΓ1 ˆ pΓ2 “ pΓ1˚Γ2 . (2.2)

Let S Ď I . The restriction Γ|S is the complex with vertex set S and faces tSXγ : γ P Γu.
(This complex may also be referred to as the deletion of IzS, or the subcomplex induced
by S.) The link of γ P Γ is linkΓpγq “ tβ P Γ : γ X β “ H, γ Y β P Γu; this is a simplicial
complex on IzS.
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2.2. Matroids. A pure simplicial complex Γ on I is a matroid independence complex, or
simply a matroid, if any of the following equivalent conditions hold (see [Sta96, §III.3]):

(1) Γ|S is pure for every S Ď I .
(2) Γ|S is shellable for every S Ď I . (See §3.2 for more on shellability.)
(3) If γ, β P Γ and |γ| ą |β|, then there exists x P γzβ such that β Y txu P Γ.
(4) If ϕ, ϕ1 are facets and x P ϕzϕ1, then there exists x1 P ϕ1zϕ such that ϕztxu Y tx1u is

a facet.
(5) If ϕ, ϕ1 are facets and x P ϕzϕ1, then there exists x1 P ϕ1zϕ such that ϕ1ztx1u Y txu is

a facet.
In standard matroid theory terminology, I is usually called the ground set of the ma-
troid, faces of Γ are called independent sets, and facets are called bases. The direct sum
M1 ‘M2 of two matroids M1,M2 is just their join as simplicial complexes (see (2.1)). The
contraction Γ{I can be defined as the link of any facet of Γ|I . Note that all restrictions and
contractions of a matroid complex are themselves matroid complexes.

The indicator polytope of a matroid is called its base polytope. As mentioned in the
introduction, [GGMS87, Thm. 4.1] states that Γ is a matroid on I if and only if every edge
of pΓ is parallel to some ei ´ ej , where teiuiPI is the standard basis of RI .

2.3. Set compositions, preposets, and the braid fan. Let S be a finite set. A (set) com-
position A “ A1| ¨ ¨ ¨ |Ak of S is an ordered list of nonempty, pairwise-disjoint subsets Ai
(blocks) whose union is S. The symbol ComppSq denotes the sets of compositions of S;
we abbreviate Comppnq “ Compprnsq and write A � S to indicate that A P ComppSq In
this notation, the vertical bars are called separators. We typically drop the commas and
braces, e.g., writing 14||256|3 rather than the more cumbersome t1, 4u|H|t2, 5, 6u|t3u. Note
that the order of elements within each block is not significant. A set of compositions of S
is called an album.

The set Comppnq is partially ordered by refinement: A D B means that every block of
B is of the form Ai Y Ai`1 Y ¨ ¨ ¨ Y Aj´1 Y Aj . Equivalently, B can be written by removing
zero or more separators from A: e.g., 14|2|5|67|3 B 14|25|367. The refinement ordering is
ranked, with rank function rpAq “ |A|´1, and has a unique minimal element, namely the
composition A0 with one block. In fact, Comppnq is a meet-semilattice, with meet x ĺA^B y
if x ĺA y or x ĺB y. Every permutation w P Sn gives rise to a set composition W with n
singleton blocks, namely

W “ wp1q |wp2q | ¨ ¨ ¨ |wpnq. (2.3)

In particular, if e is the identity permutation in Sn then E “ 1|2| ¨ ¨ ¨ |n is the corresponding
set composition.

A preposet Q on S is given by a relation ĺQ on S that is reflexive (x ĺQ x for all x P S)
and transitive (if x ĺQ y and y ĺQ z, then x ĺQ z). We write x ă y if x ĺ y and y � x.
The notation x ”Q y means that both x ĺQ y and x ľQ y; this is evidently an equivalence
relation, whose equivalence classes are called the blocks of Q. An antichain in Q is a
subset T Ď S such that x ⊀ y for all x, y P T . (Thus an antichain may contain more than
one element of a a block.)

The preposet Q gives rise to a poset Q{”Q on its blocks. If this poset is a chain, i.e.,
if either x ĺQ y or x ľQ y for every x, y P S, then Q is a preorder. A linear extension
of a preposet Q is a preorder R with the same blocks as Q and such that x ĺQ y implies
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x ĺR y for all x, y. A preorder R contains the same information as the set composition
A “ A1| ¨ ¨ ¨ |Ak, where the Ai are the blocks of R, and x ĺR y whenever x P Ai, y P Aj , and
i ď j.

The closure of a preposet Q is the album

CQ “ tA P Comppnq : i ĺQ j ùñ i ĺA ju. (2.4)

The closure is an order ideal of Comppnq under refinement, hence a sub-meet-semilattice.
In the case that Q is a composition, the closure is a Boolean poset.

We now relate these definitions to the geometry of the braid arrangement, which con-
sists of the

`

n
2

˘

hyperplanes in Rn defined by the equations xi “ xj for 1 ď i ă j ď n. (For
general background on hyperplane arrangements, see [Sta07].) The faces of the braid ar-
rangement are relatively-open4 cones that partition Rn; the set of all faces is called the
braid fan Bn. Every composition A � rns determines a relatively open face σA P Bn with
dim σA “ |A|, namely

σA “ tpx1, . . . , xnq P Rn : xi
ă
“
ą
xj according as i

ăA
“A
ąA

ju,

and this correspondence is a bijection.5 In fact A D B if and only if σA Ě σB (where the bar
denotes topological closure), so the correspondence may be viewed as an isomorphism of
posets. In particular, the maximal faces σw P Bn correspond to permutations w P Sn. For
each preposet Q, the album CQ corresponds to the closed subfan

CQ “ tσA P Bn : A P CQu

whose maximal faces correspond to the linear extensions of Q. The closed subfans of Bn

that arise in this way are precisely those whose union is convex. In addition,

CQ “
ď

A
σA

where A ranges over all linear extensions of Q.
Let Σn´2 be the intersection of the unit sphere inRn with the hyperplane x1`¨ ¨ ¨`xn “ 0.

Thus Σn´2 is an pn ´ 2q-sphere, with a polytopal (in fact, simplicial) cell structure whose
(open) faces are the intersections

σ̌A “ Σn´2
X σA.

The facets correspond to permutations in Sn, the vertices correspond to the separators of
a set composition, and the empty face corresponds to the set composition A0. Thus, for
any closed subfan F Ď Bn, we can interpret the quantity

ř

σPFp´1q|σ| as the reduced Euler
characteristic of the simplicial complex F̌ “ tσ̌ : σ P Fu.

For example, let Q be the preposet on t1, 2, . . . , 8u whose quotient poset Q{” is shown
at left below. The simplicial complex on the right is ČQ “ Σn´2 X CQ; the labels of its faces
comprise CQ. We have abbreviated the set compositions by, e.g., ac|bd “ 167|23458.

4A subset of Rn is relatively open if it is an open subset of its affine span.
5This is the reverse of the convention from that used in [AA17, §4.3], where earlier parts of the composi-

tion correspond to larger coefficients. Cf. Remark 4.3.
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b=2345 c=67

a=1

d=8

Q

a|b|c|d
a|c|b|d

a|c|d|b

ac|b|d

ab|c|d a|cd|b

ab
|c|

d ac|d
|b

a|bc|d a|c|bd

ab|cd a|bcd acd|b

abc|d ac|bd

CQ

2.3.1. Natural preposets and naturalization. Suppose that the underlying set S of a pre-
poset Q is equipped with a linear (total) order w : S Ñ r|S|s. A relation x ĺQ y is
called w-unnatural if wpxq ą wpyq. We say that Q is w-natural if it has no w-unnatural
strict relations (i.e., if wpxq ą wpyq and x ăQ y, then in fact x ”Q y). Observe that a
set composition is w-natural if and only if it coarsens W; in particular, its blocks are
intervals with respect to w. For a preposet Q, there is a unique finest w-natural set
composition NQ “ Nw,Q such that for every w-unnatural relation x ĺQ y, the interval
ry, xsw “ tz P S : wpyq ď wpzq ď wpxqu is contained in a block of NQ. We say that NQ is
the naturalization of Q with respect to w.

Example 2.2. For each of the following preposets, the naturalization with respect to the
natural order on the ground set is the composition with one block:

13 2 14 2

3

14 2

5

36

J

Proposition 2.3. LetQ be a preposet and letw be a linear order on its ground set. Then CQXCW “

CNw,Q
.

Proof. For simplicity, write N “ Nw,Q, and assume w.l.o.g. that w “ e is the natural order-
ing on the ground set rns. We have N P CE by the construction of N. Suppose that N R CQ,
i.e., there exist i, j such that i ĺQ j but i �N j. Then j ăN i (since any two elements are
comparable in the set composition N) and in particular j ă i (since N is natural). But then
the relation i ĺQ j is unnatural, so by construction i ”N j, a contradiction. It follows that
CQ X CE Ě CN .

Now we show the reverse inclusion. Since CN is an order ideal in Comppnq, it suffices
to show that every A P CQ X CE satisfies A C N, for which it suffices to show that x ”A y
whenever x ĺQ y and x ą y. Indeed, x ĺQ y implies x ĺA y by the definition of CQ, and
x ą y implies x ľA y by the definition of CE. �

2.4. Generalized permutohedra. Let p Ă Rn be a polyhedron. For each x P Rn, let λx be
the linear functional on Rn given by λxpyq “ x ¨ y, and let px be the face of p maximized
by λx. The normal cone of a face q Ă p is

N˝
p pqq “ tx P Rn : px “ qu.

11



This is a relatively open polyhedral cone of dimension n ´ dim q. The normal cones of
faces comprise the normal fan Np.

The standard permutohedron is the polytope in Rn whose vertices are the n! permuta-
tions of the vector p1, 2, . . . , nq. Its normal fan is precisely the braid fan Bn, and its faces
correspond bijectively to set compositions of rns.

Definition 2.4. The polytope p is a generalized permutohedron (or GP) if any of the
following equivalent conditions holds [AA17, Thm. 12.3]:

(1) Np is a coarsening of the braid fan Bn, that is, each normal cone is a union of braid
faces.

(2) For each x P Rn, the face of p maximizing λx depends only on equalities and
inequalities among the coordinates of x.

(3) Every edge of p is parallel to ei ´ ej , where te1, . . . , enu is the standard basis of Rn.

In light of condition (2), every set composition A � n gives rise to a face pA Ď p defined
by

pA “ tx P p : λpxq ě λpyq @λ P σA, y P pu. (2.5)
If A is a maximal set composition (i.e., with n blocks), then the braid cone σA has full
dimension, hence is contained in a full-dimensional cone of Np, so pA is a vertex of p (and
all vertices arise in this way). Moreover, for each face q Ď p, the album of compositions

tA � n : σA Ď N˝
p pqqu “ tA � n : pA “ qu (2.6)

consists precisely of the set compositions coarsening some preposet Q on rns, the normal
preposet of q. Often we will work simultaneously with a face q and its normal preposetQ,
which contain equivalent information. Notice that |Q| “ n ´ dimpqq. The definition of a
generalized permutohedron implies that normal cones of faces carry combinatorial struc-
ture. Accordingly, we define the following fans and their corresponding albums:

C˝q “ tσA : σA Ď Nppqqu “ tσA : pA “ qu, C˝Q “ tA : σA P C˝qu “ tA : pA “ qu,

Cq “ tσA : σA Ď Nppqqu “ tσA : pA Ě qu, CQ “ tA : σA P Cqu “ tA : pA Ě qu,
BCq “ Cq z C˝q “ tσA : pA ) qu, BCQ “ CQ zC˝Q “ tA : pA ) qu.

In particular, Cp “ C˝p is the (n ´ dim p)-dimensional vector space of functions that are
constant on p, and BCp “ H. In the “full-dimensional” case dim p “ n ´ 1, the space Cp is
just the line σA0 .

The definition of CQ is consistent with (2.4). The following lemma gives the geometry-
combinatorics dictionary explicitly. For A P CQ, we say that A collapses a relation of Q if
some block of A contains elements x, y for which x ăQ y.

Lemma 2.5. Let Q be a preposet. Then

BCQ “ tA P CQ : A collapses some relation of Qu,
C˝Q “ tA P CQ : A collapses no relation of Qu.

Proof. The two claims are equivalent by (2.4), and the description of BCQ is equivalent
to [PRW08, Prop. 3.5(2)]. �

Example 2.6 (A cone). Consider the polyhedron

p “
 

x “ px1, x2, x3, x4q P R4 : x3 ď 3, x4 ď 4, x2 ` x4 ď 6, x1 ` x2 ` x3 ` x4 “ 10
(

,
(2.7)
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which is a three-dimensional simplicial cone with vertex p1, 2, 3, 4q and rays in directions
e1 ´ e3, e1 ´ e2, and e2 ´ e4. The normal cone of the vertex is the cone given by the
inequalities x1 ď x2 ď x4 and x1 ď x3. This cone is subdivided by three braid cones as
shown in Figure 1. For instance 1|24|3 is in the boundary while 1|2|34 is in the interior,
which agrees with the fact that t2, 4u is a relation and t3, 4u is not.

1|2|4|3

1|2|3|4 1|3|2|4

123|4

1|234

2|134

124|3

12|34 13|24

4

32

1

FIGURE 1. The normal fan of the cone in Example 2.6.

J

Note that Čq and BČq are (closed) simplicial subcomplexes of Σn´2, homeomorphic to
Bn´dim q´2 and Sn´dim q´3 respectively.

Remark 2.7. For every proper face q Ă p, the origin is a vertex of Cq, hence of BCq. There-
fore, A0 P C˝q if and only if q “ p. More generally, C˝p is the space of linear functionals that
are constant on p; this is a vector space of dimension n ´ dim p. Also, if q1, q2 are faces of
p, then q1 Ď q2 if and only if Cq1 Ě Cq2 .

The Cartesian product of two generalized permutohedra is also a generalized permu-
tohedron: each edge of the product is the product of an edge of one factor and a vertex of
the other, so condition (3) of Definition 2.4 is preserved by products. Moreover, for each
generalized permutohedron p Ă Rn and each decomposition I \ J “ rns, there exist GPs
p|I P RI and p{I P RJ such that:

pJ |I “ p|I ˆ p{I (2.8)

[AA17, Prop. 5.2], where pJ |I is interpreted as in (2.5). Note that the cone σJ |I consists of
all linear functionals taking one value a on J and another value b ą a on I .

An extended generalized permutohedron (EGP) [AA17, Defn. 4.2] is a polyhedron
whose normal fan coarsens some convex subfan of the braid fan Bn Ă RI “ Rn. Equiva-
lently, it is a polyhedron (not necessarily bounded) such that the affine span of every face
is a translate of a subspace spanned by vectors of the form ei ´ ej [AA17, Thm. 12.5 and
Remark 12.6]. Many of the above statements about generalized permutohedra can be car-
ried over to this more general setting mutatis mutandis. For example, EGPs are preserved
by products, and the face of p corresponding to a set composition (i.e., maximized by the
linear functionals in some face of B) is an EGP whenever it is well-defined (i.e., whenever
any, hence all, such functionals are bounded from above on p).

13



2.5. Species and Hopf monoids. We briefly introduce notation and terminology for Hopf
monoids. As far as possible, we follow the “user’s guide” of Ardila and Aguiar [AA17,
§2]. For a comprehensive treatment of Hopf monoids, see [AM10].

A set species is a rule p that associates with each finite set X a set prXs, and with
each bijection φ : X Ñ Y a bijection prφs : prXs Ñ prY s, with the properties that
prIdXs “ IdprXs and prφ ˝ ψs “ prφs ˝ prψs. Likewise, a vector species P over a field k
associates with each finite setX a k-vector space PrXs, and with each bijection φ : X Ñ Y
a vector space isomorphism Prφs : PrXs Ñ PrY s, with the same properties (replacing P
with P). Every set species p gives rise to a vector species P, where PrXs “ kprXs is the
vector space with basis prXs. A vector species arising in this way is called linearized, and
the elements in the image of the corresponding set species are its canonical basis. (On the
other hand, even vector species that are not linearized often come equipped with canoni-
cal bases.) Equivalently, a set or vector species is a functor from the category of finite sets
with bijections to sets with functions, or vector spaces with linear transformations.

A set species p is connected if |prHs| “ 1; a vector species P is connected if dim PrHs “
1. In this case the linear map u : k Ñ PrHs sending 1k to the canonical basis element of
prHs is the unit of p, while the counit is the linear map ε that sends the basis element of
prHs to 1k and all other basis elements to 0. For example, let scrIs be the set of all non-
void simplicial complexes on vertex set I . Then sc is a connected set species whose unit
is the trivial complex and whose linearization is a connected vector species SC.

In general, we regard an element of PrXs as a formal sum of combinatorial structures of
a common kind, each labeled by the elements ofX . Thus a vector species P is linearized if
P “ L ˝p, where p is a set species and L is the functor from sets to vector spaces sending
X to kX . A morphism of species Ψ : P Ñ P1 is a collection of maps ΨrIs : PrIs Ñ PrI 1s
such that P1rφs ˝ ΨrIs “ ΨrJs ˝ Prφs for every bijection φ : I Ñ J . (That is, it is a natural
transformation P Ñ P1.)

A connected Hopf monoid in set species h “ ph, µ,∆q is a connected set species h to-
gether with a collection µ of maps µI,J : hrIsbhrJs Ñ hrI\Js (products) and a collection
∆ of maps ∆I,J : hrI \ Js Ñ hrIs b hrJs (coproducts), satisfying several compatibility
conditions [AA17, §2] that we do not reproduce in their entirety. Of particular importance
are associativity of the product, coassociativity of the coproduct, and compatibility between
the two, which say respectively that the following diagrams commute:

hrIs ˆ hrJs ˆ hrKs hrIs ˆ hrJ \Ks

hrI \ Js ˆ hrKs hrI \ J \Ks

µI,JˆIdK

IdI ˆµJ,K IdI ˆµI,J\K

µI\J,K

(associativity), (2.9)

hrIs ˆ hrJs ˆ hrKs hrIs ˆ hrJ \Ks

hrI \ Js ˆ hrKs hrI \ J \Ks

∆I,JˆIdK

IdI ˆ∆J,K ∆I,J\K

∆I\J,K

(coassociativity), (2.10)
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hrI \ Js ˆ hrK \ Ls hrIs ˆ hrJs ˆ hrKs ˆ hrLs

hrI \ J \K \ Ls hrI \Ks ˆ hrJ \ Ls

∆I,Jˆ∆K,L

µI\J,K\L pµI,KˆµJ,Lq˝τ

∆I\K,J\L

(compatibility),

(2.11)
where τ interchanges the second and third tensor factors.

A connected Hopf monoid in vector species (for short, a vector Hopf monoid) H “

pH, µ, u,∆, εq is a vector species H satisfying HrHs “ k, together with a collection µ of
linear maps µI,J : HrIs bHrJs Ñ HrI \ Js (products) and a collection ∆ of linear maps
∆I,J : HrI \ Js Ñ HrIs b HrJs (coproducts). Again, the product and coproduct must
satisfy various compatibility conditions; associativity and coassociativity are given by
replacing h with H and ˆ with b in the diagrams defining these properties for a set
species.

Intuitively, the product merges two labeled structures into one; the coproduct breaks a
structure into sub- and/or quotient structures. A Hopf monoid is called commutative if
µI,J ˝ t “ µJ,I for all I, J , and cocommutative if t ˝∆I,J “ ∆J,I for all I, J , where t is the
“twist” map tpx, yq “ py, xq (for set species) or tpx b yq “ y b x (for vector species). A
morphism of vector Hopf monoids H Ñ H1 (for short, a Hopf morphism) is a morphism
of species that preserves products, coproducts, and the unit.

It is often convenient to use abbreviated notation for the product and coproduct:

µI,Jpx, yq “ x ¨ y, ∆I,Jpxq “ x|I b x{I. (2.12)

The latter notation can be used only when the coproduct is a pure tensor; fortunately, this
is typically the case in our setting, where x|I and x{I are defined combinatorially.

A Hopf monoid H in vector species is linearized if (i) it is linearized as a vector species,
i.e., H “ L ˝ h for some set species h; and (ii) its product and coproduct maps are lin-
earizations of those of h. (See [AM10, §8.7.2].) In particular, one property of a linearized
Hopf monoid is that µpx, yq and ∆pxq are nonzero for all canonical basis elements x, y.

The product and coproduct operations can be iterated. For A “ A1|A2| . . . |Ak � I
(allowing empty blocks), there are maps

µA “ µA1, ..., Ak
:

k
â

i“1
HrAis ÝÑ HrIs,

∆A “ ∆A1, ..., Ak
: HrIs ÝÑ

k
â

i“1
HrAis.

Associativity and coassociativity imply that these maps are uniquely defined.

Definition 2.8. The antipode of a vector Hopf monoid H is the morphism (in fact, iso-
morphism) sH

I : H Ñ H given by the Takeuchi formula

sH
rIs “

ÿ

APComppIq
p´1q|A|µA ˝∆A (2.13)
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[AA17, Defn. 2.11], [AM10, Prop. 8.13]. The antipode can also be defined as the unique
morphism satisfying µ ˝ pIdb sq ˝ ∆ “ µ ˝ psb Idq ˝ ∆ “ u ˝ ε [AM10, Defn. 1.15]. (Here
and subsequently we often drop one or both of I and H from the notation if no confusion
can arise.)

The antipode is a key part of the structure of a connected Hopf monoid in vector
species. The Takeuchi formula typically involves considerable cancellation, so in study-
ing a particular Hopf monoid one typically looks for a cancellation-free formula. If H is
commutative or cocommutative, then the antipode is an involution [AM10, p.245].

The Hadamard product [AM10, §8.13] of two Hopf monoids pH, µ,∆q and pH1, µ1,∆1q

is the Hopf monoid HˆH1 defined by

pHˆH1
qrIs “ HrIs bk H1

rIs, pµˆ µ1qI,J :“ µI,J b µ
1
I,J , p∆ˆ∆1

qI,J :“ ∆I,J b∆1
I,J .

There is no known general formula for the antipode of a Hadamard product in terms
of the antipodes of the factors (and results such as Theorem 7.15 demonstrate that the
antipode in the product can be much more complicated than those in the factors).

2.6. Examples of Hopf monoids. There are Hopf monoid structures on the species of
linear orders (with two different products), matroids, and generalized permutohedra.
We describe here what we need about these Hopf monoids; more details are in [AA17]
and [AM10].

L: Linear orders with concatenation product. For any finite set I , let `̀̀rIs denote the set
of linear orders on I , i.e., all bijections w : rns Ñ I , where n “ |I|. We represent w by
a bracketed list rwp1q, . . . , wpnqs or (when no confusion can arise) a string wp1q ¨ ¨ ¨wpnq.
Thus `̀̀ is a set species, which can be made into a Hopf monoid as follows: the product
µL
I,J : `̀̀rIs b `̀̀rJs Ñ `̀̀rI \ Js is concatenation, and the coproduct ∆L

I,J maps w to w|I bw|J ,
where w|I and w|J are the orders induced by w on I, J respectively. For example, if I “
ta, b, cu and J “ td, eu, then

µL
I,Jp312, 45q “ 31245, ∆L

I,Jp14325q “ p132, 45q,
µL
J,Ip45, 312q “ 45312, ∆L

J,Ip14325q “ p45, 132q.

(In particular, `̀̀ is cocommutative but not commutative.) We then define L to be the
linearization of `̀̀. The antipode in L is given [AM10, p.250] by sLpwq “ p´1q|I|wrev, where
pwp1q, . . . , wpnqqrev “ pwpnq, . . . , wp1qq.

L˚: Linear orders with shuffle product. More important for our purposes is the dual
monoid L˚. For the general theory of duality on Hopf monoids, see [AM10, §8.6]; here
we give a self-contained description of L˚. As a vector species, L˚rIs is again the k-vector
space spanned by all linear orders of I . To define the product and coproduct on L˚, we
first need to introduce the notion of a shuffle.

Let wp1q, . . . , wpqq be linear orders on pairwise-disjoint sets I1, . . . , Iq. A shuffle of the
wpiq is an ordering on I “ I1 Y ¨ ¨ ¨ Y Iq that restricts to wj on each Ij . The set of all
shuffles is denoted Shufflepwp1q, . . . , wpqqq. For example, Shufflep12, 3q “ t123, 132, 312u and
Shufflep12, 34q “ t1234, 1324, 1342, 3124, 3142, 3412u. The shuffle operation is commutative
and associative, and | Shufflepwp1q, . . . , wpqqq| “

`

|I|
|I1|, ..., |Iq |

˘

. The product on L˚ is defined
16



using shuffles:

µI,Jpw, uq “
ÿ

vPShufflepw,uq
v. (2.14a)

Second, let w “ pwp1q, . . . , wpnqq P `̀̀rIs. An initial segment of w is a set of the form
inikpwq “ twp1q, . . . , wpkqu for some k P r0, ns; the complement of an initial segment is a
final segment. The set of all initial segments of w is denoted Initpwq. With this in hand,
the coproduct on L˚ is defined by

∆I,Jpwq “

#

w|I b w|J if I P Initpwq,
0 otherwise.

(2.14b)

Thus ∆I,Jpwq is nonzero if and only if all elements of I precede all elements of J in w. For
example, if I “ t1, 2, 3u and J “ t4, 5u, then

∆I,Jp31254q “ 312b 54 but ∆I,Jp13425q “ 0.

Note that L˚ is commutative but not cocommutative (in general, Hopf duality inter-
changes the two properties), and L˚ is not linearized (unlike L). The antipode in L˚ is the
same as that in L (a general property of duality for any commutative or cocommutative
Hopf monoid).

Henceforth, product, coproduct, and antipode on linear orders will always be taken to mean the
operations of L˚ rather than L.

For later use, we calculate the composition µA ˝ ∆A for any A � I . Say that two linear
orders u,w P `̀̀rIs are A-consistent, written u «A w, if all pairs of elements in the same
block of A appear in the same order in w and u; that is, if i ”A j then upiq ă upjq if and
only if wpiq ă wpjq. For example, if A “ 13|2, then t312, 321, 231u is an equivalence class
under «A. Then

µAp∆Apwqq “

#

ř

uP`̀̀rIs: u«Aw
u if A EW,

0 otherwise.
(2.15)

The following definition will also be useful. Recall [Sta12, §1.4] that i P rn ´ 1s is a
(right) descent of a permutation v P Sn if vpiq ą vpi ` 1q. The set of descents of v is
denoted by Despvq, and the number of descents is despvq.

Definition 2.9. Let w, u be linear orders on I . The u-descent composition of w is the
coarsening Dpw, uq of W “ wp1q| ¨ ¨ ¨ |wpnqwhose separators correspond to descents of the
permutation u´1w; equivalently, wpiq ” wpi` 1q if and only if i R Despu´1wq.

For example, suppose I “ ta, b, c, d, e, f, g, hu and let w “ aebfcdhg, u “ bdahfgce P
`̀̀rIs, so that u´1w “ 38 ¨ 157 ¨ 246 (with the descents marked by dots). Then Dpw, uq “
ae|bfc|dhg “ ae|bcf|dgh.

Descent compositions have the following basic properties:

Dpw, uq “ A0 ðñ u “ w; (2.16)
@A EW : u «A w ðñ Dpw, uq E A; (2.17)

dim σDpw,uq “ |Dpw, uq| “ despu´1wq ` 1. (2.18)
17



In light of (2.17), we can usefully rewrite (2.15) (when A “ A1| ¨ ¨ ¨ |Ak is w-natural) as

µAp∆Apwqq “
ÿ

uPShufflepA1,...,Akq

u “
ÿ

uP`̀̀rIs: APEw,u

u. (2.19)

where
Ew,u “ tA � rns : Dpw, uq E A EWu. (2.20)

Mat: Matroids. Let MatrIs be the k-vector space spanned by all matroids with ground
set I (see Section 2.2). To make the vector species Mat into a Hopf monoid, we define a
product by

µI,JpM1 bM2q “M1 ‘M2 (2.21a)
for every pair of matroids M1,M2 on disjoint ground sets I, J respectively. The coproduct
∆I,J is defined by

∆I,JpMq “M |I bM{I (2.21b)
where M |I is the restriction to I (also known as the deletion of J , the complement of I)
andM{I is the contraction of I ; in particular, Mat is commutative but not cocommutative.

Recall that the (independence complex of) the contraction M{I is the link of any facet
of M |I ; the choice of facet does not matter. In fact, as we now prove, this property char-
acterizes matroids. The proof is not difficult, but to the best of our knowledge this char-
acterization of matroids has not previously appeared in the literature.

Theorem 2.10. Let Γ be a simplicial complex on ground set E. Then Γ is a matroid complex if
and only if it has the property of link invariance: for every X Ď E and every facets σ, τ P Γ|E
we have linkΓpσq “ linkΓpτq.

Proof. ( ùñ ) First, note that linkΓpσq and linkΓpτq are both simplicial complexes on Y “

XzE, because σ, τ are facets (not just arbitrary faces) of Γ|X . Moreover, they are pure,
since links in pure complexes are pure. By symmetry between σ and τ , it is enough to
show that every facet of linkΓpσq is a face of linkΓpτq. Accordingly, let α and β be facets of
linkΓpσq and linkΓpτq respectively, so that σ Y α and τ Y β are facets of Γ. We will show
that in fact α P linkΓpτq. If α “ β then there is nothing to prove; otherwise, we induct on
the size of the symmetric difference |β4α|. Let v P βzα; by basis exchange there exists
w P pσ Y αqzpτ Y βq “ pσzτq Y pαzβq such that pτ Y βq ´ v ` w “ τ Y pβ ´ vq ` w is a facet
of Γ. In particular τ `w is a face, so it cannot be the case that w P σzτ (otherwise τ would
not be a facet of Γ|A). Therefore w P αzβ and the new facet is τ Yβ1, where β1 “ β´ v`w.
Thus |β1 4α| “ |βzα| ´ 1 and the result follows by induction.

( ðù ) Suppose that Γ is not a matroid complex; then there is some X Ď E such that
Γ|X is not pure. Let σ, τ be facets of Γ|X of different cardinalities, say |σ| ă |τ |. We may
assume WLOG that X “ σ Y τ . Let d “ dim σ and Let τ “ tv1, . . . , vku. For 0 ď i ď k,
define Xi “ σ Y tv1, . . . , viu and Γi “ Γ|Xi. Then

xσy “ Γ0 ( Γ1 ( ¨ ¨ ¨ ( Γk “ Γ|X
and dim Γ0 “ dim Γ1 “ d ă dim Γk. Let j be the smallest index such that dim Γj ą d0
(necessarily, dim Γj “ d` 1) and let φ be a facet of Γj such that dimφ “ d` 1. Then φ must
contain vj , so φ1 “ φ ´ vj is a face of Γj´1, hence a facet (since dim Γj´1 “ d “ dimφ1). On
the other hand, σ is also a facet of Γj´1 (since it is a facet of Γk), and xj belongs to link∆pφ

1q

but not to link∆pσq. �
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Corollary 2.11. Mat is the largest subspecies of SC that admits a Hopf monoid structure with
the operations (2.21a) and (2.21b).

GP and GP`: Generalized permutohedra. Let GPrIs be the k-vector space spanned by
all generalized permutohedra in RI . To make the vector species GP into a Hopf monoid,
we define a product by

µI,Jpp1 b p2q “ p1 ˆ p2 (2.22)
where p1 P GPrIs and p2 P GPrJs; it was noted in §2.4 that the product is a generalized
permutohedron. The coproduct ∆I,J is given by

∆I,Jppq “ p|I b p{I (2.23)

where the polytopes on the right-hand-side are defined by (2.8). It follows from the defi-
nitions that for any A � I and p P GPrIs we have µAp∆Appqq “ pA. The antipode in GP
was computed by Aguiar and Ardila [AA17, Thm. 7.1] using topological methods:

sGP
ppq “ p´1q|I|

ÿ

qďp

p´1qcodim qq. (2.24)

The Hopf monoid GP` is defined by setting GP`rIs to be the k-vector space spanned
by all extended generalized permutohedra in RI . The product and coproduct are defined
in the same way as for GP [AA17, §5.3], with the proviso that ∆I,Jppq “ 0 if pJ |I is unde-
fined (i.e., if the linear functional 1I is unbounded from above on p). That is,

µAp∆Appqq “

#

pA if the linear functional 1I is bounded from above on p,

0 otherwise.
(2.25)

The map Mat Ñ GP sending M to its base polytope pM is an injective morphism of
Hopf monoids [AA17, Thm. 12.3(4), Thm. 12.4, Prop. 14.3]. The antipode in Mat is best
understood via the embedding Mat Ñ GP; see [AA17, Theorem 14.4].

3. HOPF CLASSES OF ORDERED COMPLEXES

3.1. Definitions and basic properties. An ordered complex is a triple pw,Γ, Iq where Γ
is a simplicial complex on finite vertex set I , and w is a linear order on I . If the ground set
is clear from context, we may write simply pw,Γq.

For an initial segment A of w, the (initial) restriction and (initial) contraction of pw,Γq
with respect to A are defined as pw,Γq|A “ pw|A,Γ|A,Aq and pw,Γq{A “ pw|IzA,Γ{A, IzAq,
where Γ{A “ linkΓpϕq, where ϕ is the facet of Γ|A that is lex-minimal with respect to w.

Note that restricting to the entire ground set (as an initial segment), or contracting
the empty initial segment, leaves pw,Γq unchanged, while restricting to the empty set or
contracting the empty initial segment produces the trivial ordered complex prs, tHu,Hq,
where rs denotes the (trivial) ordering of the empty set and tHu is the trivial simplicial
complex (not the void complex!).

Initial restriction and contraction behave well when iterated (analogously to deletion
and contraction for matroids; see [Oxl11, Prop. 3.1.26]), in the following sense.

Lemma 3.1. Let pw,Γq be an ordered complex, and suppose that I and I \ J are initial segments
of w. Then the following restriction/contraction relations hold:

(1) pw,Γq|I “
`

pw,Γq|pI \ Jq
˘

|I .
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(2)
`

pw,Γq{I
˘

|J “
`

pw,Γq|pI \ Jq
˘

{I .
(3)

`

pw,Γq{I
˘

{J “ pw,Γq{pI \ Jq.

Proof. Assertion (1) is straightforward. For assertion (2), both simplicial complexes equal
linkΓ|J pϕq, where ϕ is the lex-minimal facet of Γ|I . Finally, assertion (3) follows from the
observation that the lex-minimal facet ϕ of Γ|pI\Jq can be decomposed as ϕI\ϕJ , where
ϕI is the lex-minimal facet of Γ|I and ϕJ is the lex-minimal facet of linkΓ ϕI . �

Recall the definition (2.1) of the join Γ1˚Γ2 of simplicial complexes Γ1,Γ2. In the ordered
setting, we need to specify in addition an ordering on the ground set of the join; any
shuffle of the orderings of the join factors will do. Accordingly, for any w P Shufflepw1, w2q,
we define the ordered join operation ˚

w
by

pw1,Γ1, I1q ˚
w
pw2,Γ2, I2q “ pw,Γ1 ˚ Γ2, I1 \ I2q. (3.1)

The trivial ordered complex prs, tHuq is a two-sided identity for ordered join. Moreover,
ordered join is compatible with restriction and contraction in the following sense.

Lemma 3.2. Let pw1,Γ1, I1q and pw2,Γ2, I2q be ordered complexes, let A1 P Initpw1q and A2 P

Initpw2q, and let w P Shufflepw1, w2q such that A1\A2 P Initpwq. Let ŵ and w̌ be the restrictions
of w to A1 \ A2 and pI1zA1q \ pI2zA2q respectively. Then

(1)
`

pw1,Γ1q ˚
w
pw2,Γ2q

˘

|pA1 \ A2q “ pw1,Γ1q|A1 ˚
ŵ
pw2,Γ2q|A2; and

(2)
`

pw1,Γ1q ˚
w
pw2,Γ2q

˘

{pA1 \ A2q “ pw1,Γ1q{A1 ˚
w̌
pw2,Γ2q{A2.

We omit the proof, which is a routine calculation.

Definition 3.3. A class H of ordered complexes is called a Hopf class if it satisfies the
following three conditions.

(1) (Closure under ordered join) If pw1,Γ1q, pw2,Γ2q P H, then pw1,Γ1q ˚
w
pw2,Γ2q P H

for every w P Shufflepw1, w2q.
(2) (Closure under initial restriction) If pw,Γq P H and A is an initial segment of w,

then pw,Γq|A P H.
(3) (Closure under initial contraction) If pw,Γq P H and A is an initial segment of w,

then pw,Γq{A P H.

We will show (Theorem 3.16) that every Hopf class gives rise to a Hopf monoid: or-
dered join provides a product, and initial restriction and contraction provide a coproduct.

Pure simplicial complexes do not form a Hopf class, since they are not closed under
restriction (although they are closed under contraction and join). We say that a pure
ordered complex is prefix-pure if all its initial restrictions (hence all its initial contrac-
tions) are pure. Evidently, if every complex in a Hopf class H is pure, then in fact every
complex in H is prefix-pure. (In fact this condition appears in Brylawski’s fundamental
paper [Bry77] on broken-circuit complexes, although it does not play a major role there.)

Proposition 3.4. The class PRE of all prefix-pure complexes is a Hopf class, hence the unique
largest Hopf class whose members are all pure complexes.

Proof. The definition of prefix-purity implies that PRE is closed under initial restriction,
and it is closed under initial contraction because every link in a pure complex is pure.
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Moreover, if pw1,Γ1q and pw2,Γ2q are prefix-pure, then by Lemma 3.2 every initial restric-
tion or contraction of an ordered join pw1,Γ1q ˚

w
pw2,Γ2q is a join of initial restrictions or

contractions of the two of them, hence is pure. Thus PRE is a Hopf class. �

Henceforth, we will only consider Hopf classes of prefix-pure complexes.
The intersection of Hopf classes is again a Hopf class. Therefore, every sub-collection

H Ď PRE has a well-defined Hopf closure H̄, namely the intersection of all Hopf classes
containing H. We may also speak of the Hopf class generated by a collection of prefix-
pure ordered complexes.

The unique smallest Hopf class, and in fact the only finite Hopf class, is the singleton
class TRIV containing only the trivial ordered complex. Additional elementary examples
are the classes OMAT of ordered matroid independence complexes, its subclass OUM of
ordered independence complexes of uniform matroids (equivalently, skeletons of sim-
plices), and the smaller subclass OSIM of all ordered simplices.

In the unordered setting, the largest class of pure simplicial complexes that is closed
under join, restriction, and deletion is precisely the class of matroid complexes. Thus any
Hopf class between OMAT and PRE can be regarded as an extension of matroids in the
ordered setting. There are many Hopf classes that include non-matroidal complexes.

3.2. A zoo of Hopf classes.

Example 3.5 (Strongly lex-shellable complexes). A pure simplicial complex Γ is shellable
if its facets can be ordered ϕ1, . . . , ϕn such that whenever j ă i, there is an index k ă i and
a vertex x P ϕi such that

ϕj X ϕi Ď ϕk X ϕi “ ϕiztxu. (3.2)
There are equivalent definitions of shellability, but this is the most convenient for our
purposes; see, e.g., [Bjö92, §7.2].

We say that a pure ordered complex pw,Γq is lex-shellable6 if the lexicographic order
ăw on facets of Γ induced by w is a shelling order. We define pw,Γq to be strongly lex-
shellable if it is prefix-pure and every restriction to an initial segment is lex-shellable.
Strong lex-shellability is more restrictive than lex-shellability: for example, the graph with
edges 12, 14, 34 and the natural ordering on vertices is lex-shellable but not strongly lex-
shellable. On the other hand, Hopf classes are closed under restriction to initial segments,
so if every element of a Hopf class H is lex-shellable then in fact every element is strongly
lex-shellable.

Remark 3.6. Lex-shellability in this sense is a stronger condition than shellability. We
carried out a brute-force computation using Sage [S`20] to check that the boundary of
Lockeberg’s simplicial 4-polytope [Hac01, KK87, Loc77], with 12 vertices and 48 facets, is
not lex-shellable. We do not have a computer-free proof of this observation, nor do we
have any reason to believe that this example is minimal.

The class SLS of all strongly lex-shellable complexes is a Hopf class, for the following
reasons. First, it is closed under restriction by definition, and it is closed under contraction
because shelling orders on Γ restrict to shelling orders on all its links, and restricting a

6This definition of lex-shellability is not to be confused with CL- or EL-shellability of the order complex
of a poset as in, e.g., [Bjö80, BW82].
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lex-shelling to a final segment produces a lex-shelling. It remains to check closure under
ordered join.

Let pw1,Γ1, I1q, pw2,Γ2, I2q P SLS and let w P Shufflepw1, w2q. Let ϕ “ ϕ1 \ ϕ2 and ψ “
ψ1 \ ψ2 be facets of Γ1 ˚ Γ2, with ϕi, ψi P Γi, such that ψ ăw ϕ. Then either ψ1 ăw ϕ1
or ψ2 ăw ϕ2; assume without loss of generality that the first case holds. Since restricting
ăw to I1 gives a shelling order of Γ1, it follows that Γ1 has a facet ρ1 ăw ϕ1 and a vertex
x P ϕ1 such that ψ1 X ϕ1 Ď ρ1 X ϕ1 “ ϕ1ztxu. Then it is routine to check that ρ “ ρ1 \ ϕ2
satisfies (3.2), verifying that pw1,Γ1q ˚

w
pw2,Γ2q P SLS. J

Not every prefix-pure complex is shellable. For example, Ziegler [Zie98] constructed a
non-shellable 3-dimensional ball Z with 10 vertices and 21 facets. According to computa-
tion with Sage, Z is prefix-pure under 6528 of the 10! “ 3628800 possible vertex orderings.

Example 3.7 (Shifted complexes). An ordered simplicial complex pw,Γ, Iq is shifted if,
whenever γ P Γ and e P γ, then γ Y fze is a face for every f ăw e. When Γ is pure of
dimension d´1, this is equivalent to the statement that the facets of Γ form an order ideal
in Gale order, which is the following partial order on

`

I
d

˘

: for ϕ, ψ P
`

I
d

˘

with ϕ “ tf1 ăw
¨ ¨ ¨ ăw fdu and ψ “ tg1 ăw ¨ ¨ ¨ ăw gduwe have

ϕ ďg ψ ðñ fi ďw gi @ i.

In fact Gale order on
`

I
d

˘

is a distributive lattice, isomorphic to the principal order ideal
generated by a d ˆ p|I| ´ dq rectangle in Young’s lattice of integer partitions. For more
detail, see §6.3.

Initial restrictions and initial contractions of shifted complexes are easily seen to be
shifted. However, pure shifted complexes are not closed under ordered join and therefore
do not form a Hopf class. Nevertheless, the class of ordered joins of shifted complexes is
a Hopf class SHIFT, because join is compatible with initial restriction and contraction
(Lemma 3.2). J

Example 3.8 (Quasi-matroidal classes). The quasi-matroidal classes studied in [Sam20] are
defined as Hopf classes that satisfy additional conditions: a quasi-matroidal class must
contain all ordered matroids and shifted complexes, and be closed under taking links
of arbitrary faces (not just initial segments). The unique smallest quasi-matroidal class is
QMIN “ OMAT Y SHIFT. The unique largest quasi-matroidal class PURE [Sam20, Example
3.3] is defined recursively as follows: pw,Γ, Iq P PURE if either Γ has exactly one facet, or
both the following conditions hold:

‚ pw|I 1 ,Γ|I 1q P PURE, where I 1 is obtained by deleting the w-maximal non-cone ver-
tex; and

‚ pw|IzF , linkΓpF qq P PURE for every F P Γ.
All complexes in PURE are vertex-decomposable [Sam20, Thm. 3.5], hence shellable; on
the other hand, Hopf classes can contain non-shellable complexes, such as Ziegler’s non-
shellable ball Z.

The quasi-matroidal classes QI, QE, and QC are defined by the quasi-independence, quasi-
exchange, and quasi-circuit axioms respectively [Sam20, Defn. 4.1]. None of these classes is
contained in another one [Sam20, Thm. 4.3], so each strictly contains SHIFT and is strictly
contained in PURE. J
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Example 3.9 (Gale truncations). Let pw,Γ, Iq be a pure ordered complex of dimension d´1
and let J Ď

`

I
d

˘

be an order ideal in Gale order (see Example 3.7). The Gale truncation
of pw,Γq at J is pw,ΓJ q, where ΓJ is the (pure) subcomplex of Γ generated by the facets
in J . Gale truncations generalize shifted complexes, because a shifted complex is just a
Gale truncation of an ordered uniform matroid. In fact, SHIFT is the Hopf class of all Gale
truncations of direct sums of ordered uniform matroids.

According to computation with Sage [S`20], there exists at least one vertex order w on
Ziegler’s non-shellable ball Z such that pw,Zq is prefix-pure, but not all Gale truncations
are prefix-pure. Thus Gale truncation is not a well-defined operation on Hopf classes in
general. On the other hand, by [Sam20, Theorem 4.11], the class QE is closed under Gale
truncations, so for any Hopf class H Ă QE, the collection of Gale truncations of elements
of H generates a Hopf class HGale such that H Ď HGale Ď QE. J

Example 3.10 (Matroid threshold complexes). Let Γ be a matroid independence complex
on ground set I , let ` be a generic linear functional on RI , and let r P R. Such a generic `
induces a linear order w` on I defined by i ă j iff `peiq ă `pejq. Let Γp`, rq be the subcom-
plex of Γ generated by the facets ϕ such that `pϕq ď r. We call Γp`, rq a matroid threshold
complex; by the proof of [HS20, Thm. 2(B)], it is a Gale truncation of pw`,Γq. Thus, if
H Ď OMAT, then the class of matroid threshold complexes of elements of H generates a
Hopf class Hthr Ď HGale Ď OMATGale Ď QE.

When Γ is a simplex skeleton, the definition of matroid threshold complex reduces to
the usual definition of a threshold complex (see, e.g., [KR08]). Therefore, the class OUMthr

is the smallest Hopf class containing all threshold complexes. J

Example 3.11 (Color-shifted complexes). Color-shifted complexes generalize pure shifted
complexes (which arise as the case k “ 1). They were introduced by Babson and Novik
[BN06]; see also [DKM16, §4.4]. A simplicial complex Γ is color-shifted if its vertices can
be partitioned into disjoint sets I1, . . . , Ik (“color classes”) with the following properties:

(1) There is a “palette vector” a “ pa1, . . . , akq P Nk such that every facet of Γ has ex-
actly ai vertices of color i. (That is Γ is “a-balanced”; this condition was introduced
in [Sta79].)

(2) The color classes are equipped with linear orders w1, ¨ ¨ ¨ , wk, with the following
property: if x, y both have color j with x ăwj

y, and γ P Γ contains y but not x,
then γztyu Y txu P Γ.

Note that when k “ 1, the definition reduces to that of a pure shifted complex.
We define an ordered complex pw,Γ, Iq to be color-shifted if there exists a partition

I “ I1\¨ ¨ ¨\Ik and orderingsw1, . . . , wk such that Γ is color-shifted in the above sense and
w P Shufflepw1, . . . , wkq. This property is easily seen to be preserved by initial restriction,
initial contraction, and ordered join. Thus color-shifted complexes constitute a Hopf class
COLOR.

Evidently SHIFT Ď COLOR. In fact, this inclusion is strict. Let I1 “ tx1, y1u and
I2 “ tx2, y2u and Γ “ xx1x2, x1y2, y1x2y. This complex is color-shifted under the order-
ings xi ăwi

yi, but it is join-irreducible and is not shifted with respect to any ordering on
I1 Y I2.

The inclusions COLOR Ď QE and COLOR Ď QI can be proven by adapting the relevant
parts of the proof of [Sam20, Thm. 4.2] from shifted to color-shifted complexes mutatis
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mutandis. Both inclusions are strict because matroid complexes are in general not color-
shifted. We suspect that COLOR * QC (the proof from [Sam20] does not carry over to the
color-shifted setting).

J

Example 3.12 (Broken-circuit complexes). Let pw,Γ, Iq be an ordered matroid complex.
Recall that a circuit of the corresponding matroid is a minimal non-face of Γ. A broken
circuit is a set of the form CzminwpCq, where C is a circuit. The unreduced broken-
circuit complex BCwpΓq consists of all subsets of I containing no broken circuit. This
complex is always a cone over the first vertex x1 of w; the base of the cone is called
the reduced broken-circuit complex BCwpΓq. Both BCwpΓq and BCwpΓq are pure [Bjö92,
Prop. 7.4.2] and lex-shellable [Bjö92, Thm. 7.4.3]. Reduced broken-circuit complexes are
prefix-pure [Bry77, Prop. 4.4]; more strongly, one can see that BCwpΓq|A “ BCw|ApΓ|Aq
for every A P Initpwq, so BCwpΓq is strongly lex-shellable, and this property is preserved
by deconing. Reduced broken-circuit complexes do not form a Hopf class because they
are not closed under contractions of initial segments, but they generate a Hopf subclass
BC Ď SLS. Moreover, the class of broken-circuit complexes strictly includes that of ma-
troid complexes [Bry77, Thm. 4.2, Rmk. 4.3], so OMAT ( BC. J

We summarize the hierarchy of Hopf classes of prefix-pure complexes as follows.

Proposition 3.13. The Hopf classes described above are ordered by inclusion as in Figure 2.

PRE

SLS

PURE

QE QCQI

BC

OMAT`

COLOR QMIN OMATgale

SHIFT OMAT

OUM

OSIM

TRIV

FIGURE 2. The hierarchy of Hopf classes of prefix-pure complexes. Solid
lines indicate inclusions known to be strict; dashed lines indicate possible
equalities. All classes are described in §§3.1–3.2, except OMAT`, which will
be described in §5.3.
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Conjecture 3.14. BC ( OMATgale ( QE X QI.

The first inclusion in Conjecture 3.14 is very close to [CS, Thm. 1.4], which states that
every broken-circuit complex is an order ideal in Las Vergnas’ internal activity poset
(see [LV01, Thm. 3.4]), whose relations are all relations in Gale order. The conjecture is
true when Γ is shifted, since then its broken-circuit complex is also shifted [Kli, Thm. 5].
Moreover, the f -vectors of broken-circuit complexes are more constrained than those of
shifted complexes, for the following reasons. Pure shifted complexes are shellable, hence
Cohen-Macaulay; on the other hand, the Cohen-Macaulay property and the f -vector are
preserved by algebraic shifting [Kal02, §4.1], so the f -vectors of pure shifted complexes
coincide with those of Cohen-Macaulay complexes and satisfy the so called M -sequence
inequalities. On the other hand, f -vectors of broken circuit complexes form a much
smaller class. As discussed in [CS, Section 4], the family of h-vectors of broken-circuit
complexes with d positive entries and last entry k is finite, while for Cohen-Macaulay
complexes, and hence shifted complexes, it is infinite.

The discussion in Example 3.9 implies OMATgale Ď QE, and moreover OMATgale Ď QI
by [Sam20, Thm. 5.8]. Since QE and QI are incomparable, both these inclusions are strict.
We expect that the axioms for QE and QI are too loose to capture all Gale truncations of
matroids. We note that this conjecture cannot be proved on the level of f -vectors, since all
simplicial complexes in QEXQI are shellable, and OMATgale contains all shifted complexes,
hence all Cohen-Macaulay f -vectors by the discussion above.

Conjecture 3.15. OMAT` Ď SLS.

It was proven in [HS20, Thm. 2(A)] that every generic real-valued function on the
ground set of a matroid, when extended linearly to bases, gives rise to a shelling order on
the independence complex. A proof of Conjecture 3.15 might proceed along similar lines.

3.3. Hopf monoids from Hopf classes. We now show that every Hopf class H naturally
gives rise to a Hopf monoid H “ H6. Define a set species hrIs to be the set of all ordered
complexes in H on ground set I , and let H be the corresponding vector species. Observe
that these species are connected, since hrHs contains only the trivial ordered complex;
this gives rise to a unit u and a counit ε. We define a Hopf product µI,J and coproduct
∆I,J on basis elements by join and restriction/contraction respectively:

µI,Jppw1,Γ1q b pw2,Γ2qq “
ÿ

wPShufflepw1,w2q

pw1,Γ1q ˚
w
pw2,Γ2q, (3.3a)

∆I,Jpw,Γq “
#

pw|I ,Γ|Iq b pw|J ,Γ{Iq if I is an initial segment of w,
0 otherwise.

(3.3b)

Theorem 3.16. For every Hopf class H, the tuple pH, µ, u,∆, εq is a connected Hopf monoid.

Proof of Theorem 3.16. Most of the Hopf monoid axioms (see §2.5) are straightforward; the
only ones that require substantial proof are coassociativity (2.10) and compatibility (2.11).

First, we check coassociativity. Let pw,Γ, Iq be an ordered complex and I “ A\B \ C.
For the sake of legibility, we drop disjoint union symbols: e.g., AB “ A\B. If A and AB
are not both initial segments of w, then

p∆A,B b Idq ˝∆AB,Cpw,Γq “ pIdb∆B,Cq ˝∆A,BCpw,Γq “ 0.
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On the other hand, if A and AB are both initial segments, then

∆A,B b IdC
`

∆AB,Cpw,Γq
˘

“
`

w,Γ
˘

|AB|A b
`

w,Γ
˘

|AB{A b
`

w,Γ
˘

{AB,

IdAb∆B,C

`

∆A,BCpw,Γq
˘

“
`

w,Γ
˘

|A b
`

w,Γ
˘

{A|B b
`

w,Γ
˘

{A{B,

and by Lemma 3.1 the two expressions coincide.
Second, we check compatibility. Let pw1,Γ1, ABq and pw2,Γ2, CDq be ordered com-

plexes, and for short let ξ denote their tensor product in HrABs b HrCDs. If either
A R Initpw1q or C R Initpw2q, then ∆A,B ˆ ∆C,Dpξq “ 0, and in addition AC is not an
initial segment of any shuffle of w1 and w2, so ∆AC,BDpµAB,CDpξqq “ 0 as well.

On the other hand, suppose that A P Initpw1q and C P Initpw2q. Notice that if w is in
Shufflepw1, w2q, then ∆AC,BDppw1,Γ1q ˚

w
pw2,Γ2qq is non-zero only if AC P Initpwq. Hence

∆AC,BDpµAB,CDpξqq “
ÿ

w P Shufflepw1,w2q

∆AC,BDppw1,Γ1q ˚
w
pw2,Γ2qq

“
ÿ

w P Shufflepw1,w2q:
AC P Initpwq

`

pw1,Γ1q|AC ˚
w
pw2,Γ2q|AC

˘

b
`

pw1,Γ1q{AC ˚
w
pw2,Γ2q{AC

˘

.

(3.4)

Meanwhile, the other side of the compatibility diagram (2.11) yields

pµA,C b µB,Dq ˝ τ ˝ p∆A,B b∆C,Dq pξq

“ µA,C b µB,D

´

pw1,Γ1q|Ab pw2,Γ2q|C b pw1,Γ1q{Ab pw2,Γ2q{C
¯

“
ÿ

u P Shufflepw1|A,w2|Cq
v P Shufflepw1{A,w2{Cq

´

pw1,Γ1q|A ˚
u
pw2,Γ2q|C

¯

b

´

pw1,Γ1q{A ˚
v
pw2,Γ2q{C

¯

. (3.5)

In fact, the index sets of the two sums (3.4) and (3.5) are in bijection: w in the former
may be taken to be the concatenation of u and v in the latter. Moreover, the summands
are equal by Lemma 3.2, completing the proof of compatibility. �

Of particular interest to us are the Hopf monoids Pre “ PRE6 (the largest Hopf monoid
of pure ordered simplicial complexes in which we can work) and OMat “ OMAT6.

Proposition 3.17. There is an isomorphism of Hopf monoids OMat – L˚ ˆMat.

Proof. In both cases the basis elements are matroid complexes equipped with an ordering
of the ground set, giving equality on the level of vector species. Moreover, the product
and coproduct defined on OMat by (3.3a) and (3.3b) coincide with the Hopf operations
on L˚ˆMat defined by (2.14a) and (2.21a) (product) and (2.14b) and (2.21b) (coproduct).

�

Proposition 3.18. If H is a Hopf class containing OMAT, then the map OMat Ñ H given by
pw,Mq ÞÑ pw, IpMqq is a Hopf monoid monomorphism.

Proof. For independence complexes of matroids, the product and coproduct in H coincide
with those in OMat, so it is immediate that the thus the monomorphism of Hopf monoids
is clear. �
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4. ORDERED GENERALIZED PERMUTOHEDRA

Having shown that every Hopf class H gives rise to a Hopf monoid H, we now want to
find a cancellation-free formula for the antipode in H in terms of the combinatorics of H.
We start by focusing on Hopf classes with inherent geometry, such as OMAT, where we
can hope to express the coefficients of the antipode as appropriate Euler characteristics,
as in [AA17]. In order to do this, we may as well work in the more general setting of
ordered generalized permutohedra.

As stated in the introduction, [GGMS87, Thm. 4.1] states that a polyhedron p Ă RI is a
matroid base polytope for some matroid on I if and only if p satisfies the following three
conditions:

(M1) p is bounded;
(M2) p is an 0/1-polyhedron;
(M3) Every edge of p is parallel to some ei´ ej , where teiuiPI is the standard basis of RI .

Conditions (M1) and (M3) together define the class of generalized permutohedra (see
§2.4), while (M3) alone defines extended generalized permutohedra. In order to stay
within the realm of Hopf classes of ordered simplicial complexes, we must retain con-
dition (M2). In §5, we will study the Hopf class of ordered simplicial complexes arising
from possibly-unbounded polyhedra satisfying conditions (M2) and (M3).

Definition 4.1. An ordered generalized permutohedron is a pair pw, pq, where p Ă RI is
a generalized permutohedron and w is a linear order on I . The Hopf monoid of ordered
generalized permutohedra is the Hadamard product OGP “ L˚ ˆGP.

Like both L˚ and GP, the monoid OGP is commutative but not cocommutative. Since
L˚ is not linearized as a Hopf monoid, neither is OGP. The inclusion Mat ãÑ GP gives
rise to an inclusion OMat ãÑ OGP, where OMat “ L˚ ˆ Mat, the Hopf monoid of
ordered matroids.

Remark 4.2. It is also possible to study the Hopf monoid L ˆGP. This monoid, unlike
L˚ˆGP, is a linearized Hopf monoid, so its antipode can be calculated using the methods
of Benedetti and Bergeron [BB19]. Moreover, the projection map π : L ˆ GP Ñ GP is
a morphism of Hopf monoids, unlike the map π˚ : L˚ ˆ GP Ñ GP, which is only a
morphism of vector species—if wbp P OGPrIs and vbq P OGPrJs, then πpwbpq˚πpvb

qq “ pˆ q, but πppw b pq ˚ pv b qqq “
`

|I|`|J |
|I|

˘

pˆ q.
On the other hand, L ˆGP is neither commutative nor cocommutative (since L is co-

commutative but not commutative), and does not arise from a Hopf class. In the ordered
setting, deletion and contraction require splitting the ground set into an initial and a final
segment, which corresponds to the coproduct in L˚. As we will see, another good prop-
erty that L˚ˆGP enjoys but LˆGP lacks is that its antipode is local in a precise geometric
sense; see Proposition 7.4 and Remark 7.7.

The idea of ordering coordinates by forming a Hadamard product with L˚ carries over
from generalized permutohedra to EGPs. However, the appropriate Hopf monoid to
consider is not the full Hadamard product L˚ ˆGP`, for the following reason. Suppose
that p Ă RI is an EGP in RI , and let A � I . If the cone σA belongs to the normal fan Np,
then there is a well-defined face pA that maximizes the linear functionals in σA (and if A
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is a linear order, then pA is a vertex). However, if σQ * |Np|, then linear functionals in σA
are unbounded on p and no such face exists. Accordingly, we define

`̀̀prIs “ tw P `̀̀rIs : σwrev Ď Npu “ tw P `̀̀rIs : pwrev is a well-defined vertex of pu. (4.1)

In particular, `̀̀prIs “ `̀̀rIs if and only if p is bounded.

Remark 4.3. The reason to reverse the order is the following. To compute the restriction
of p to the initial segment I we need to find the face of p maximized by the function
1I P σJ |I , and the composition J |I is not refined by W, but rather by Wrev. Geometrically,
this means that σwrev P Np. Equivalently, linear functionals in σw are bounded from below
on p. (The reversal would not be necessary under the conventions in [AA17]; see the note
in §2.3.)

Lemma 4.4. Let p P RI\J be a generalized permutohedron. Then

tw P `̀̀prI \ Js : I P Initpwqu “ tuv : u P `̀̀p|IrIs, v P `̀̀p{IrJsu (4.2)

where uv denotes the concatenation of u and v.

Proof. We use the following basic fact about faces of polytopes [Stu96, eqn. (2.3), p.10]: for
all linear functionals λx1 , λx2 on RI\J , we have

ppx1qx2
“ px1`εx2 (4.3)

for sufficiently small ε ą 0. We now prove (4.2) by double inclusion.
(Ě) Let u, v be as in the right hand side of (4.2) and let w “ uv. Then the face pp|I ˆ

p{Iqvrevurev “
`

pJ |I
˘

wrev exists, because the functional λwrev is bounded on pJ |I by virtue of
being bounded on each factor. Now let x1 P σJ |I and x2 P σwrev , then by (4.3) we have

`

pJ |I
˘

w
“ ppx1qx2

“ px1`εx2 .

The condition I P Initpwq implies J |I CWrev, so x1`εx2 P σwrev . Therefore pwrev is a vertex
of p, i.e., w P `̀̀prI \ Js as desired.

(Ď) Let w be such that σwrev P Np with I P Initpwq, and let u “ w|I and v “ w|J . Since Np

is closed it contains Cwrev . Since J |I E Wrev, we have σJ |I P Cwrev Ă Np. Therefore, p has a
face pJ |I “ p|I ˆ p{I , on which λwrev is bounded. Moreover, for px, yq P p|I ˆ p{I “ pJ |I ,
we have λwrevpx, yq “ λupxq ` λvpyq; in particular, λurev and λvrev are both bounded on p|I
and p{I respectively. �

Accordingly, we define OGP` as a vector subspecies of L˚ ˆGP`:

OGP`rIs “ xw b p : p P GP`rIs, w P `̀̀prIsy . (4.4)

Theorem 4.5. OGP` is a Hopf submonoid of L˚ ˆGP`.

Proof. It suffices to show that µI,JpOGP`rIsbOGP`rJsq Ď OGP`rI\Js and ∆I,JpOGP`rI\
Jsq Ď OGP`rIs bOGP`rJs, for all disjoint finite sets I, J .

For the product, let ub p P OGP`rIs and v b q P OGP`rJs, where I X J “ H. Then

pub pqpv b qq “
ÿ

wPShufflepu,vq
w b ppˆ qq. (4.5)

Every linear functional λ on RI ˆ RJ is defined by λpP,Qq “ λ|IpP q ` λ|JpQq. If w P

Shufflepu, vq and λ P σwrev , then λI (resp., λJ ) restricts to a functional in σurev (resp., σvrev),
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hence is maximized on p (resp., q) at purev (resp., qvrev). Hence λ is maximized on p ˆ q at
purev ˆ qvrev . It follows that every summand in (4.5) belongs to OGP`rI \ Js.

For the coproduct, let w b p P OGP`rI \ Js. Then

∆I,Jpw b pq “ pw|I b p|Iq b pw|J b p{Iq.

Recall from (2.8) that p|I ˆ p{I is a face of p, so any linear functional λ P σwrev is bounded
above on p and hence on p|I ˆ p{I . The restriction of λ to each element in the product is
a pair of functionals, one in direction wrev|I and another one in wrev|J , and each of those
functionals is bounded above on p|I and p{I respectively. �

Theorem 4.6. The symmetrization map Sym : GP` Ñ OGP` defined on GP`rIs by

Symppq “ p#
“

ÿ

wP`̀̀prIs

w b p

is an injective Hopf morphism. It restricts to a map GP Ñ OGP given by p# “
ř

wP`̀̀rIsw b p.

Proof. It is straightforward to check that Sym is a morphism of vector species, so the proof
reduces to checking that it that commutes with products and coproducts.

First, let p P GP`rIs, q P GP`rJs, where I, J are disjoint finite sets. We must show that
µ

OGP`
I,J pp#, q#q “ pµ

GP`
I,J pp, qqq#. Indeed,

µI,Jpp
#, q#

q “ µI,J

˜

ÿ

uP`̀̀prIs

ub p,
ÿ

vP`̀̀qrJs

v b q

¸

“
ÿ

uP`̀̀prIs

ÿ

vP`̀̀qrJs

˜

ÿ

wPShufflepu,vq
w b ppˆ qq

¸

“

˜

ÿ

uP`̀̀prIs

ÿ

vP`̀̀qrJs

ÿ

wPShufflepu,vq
w

¸

b ppˆ qq

“

˜

ÿ

wP`̀̀pˆqrI\Js

w

¸

b ppˆ qq

“ µI,Jpp, qq
#.

The second-to-last equality follows because every linear order on I \ J decomposes
uniquely as a shuffle of a linear order in I and a linear order in J , and because the product
p ˆ q is bounded in direction wrev if and only if p and q are bounded in directions wrev|I
and wrev|J respectively.

Second, let I, J be disjoint finite sets and p P GP`rI\Js. We must show that ∆OGP`
I,J pSymppqq “

pSymb Symq ˝∆I,Jppq. Indeed,
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∆OGP`
I,J pSymppqq “ ∆I,J

˜

ÿ

wP`̀̀prI\Js

w b p

¸

“
ÿ

wP`̀̀prI\Js: IPInitpwq
pw|I b p|Iq b pw|J b p{Iq

“
ÿ

uP`̀̀p|I rIs

ÿ

vP`̀̀p{I rJs

pub p|Iq b pv b p{Iq

“ pp|Iq# b pp{Iq#

“ pSymb Symq ˝∆I,Jppq

where the third equality follows from Lemma 4.4. �

At this point we can write down a “symmetrized antipode” formula:
ÿ

wP`̀̀prIs

sIpw b pq “ sIpp#
q “ sIppq# “ p´1q|I|

ÿ

qďp
uP`̀̀prIs

p´1qdim q
pub qq. (4.6)

The second equality arises because symmetrization is a Hopf morphism, hence commutes
with the antipode, and the last equality follows from the Aguiar–Ardila formula (2.24)
for the antipode in GP`. Note that the right-hand side of (4.6) is cancellation- and
multiplicity-free. On the other hand, as we will see, the individual summands spw b pq
can be extremely complicated.

Remark 4.7. Aguiar and Ardila [AA17, SS5.2–5.3] defined quotient monoids GP and
GP` whose basis elements are equivalence classes of (extended) generalized permutohe-
dra up to normal equivalence (i.e., equality of normal fans). All of our results, including
the antipode formula to be proved in §7, are expressed in terms of normal fans, hence
carry over mutatis mutandis to L˚ ˆGP and L˚ ˆGP`.

5. 0/1-EXTENDED GENERALIZED PERMUTOHEDRA

We next study the indicator complexes of possibly-unbounded 0/1-EGPs and show
that they form a Hopf subclass of OGP` that contains OMat.

Define a vector subspecies OIGP` Ď OGP` by

OIGP`rIs “ xw b p P OGP`rIs : p is a 0/1-EGPy .

Evidently OIGP` is a Hopf submonoid of OGP`, because the 0/1-condition is clearly
closed under taking products and faces. A bounded 0/1-EGP p is precisely a matroid base
polytope [GGMS87, Thm. 4.1], and the indicator complex Υppq is just the independence
complex of the associated matroid, giving an injection Mat Ñ OIGP`. On the other
hand, if p is unbounded, then Υppq need not be a matroid complex, and some care is
required in seeing how to derive OIGP` from a Hopf class.
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Example 5.1. The hypersimplex ∆2,4 Ă RI “ R4 is the solution set of the following equa-
tion and inequalities:

x1 ` x2 ` x3 ` x4 “ 2 x1 ď 1 x2 ` x3 ` x4 ď 2 p˚˚q
x2 ď 1 x1 ` x3 ` x4 ď 2
x3 ď 1 x1 ` x2 ` x4 ď 2
x4 ď 1 p˚˚q x1 ` x2 ` x3 ď 2

Dropping the two inequalities marked p˚˚q produces the unbounded generalized per-
mutohedron p shown in Figure 3, with rays pointing in the direction e4 ´ e1. Let w “

1234 P S4; then w P `̀̀prIs (specifically, pwrev “ 1100) and so pw, pq P OGP`. Moreover,
the indicator complex Υppq “ x12, 13, 23, 14y is prefix-pure with respect to w; we will see
that this is not an accident. On the other hand, Υppq is not a matroid complex, since its
restriction to t2, 3, 4u is not pure. (One can see this geometrically as well: the convex hull
of the vertices contains an edge between p1, 0, 0, 1q and p0, 1, 1, 0q, which is not parallel to
any vector ei ´ ej .)

0011

0101

0110

1010

1100

1001

FIGURE 3. An unbounded 0/1-EGP whose indicator complex is not a ma-
troid.

J

Example 5.1 illustrates that indicator complexes of 0/1-EGPs form a nontrivial exten-
sion of the class of matroids. It would be of interest to find a purely combinatorial char-
acterization of these complexes.

Theorem 5.2. The family of simplicial complexes

OMAT` “ tpw,Υppq, Iq : p Ă RI is a 0/1-EGP with w P `̀̀prIsu

is a Hopf class.

Proof. First we show that every element of OMAT` is prefix-pure. Let pw,Υppq, I \ Jq P
OMAT`, where I P Initpwq, and let 1I be the linear functional defined by 1Ipxq “

ř

iPI xi.
Then 1I P σJ |I Ď σwrev , so 1I is bounded from above on p; in particular it is a face of p
containing pwrev . The complex Υppq|I is generated by the faces supppxq X I for all vertices
x P p, while Υpp|Iq is the pure subcomplex of Υppq|I generated by faces of maximum size
(which correspond to vertices of p maximized by 1I). Therefore, it suffices to show that
Υppq|I “ Υpp|Iq.
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Accordingly, let γ “ supppxq X I be a face of Υppq|I . If x is not maximized by 1I ,
then p must contain some 1-dimensional face e incident to x such that walking along e
from x increases the value of 1I . Since p is an EGP, this walk must be in the direction
ei ´ ej for some i P I and j P J , and 1I is bounded from above on p, so the walk must
eventually reach another vertex y P p. But p is an 0/1-polyhedron, so it must be the
case that xi “ yj “ 0 and xj “ yi “ 1, and supppyq “ supppxq Y tiuztju. Therefore
supppyq X I “ γ Y tiu P Υppq|I . This argument shows that every facet of Υppq|I is a face
of Υpp|Iq, as required.

Closure under initial restriction and contraction follow from Lemma 4.4. For closure
under ordered join, let pw1,Υpp1q, I1q, pw2,Υpp2q, I2q P OMAT`. The faces of p1 ˆ p2 are
products of faces of p1 with faces of p2, so

w P `̀̀prI1 \ I2s ðñ w|I1 P `p1rI1s and w|I2 P `p2rI2s ðñ w P Shufflepw1, w2q

and if these conditions hold then

pw1,Υpp1qq ˚
w
pw2,Υpp2qq “ pw,Υpp1q ˚Υpp2qq “ pw,Υpp1 ˆ p2qq P OMAT`

as desired. �

The Hopf monoid OMat` “ pOMAT`q
6 (see §3.3) is therefore defined by

OMat`rIs “ tw bΥppq : w b p P OIGP`rIsu.

Thus there is a surjective morphism of vector species Υ̃ “ IdbΥ : OIGP` Ñ OMat`.

Proposition 5.3. The map Υ̃ : OIGP` Ñ OMat` is a surjective Hopf morphism.

Proof. It is necessary to show that Υ is compatible with shuffled join, initial restriction, and
initial contraction. Compatibility with join follows from the observation that the vertices
of pˆq are exactly concatenations of vertices of p with vertices of q, and compatibility with
initial restriction is just the identity Υpp|Iq “ Υppq|I obtained in the proof of Theorem 5.2.

For compatibility with initial restriction, let w b p P OIGP` and I P Initpwq; we must
show that Υpp{Iq “ Υppq{I . Let ϕ be the w-lex-minimal facet of Υpp|Iq “ Υppq|I . Its
characteristic vector eϕ P RI is a vertex of p|I , and by (2.8) the vertices of p{I are precisely

teA P RJzI : A Ď JzI, eϕ ˆ eA P pu.

But ϕ is also the w-lex-minimal facet of Υppq|I , so

Υpp{Iq “ tA Ď JzI : ϕY A P Υppqu “ linkΥppqpϕq “ Υppq{I

as desired. �

Remark 5.4. The map Υ̃ : OIGP` Ñ OMat` is not injective. For example, let p, q Ă R2

as in Example 2.1, and let w “ 21 P S2. Then σw P Nq and so Υ̃pw, pq “ Υ̃pw, qq.

The relationships between the various Hopf monoids we have encountered are sum-
marized in the following diagram.
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L˚ ˆGP “ OGP OGP`

GP GP`

L˚ ˆMat “ OMat OIGP` OMat`

Mat Mat`

Sym Sym

Υ̃

π
Sym

The vector species Mat` is defined as the image of OMat` under the projection map
π : L˚ ˆ GP Ñ GP; that is, it is the span of all indicator complexes of 0/1-EGPs. By
Corollary 2.11, the dashed arrows are not Hopf morphisms; indeed, it seems unlikely
that Mat` can be endowed with a Hopf monoid structure.

6. ANTIPODES OF FACET-INITIAL AND SHIFTED COMPLEXES

Throughout this section, we fix a natural ordered prefix-pure complex pe,Γ, rnsq of di-
mension r ´ 1. Recall that E is the set composition 1|2| ¨ ¨ ¨ |n corresponding to e.

For any interval J “ rs, ts, define the corresponding interval minor of pw,Γ, rnsq as
pw|J ,ΓpJq, Jq, where ΓpJq “ Γps, tq “ pΓ|L \ Jq{L and L is the interval preceding J .
Moreover, for any natural set composition A “ A1| ¨ ¨ ¨ |Ak � I (i.e., one whose blocks are
intervals), define the reassembly of Γ with respect to A as ReApΓq “ ΓpA1q ˚ ¨ ¨ ¨ ˚ΓpAkq, so
that

µAp∆Apw b Γqq “
ÿ

uPShufflepw|A1 ,...,w|Ak
q

pub ReApΓqq “
ÿ

uPSn:
Dpw,uqEA

pub ReApΓqq. (6.1)

Recall from (2.15) that µAp∆Apw b Γqq “ 0 if A is not natural (i.e., if A 5 E), so the
Takeuchi formula (2.13) gives

spw b Γq “
ÿ

AEW
p´1q|A|

ÿ

uPSn:
Dpw,uqEA

ub ReApΓq

“
ÿ

uPSn

ÿ

A�rns:
Dpw,uqEAEE

p´1q|A| ub ReApΓq

“
ÿ

uPSn

ÿ

reassemblies
Ω of Γ

¨

˝

ÿ

APC˝ΩXEw,u

p´1q|A|
˛

‚ub Ω (6.2)

where Ew,u is as defined in (2.20) and

C˝Ω “ tA � rns : A E E, ReApΓq “ Ωu. (6.3)

The album Ew,u, which does not depend on Γ, will appear later in our calculation of the
antipode for OGP` (§7.2).
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Further investigation of the antipode along these lines appears to require describing
the album C˝Ω, which may be quite complicated in general. Nevertheless, we make the
following conjecture:

Conjecture 6.1. In every Hopf monoid arising from a Hopf class (equivalently, in PRE6), the
antipode is multiplicity-free.

Equivalently, the “Euler characteristic” of the album C˝ΩXEw,u defined in (6.3) is always
0 or ˘1. We now present evidence in support of this conjecture, for a class of ordered
complexes for which the albums C˝Ω can be described easily.

6.1. Facet-initial complexes.

Definition 6.2. Let pw,Γ, rnsq be an ordered prefix-pure complex, and let r “ dim Γ ` 1.
We say that pw,Γq is facet-initial if either Γ “ tHu, or if rrs is a facet of Γ (hence the
lex-minimal facet).

Adapting terminology from matroid theory, we say that a vertex of Γ is a coloop if it
belongs to every facet, and a loop if it belongs to no facet (hence to no face); in addition,
we say that Γ is primitive if it has no loops or coloops. The facet-initial property is (much)
more general than shiftedness, and is preserved by restriction and contraction, hence by
taking interval minors (though not by join). The interval minors of Γ are

Γps, tq “ tγ Ď rs, ts : γ Y r1, s´ 1s P Γu. (6.4)

In particular, Γps, tq is a simplex if t ď r and is empty if s ą r. Therefore, for any natural
set composition A “ A1| ¨ ¨ ¨ |Ak � I (i.e., one whose blocks are intervals), suppose that
Aj “ rs, ts is the block of A containing r (so 1 ď s ď r ď t ď n). Then the reassembly
ReApΓq that occurs in (6.1) is

Γ˚ps, tq :“ xr1, s´ 1sy ˚ Γps, tq;
in particular ReApΓq and the albums C˝Ω of (6.3) depend only on the interval rs, ts.

Theorem 6.3. Let pw,Γ, rnsq be a facet-initial ordered simplicial complex. Then:
(1) Its antipode is given by the formula

spw b Γq “
r
ÿ

s“1

n
ÿ

t“r

p´1qn´1´t`s
ÿ

uPShps,tq
ub Γ˚ps, tq (6.5)

where Shps, tq “ Shuffleprs´ 1, s´ 2, . . . , 1s, rs, . . . , ts, rn, n´ 1, . . . , t` 1sq Ď Sn.
(2) If in addition Γ is shifted and has no loops or coloops, then the formula is cancellation-free.

We will establish the formula immediately, but defer the proof of the second statement
until we focus on shifted complexes in the next section.

Proof of Theorem 6.3 (1). By the foregoing observations about facet-initial complexes, we
can rewrite (6.2) as

spw b Γq “
r
ÿ

s“1

n
ÿ

t“r

ÿ

A�rns natural:
rs,tsPA

p´1q|A|
ÿ

uPSn:
Dpw,uqEA

ub Γ˚ps, tq. (6.6)
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Observe that if rs, ts P A and Dpw, uq E A then u´1psq ă ¨ ¨ ¨ ă u´1ptq. Moreover, for fixed s
and t and a permutation u obeying this last condition, any natural set composition A
containing rs, ts as a block satisfies Dpw, uq E A if and only if B E A E C, where

B “ Br,s,t “

´

r1, s´ 1s | rs, ts | rt` 1, ns
¯

_Dpw, uq,

C “ Cr,s,t “ 1 | ¨ ¨ ¨ | s´ 1 | rs, ts | t` 1 | ¨ ¨ ¨ |n

(here _ denotes the join in the lattice of natural set compositions). Therefore, we may
rewrite the right-hand side of (6.6) as

r
ÿ

s“1

n
ÿ

t“r

ÿ

uPSn

u´1psqă¨¨¨ău´1ptq

˜

ÿ

BEAEC
p´1q|A|

¸

ub Γ˚ps, tq. (6.7)

The parenthesized sum, over a Boolean interval, vanishes unless B “ C. In this case
the sum equals p´1qn´1´pt´sq, and since 1, . . . , s ´ 1 and t ` 1, . . . , n are singleton parts in
Dpw, uq it follows that

u´1
p1q ą ¨ ¨ ¨ ą u´1

ps´ 1q,
u´1
psq ă ¨ ¨ ¨ ă u´1

ptq,

u´1
pt` 1q ą ¨ ¨ ¨ ą u´1

pnq.

(6.8)

(the second condition was noted previously). These conditions, together with u´1psq ă
¨ ¨ ¨ ă u´1ptq, say precisely that u P Shps, tq, yielding the desired formula. �

The formula of Theorem 6.3 is not cancellation-free in all cases, because there can ex-
ist s, t, s1, t1 such that Γ˚ps, tq “ Γ˚ps1, t1q and Shps, tq X Shps1, t1q is nonempty. However,
this possibility is limited, and in fact we can track the cancellation exactly. Say that a
permutation u P Sn is DUD (for down-up-down) if it satisfies the inequalities

u´1
p1q ą ¨ ¨ ¨ ą u´1

pSq, u´1
pSq ă ¨ ¨ ¨ ă u´1

pT q, u´1
pT q ą ¨ ¨ ¨ ą u´1

pnq

where S “ Spuq, . . . , r, . . . , T “ T puq is the maximal increasing subsequence of u contain-
ing r (in particular, S ď r ď T ). Observe that u P Shps, tq if and only if it is DUD, with
s P tS, S ` 1u and t P tT, T ´ 1u, or equivalently,

s´ 1 ď S ď s ď r ď t ď T ď t` 1.

Thus we can regroup the formula of Theorem 6.3 by summing over permutations, always
remembering that S and T depend on u:
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spw b Γq “
ÿ

u DUD
SărăT

p´1qn´T`S´1ub
´

Γ˚pS, T q ´ Γ˚pS, T ´ 1q ´ Γ˚pS ` 1, T q ` Γ˚pS ` 1, T ´ 1q
¯

`
ÿ

u DUD
Săr“T

p´1qn´r`S´1ub
´

Γ˚pS, rq ´ Γ˚pS ` 1, rq
¯

`
ÿ

u DUD
S“răT

p´1qn´T`r´1ub
´

Γ˚pr, T q ´ Γ˚pr, T ´ 1q
¯

`
ÿ

u DUD
S“r“T

p´1qn´T`S´1ub Γ˚pS, T q

(6.9)
By definition, Γ˚ps, rq “ xr1, rsy for every s ď r, so the second sum in (6.9) vanishes.
Cancellation in the third sum is easy to track: Γ˚pr, T q is generated by the facets of Γ of
the form rr ´ 1s Y txu with r ď x ď T , so the third summand is nonzero if and only if
rr ´ 1s Y tT u P Γ.

We now consider cancellation in the first sum. The relevant conditions are
(a) T is a loop in ΓpS, T q;
(b) T is a loop in ΓpS ` 1, T q;
(c) S is a coloop in ΓpS, T q;
(d) S is a coloop in ΓpS, T ´ 1q.

The conditions for equality between each pair are indicated in the following diagram:

Γ˚pS, T q
“ xr1, S ´ 1sy ˚ ΓpS, T q

Γ˚pS ` 1, T q
“ xr1, Ssy ˚ ΓpS ` 1, T q

Γ˚pS, T ´ 1q
“ xr1, S ´ 1sy ˚ ΓpS, T ´ 1q

Γ˚pS ` 1, T ´ 1q
“ xr1, Ssy ˚ ΓpS ` 1, T ´ 1q

(a)

(c)

(a),(c)
(b)

(b),(d)

(d)

(6.10)

Note that (a) ùñ (b) and (c) ùñ (d). Moreover, by the diagram above, it is not possible
that exactly three of the conditions are true. The remaining logical possibilities, and the
resulting cancellation in the summand, are given by the following table.

True False Simplified form
a,b,c,d — 0

a,b c,d 0
c,d a,b 0
b,d a,c Γ˚pS, T q ´ Γ˚pS, T ´ 1q or Γ˚pS, T q ´ Γ˚pS ` 1, T q
b a,c,d Γ˚pS, T q ´ Γ˚pS, T ´ 1q
d a,b,c Γ˚pS, T q ´ Γ˚pS ` 1, T q
— a,b,c,d Γ˚pS, T q ´ Γ˚pS, T ´ 1q ´ Γ˚pS ` 1, T q ` Γ˚pS ` 1, T ´ 1q
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Putting these observations together leads to the following formula (which is cancellation-
free and multiplicity-free) for the antipode of a facet-initial complex:

spw b Γq “
ÿ

u DUD
SărăT

(a). . . (d) false

p´1qn´T`S´1ub
`

Γ˚pS, T q ´ Γ˚pS, T ´ 1q ´ Γ˚pS ` 1, T q ` Γ˚pS ` 1, T ´ 1q
˘

`
ÿ

u DUD
SărăT
(b) true

(a),(c) false

p´1qn´T`S´1ub
`

Γ˚pS, T q ´ Γ˚pS, T ´ 1q
˘

`
ÿ

u DUD
SărăT
(d) true

(a),(b),(c) false

p´1qn´T`S´1ub
`

Γ˚pS, T q ´ Γ˚pS ` 1, T q
˘

`
ÿ

u DUD
S“răT

rr´1sYtT uPΓ

p´1qn´T`r´1ub
`

Γ˚pr, T q ´ Γ˚pr, T ´ 1q
˘

`
ÿ

u DUD
S“r“T

p´1qn´1ub xr1, rsy.

(6.11)
Here we have combined the fourth and fifth cases in the table. Alternatively, it is pos-

sible to combine the fourth and sixth cases and write a similar formula, which we omit.

6.2. Shifted complexes. We now consider the case of a pure ordered complex pw,Γ, rnsq
that is not merely facet-initial but in fact shifted; i.e., its facets form an order ideal in
Gale order (see Example 3.7). We write xxϕ1, . . . , ϕmyyI for the shifted matroid on vertex
set I whose facets are the Gale order ideal generated by the ϕi: for example, xx14, 23yyr4s “
x12, 13, 14, 23y. Note that the coloops of Γ form an initial segment r1, as and its loops form
a final segment rz, ns, where a ď r ă z. The definitions of loop and coloop imply that

r1, r ` 1sztxu P Γ ðñ x ą a (6.12a)

and
r1, r ´ 1sztxu P Γ ðñ x ă z. (6.12b)

In particular, Γ is coloop-free if and only if r2, r ` 1s is a facet, and is loop-free if and only
if r1, r ´ 1s Y tnu is a facet. (If Γ has no coloops we may set a “ 0, and if it has no loops
then z “ n` 1.)

Lemma 6.4. Let pw,Γq be a pure shifted complex of dimension r ´ 1 on vertex set r1, ns with
w “ e the natural ordering. Suppose that the coloops of Γ are r1, as and the loops are rz, ns. (Note
that a ď r ă z.) Let rs, ts Ď r1, ns be an interval such that s ď r ď t. Then:

(1) If t “ r, then Γps, tq “ xrs, tsy and so Γ˚ps, tq “ xr1, rsy.
(2) If t ą r, then the coloops of Γps, tq are r1, as X rs, ts and the loops are rz, ns X rs, ts. Thus

Γps, tq “ xr1, as X rs, tsy ˚ Γpa` 1,minpt, z ´ 1qq and so

Γ˚ps, tq “ xr1, s´ 1sy ˚ xr1, as X rs, tsy ˚ Γpa` 1,minpt, z ´ 1qq
“ xr1,maxps´ 1, aqsy ˚ Γpa` 1,minpt, z ´ 1qq
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and moreover Γpa` 1,minpt, z ´ 1qq is primitive.

Proof. The first assertion is immediate from (6.4). Henceforth, suppose that t ą r. Let
x P rs, ts. Then by (6.4) and (6.12a)

rs, r ` 1sztxu P Γps, tq ðñ r1, r ` 1sztxu P Γ ðñ x ą a

and by (6.4) and (6.12b)

rs, r ´ 1s Y txu P Γps, tq ðñ r1, r ´ 1sztxu P Γ ðñ x ă z

from which the statement about loops and coloops follows, and the rest is calculation. �

In the third case (s ď r ă t), note that if Γ is primitive then so is Γps, tq. Moreover, Γps, tq
cannot be a simplex (because a ă t) or empty (because s ă z)

Corollary 6.5. Γ˚ps, tq “ Γ˚ps1, t1q if and only if (i) t “ t1 “ r; or (ii) t, t1 ą r, minpt, z ´ 1q “
minpt1, z ´ 1q, and maxps ´ 1, aq “ maxps1 ´ 1, aq. Equivalently: (i) t “ t1 “ r; or (ii) either
r ă t “ t1 ă z or t, t1 ě z, and either s, s1 ď a` 1 or s “ s1 ą a` 1.

We can now revisit the cancellation-free formula (6.11). The conditions paq . . . pdq now
become

(a) T is a loop in ΓpS, T q ðñ T ě z.
(b) T is a loop in ΓpS ` 1, T q ðñ T ě z.
(c) S is a coloop in ΓpS, T q ðñ T “ r, or T ą r and S ď a.
(d) S is a coloop in ΓpS, T ´ 1q ðñ T “ r, or T “ r ` 1, or T ą r ` 1 and S ď a.

In the first sum, to say that (a). . . (d) all fail is to say that r` 1 ă T ă z and S ą a. The sec-
ond sum disappears because conditions (a) and (b) are equivalent for shifted complexes.
In the third sum, to say that (a), (b), (c) all fail but (d) holds is to say that T “ r ` 1 and
S ą a. In the fourth sum, the condition rr ´ 1s Y tT u becomes T ă z by (6.12b). Thus we
can simplify (6.11) slightly to the cancellation-free formula

spw b Γq “
ÿ

u DUD
aăSăr

r`1ăTăz

p´1qn´T`S´1ub
`

Γ˚pS, T q ´ Γ˚pS, T ´ 1q ´ Γ˚pS ` 1, T q ` Γ˚pS ` 1, T ´ 1q
˘

`
ÿ

u DUD
aăSăr

T“r`1ăz

p´1qn´r`Sub
`

Γ˚pS, r ` 1q ´ Γ˚pS ` 1, r ` 1q
˘

`
ÿ

u DUD
S“răTăz

p´1qn´T`r´1ub
`

Γ˚pr, T q ´ Γ˚pr, T ´ 1q
˘

`
ÿ

u DUD
S“r“T

p´1qn´1ub xr1, rsy.

(6.13)
We can now complete the proof of Theorem 6.3.

Proof of Theorem 6.3 (2). Let pw,Γ, Iq be a shifted complex with no loops or coloops. By
Lemma 6.4, all complexes Γps, tqwith s ď r ď t are also loopless and coloopless. For each
complex Γ˚ps, tq we can recover s and t from the coloops and the loops respectively. It
follows that formula (6.5) is cancellation-free. �
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Remark 6.6. The simplicial complexes Γ˚ps, tq are shifted with respect to e (by virtue of be-
ing minors of the shifted complex Γ) but not necessarily with respect to the permutations
u with which they are paired in the formula of Theorem 6.3. (We should not expect them
to be so, since ordered shifted complexes do not form a Hopf class or a Hopf monoid; see
Example 3.7.)

Observe that the indexing of the terms in the antipode formula given by (6.13) depends
only on the parameters r, n, a, z; this will be useful shortly.

6.3. Shifted (Schubert) matroids. Klivans [Kli03, Thm. 5.4.1] proved that a shifted com-
plex is a matroid independence complex if and only if it is a principal ideal in Gale order.
These complexes also appear in the literature under the name Schubert matroids.

Let ϕ “ ta1 ă ¨ ¨ ¨ ă aru Ď rns. We can represent the shifted matroid xxϕyyrns as the Fer-
rers diagram of the partition pa1 ´ 1, . . . , ar ´ rq (here it is convenient to write partitions
in weakly increasing order). This correspondence gives an isomorphism between Gale
order on r-subsets of rns and the interval in Young’s lattice from the empty partition to
the rectangle rˆpn´ rqwith r rows and n´ r columns. In particular, Gale order is a (dis-
tributive) lattice whose join and meet correspond respectively to union and intersection of
Ferrers diagrams. If we label rows 1, . . . , r south to north and columns r`1, . . . , n west to
east, then empty rows at the south are coloops and empty columns on the east are loops.
For s ď r ă t, the complexes Γps, tq and Γ˚ps, tq are obtained by erasing all rows south of s
and all columns east of t and regarding the result as a subdiagram of rs, rs ˆ rr ` 1, ts or
of r1, rs ˆ rr ` 1, ns respectively. This observation is the pictorial version of the formula

xxϕyyrnsps, tq “ xxϕ
1
^ rt´ r ` s, tsyyrs,ts, (6.14)

where ϕ1 “ tas, . . . , aru and ^ denotes meet in Gale order (we omit the routine verifica-
tion). Thus the class of shifted matroids is closed under taking interval minors.

For example, the shifted matroid xx23589yyr11s (with r “ 5) corresponds to the Ferrers
diagram of the partition p4, 4, 2, 1, 1q “ p9 ´ 5, 8 ´ 4, 5 ´ 3, 3 ´ 2, 2 ´ 1q, considered as a
subset of a r ˆ pn´ rq “ 5ˆ 6 rectangle (see Figure 4).

Γ “ xx23589yyr11s

1
2
3
4
5

6 7 8 9 10 11

Γp2, 8q

1
2
3
4
5

6 7 8 9 10 11

FIGURE 4. A shifted matroid and an interval minor, represented as Ferrers diagrams.

Meanwhile, let us interpret reassemblies of the shifted matroid Γ geometrically. Let p
be the matroid polytope of Γ (equivalently, its indicator polytope; see §2.1). For every
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natural set composition A “ A1| ¨ ¨ ¨ |Ak � I , iterating (2.8) gives

pA “ pA1 ˆ ¨ ¨ ¨ ˆ pAk

where pAi
is the matroid polytope of the interval minor ΓpAiq. Thus the indicator complex

of pA is precisely the reassembly ReApΓq.
Let Φ Ď Γ be shifted complexes on rns with the same parameters r, n, a, z of the same

dimension, and let 1 ď s ď t ď n. Thus, as mentioned above, the terms in the expressions
for spw b Φq and spw b Γq given by (6.13) are indexed identically. Moreover, an easy
calculation shows that

Γps, tq X Φ “ Φps, tq and so Γ˚ps, tq X Φ “ Φ˚ps, tq. (6.15)

As a result, we can interpret the cancellation-free antipode formula (6.13) of any shifted
complex Φ quasi-geometrically by taking Γ to be any shifted matroid containing Φ, so that
the terms ubΦ˚ps, tq in (6.13) correspond bijectively to the faces of the base polytope of Γ.
For example, Γ could be taken to be the matroid hull of Φ (the unique smallest shifted
matroid containing Φ, generated by the Gale join of all its facets).

7. THE ANTIPODE IN OGP`

The goal of this section is to establish an antipode formula for the Hopf monoid OGP`,
and thus for its submonoids OGP and OMat. The argument is modeled after Aguiar and
Ardila’s topological calculation of the antipode in GP` [AA17, Theorem 7.1]. It works in
general for OGP`. The computations rely heavily on the normal fan of the polyhedron
and the fact that it is (topologically) closed even for unbounded polyhedra. This implies
that the closure of the normal cone of a face still makes sense in constructing objects such
as E and F below.

7.1. Scrope complexes. We begin by describing a class of simplicial complexes that will
play a key role in the computation of the antipode on OGP`.

Definition 7.1. A Scrope complex7 is a simplicial complex on vertices rk´1s that is either
a simplex, or is generated by faces of the form rk ´ 1szrx, y ´ 1s “ r1, x ´ 1s Y ry, k ´ 1s,
where 1 ď x ă y ď k. If z “ ppx1, y1q, . . . , pxr, yrqq is a list of ordered pairs of integers in rks
with xi ă yi for each i, we set ϕi “ rk ´ 1szrxi, yi ´ 1s for 1 ď i ď r and define

Scrpk, zq “ xϕ1, . . . , ϕry .

The facets of a Scrope complex correspond to the intervals rx, y ´ 1s that are minimal
with respect to inclusion. By removing redundant generators, we may assume that it is
either the full simplex on rk´1s, or can be written as Scrpk, zqwhere 1 ď x1 ă ¨ ¨ ¨ ă xr ă k;
1 ă y1 ă ¨ ¨ ¨ ă yr ď k; and xi ă yi for each i.

To justify the above notational choices, we will be considering Scrope complexes whose
vertices correspond to the k ´ 1 separators in a natural set composition of t1, 2, . . . , ku.
Thus rk ´ 1szrx, y ´ 1s is the set of separators in the set composition whose only non-
singleton block is tx, x` 1, . . . , y ´ 1, yu, namely

1
ˇ

ˇ 2
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇx x` 1 ¨ ¨ ¨ y ´ 1 y
ˇ

ˇ y ` 1
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇ k.

7Named after the winner of an important 1389 case in English heraldry law, concerning a coat of arms
that looks a lot like the dots-and-stars diagram.
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A Scrope complex can be recognized by its facet-vertex incidence matrix, which we will
represent as a rˆpk´1q table whose pi, jq entry is ‹ or ¨ according as j P ϕi or j R ϕi. Thus
each row consists of a (possibly empty) sequence of dots sandwiched between two (pos-
sibly empty) sequences of stars. For example, if k “ 7 and z “ pp1, 3q, p2, 4q, p3, 6q, p4, 7qq
then Scrpn, zq “ x3456, 1456, 126, 123y is represented by the following diagram:

¨ ¨ ‹ ‹ ‹ ‹

‹ ¨ ¨ ‹ ‹ ‹

‹ ‹ ¨ ¨ ¨ ‹

‹ ‹ ‹ ¨ ¨ ¨

It is easy to see from this description that the class of Scrope complexes is stable under
taking induced subcomplexes.

Proposition 7.2. Every nontrivial Scrope complex is either contractible or a homotopy sphere.

Proof. Let Γ “ xϕ1, . . . , ϕry be a Scrope complex, labeled as above. One trivial case is that
r “ 1, x1 “ 1, and y1 “ k, which we allow for inductive purposes. In this case Γ is the
trivial complex, which we regard as the p´1q-sphere. Otherwise, if r “ 1, then Γ is a
simplex, hence contractible. Also, if yr ă k, then each facet contains vertex k ´ 1, so Γ is
again contractible. Therefore, suppose that r ą 1 and yr “ k, so that ϕr “ r1, xr ´ 1s.

Let Γ̂ “ xϕ1, . . . , ϕr´1y. This complex is certainly a cone with apex k ´ 1, hence con-
tractible. Now Γ is the union of the contractible complexes Γ̂ and xϕry, attached along
their intersection Γ1, namely

xϕry X Γ̂ “ xϕr X ϕi : 1 ď i ď r ´ 1y
“
@

r1, xr ´ 1s X
`

r1, xi ´ 1s Y ryi, n´ 1s
˘

: 1 ď i ď r ´ 1
D

“ xr1, xi ´ 1s Y ryi,minpxr ´ 1, n´ 1qs : 1 ď i ď r ´ 1y

which is evidently itself a (possibly trivial) Scrope complex. By induction, either Γ1 is
contractible, which implies that Γ is contractible as well, or else Γ1 » Sq for some q, which
implies Γ » Sq`1. �

Corollary 7.3. The reduced Euler characteristic of every Scrope complex is 0, 1, or ´1.

As a corollary of the proof, the reduced Euler characteristic of a Scrope complex can be
computed recursively, with computation time linear in the number of generators r “ |z|.

7.2. The antipode calculation. Throughout this section, I will denote a set of size n and
w, u linear orders on I . Let W be the maximal set composition corresponding to w, and let
D “ Dpw, uq be the u-descent composition of w (Definition 2.9). Define fans and albums
as follows:

E “ Ew,u “ tσA P Cw : D E Au, E “ Ew,u “ tA : σA P Eu “ tA : D E A EWu,
F “ Fw,u “ tσA P Cw : D 5 Au, F “ Fw,u “ tA : σA P Fu “ tA : D 5 A, A EWu

(we repeat the definition of E from (2.20)).
The topological realization of the Boolean algebra CW is the pn´2q-simplex Čw “ Σn´2X

Cw “ xσ̌wy. The descent composition D “ Dpw, uq corresponds to the face δ “ ČD of this
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simplex, and F corresponds to the closed subcomplex F̌w,u Ď xσ̌wy consisting of faces not
containing δ. In particular,

F̌w,u –

$

’

&

’

%

H if |D| “ 1 ðñ u “ w,

Bn´3 if 1 ă |D| ă n,

Sn´3 if |D| “ n ðñ u “ wrev.

In fact we can say more about the structure of F̌ : it is obtained by coning the boundary
of the simplex xδy successively with each vertex in σwzδ. It is worth mentioning that if F̌
is nonempty then it is a very special kind of shellable complex: a pure full-dimensional
subcomplex of a simplex boundary. In particular, when F̌ – Bn´3, then the set of star
points of F is the union of the cones C˝A for all set compositions A such that A ď W and
σA X δ “ H.

With this setup in hand, we now move to the main calculation of this section. Let wb p
be a basis element of OGP`rIs. We start with Takeuchi’s formula:

spw b pq “
ÿ

A“pA1,...,Akq�I

p´1qkµAp∆Apw b pqq

“
ÿ

A�I
p´1q|A|µAp∆Apwqq b µAp∆Appqq

“
ÿ

A�I:
AďW

ÿ

uP`̀̀prIs:
Dpw,uqEAEW

p´1q|A|ub pA (by (2.19) and (2.25))

“
ÿ

uP`̀̀prIs

ÿ

A�I:
Dpw,uqďAďW

p´1q|A|ub pA

“
ÿ

uP`̀̀prIs

ÿ

qPFppq

˜

ÿ

APE: pA“q

p´1q|A|
¸

ub q

where Fppq denotes the set of faces of p. Thus we need to calculate the coefficient

aw,pu,q “
ÿ

APE: pA“q

p´1q|A| “
ÿ

APEXC˝Q

p´1q|A| “
ÿ

σPEXC˝q

p´1qdimσ (7.1)

where Q is the normal preposet of q.
As a consequence of this partial calculation, we can identify two useful necessary con-

ditions on nonzero terms in the antipode (expressed in equivalent geometric and combi-
natorial forms).

Proposition 7.4 (Locality of antipode in OGP`). Suppose that aw,pu,q ‰ 0. Then

Cw X C˝q ‰ H or equivalently CW X C˝Q ‰ H; and (‹)
σD P Cq or equivalently D P CQ. (‹‹)

Proof. First, E Ď CW, so if (‹) fails then the sum in (7.1) is empty. (In fact, (‹) follows from
the third line of the calculation of spw b pq above.) If (‹‹) fails, then E X Cq “ H (since Cq

is closed under coarsening), whence EX C˝q “ H and the sum in (7.1) is again empty. �

Corollary 7.5. If aw,pu,q ‰ 0, then Q is w-natural.
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Proof. Let x ăQ y be a relation and A a set composition such that A P CW X C˝Q. By
Lemma 2.5 x, y are in different blocks of A, and by w-naturality of A we have w´1pxq ă
w´1pyq. Therefore Q is w-natural. �

Proposition 7.4 says that the support of sOGPpw b pq is local with respect to the braid
cone σw. Condition (‹) is stronger than the property that the face q associated to the
preposet Q must contain the vertex pw: A face can contain the vertex pw without Condi-
tion (‹), as in Example 7.8.

Remark 7.6. By Definition 2.4 for any d-dimensional GP p there is a map ψ from the set
of faces of p to the set of faces of Πd`1. This map can be thought as a deformation map, a
face q maps to the set of faces of Πd`1 that came together. Locality for Πd`1 means that the
support of the antipode is exactly equal to the star of the vertex w. Locality for p means
that the support of the antipode is equal to the faces q Ă p such that ψpqq X starpwq ‰ H.

Remark 7.7. By contrast, the antipode in L ˆGP (as opposed to L˚ ˆGP) is not local.
For example, let p Ă Rn be the standard permutohedron, whose normal fan is the braid
fan Bn. In particular, if A P Comppnq, then µA ˝ ∆Appq “ pA is the unique face of p with
normal cone σA P Bn. Thus

sLˆGP
pw b pq “

ÿ

A�rns
µL

Ap∆L
Apwqq b pA.

Here each term in the sum is an element of the canonical basis of LˆGPrIs and the second
part of the tensor is different for all terms. Thus all faces of p appear in the antipode, and
we see that the algebraic structure of LˆGP is not local.

Example 7.8. Let w “ 1234 P S4, and let p be the hypersimplex ∆2,4 (see §8.3), which
is an octahedron with vertices 0011, 0101, 0110, 1001, 1010, 1100 P R4 (abbreviating, e.g.,
0011 “ p0, 0, 1, 1q). By the characterization of faces of hypersimplices (Prop. 8.3), the only
faces of p that occur in the support of spw b pq are as indicated in Figure 5. J

1100

1010 1001

0110 0101

0011

qp12, 34q “ convp0011q “ v
qp1, 4q “ convp0011, 0101q
qpH, 4q “ convp0011, 0101, 1001q
qp1,Hq “ convp0011, 0101, 0110q
qpH,Hq “ ∆

FIGURE 5. Locality for the hypersimplex ∆2,4.
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For the purpose of calculating aw,pu,q , we assume from now on that conditions (‹) and (‹‹)
hold for the pair u, q. We start by rewriting aw,pu,q as a sum of “reduced Euler characteristics”
over fans:

aw,pu,q “ χ1 ´ χ2 ´ χ3,

where

χ1 “
ÿ

σPCwXCq

p´1qdimσ
“

ÿ

APCWXCQ

p´1q|A|,

χ2 “
ÿ

σPFXCq

p´1qdimσ
“

ÿ

APFXCQ

p´1q|A|,

χ3 “
ÿ

σPEXBCq

p´1qdimσ
“

ÿ

APEXBCQ

p´1q|A|.

In light of the argument of [AA17, Theorem 7.1], one might expect our calculation of
aw,pu,q to proceed by expressing E X C˝q “ pCwzFq X pCqzBCqq as a signed sum of the four
closed fans CwXCq, F XCq, CwXBCq, F XBCq. As it happens, it is difficult to determine the
reduced Euler characteristics of the last two of these fans, but it is feasible (via the theory
of Scrope complexes, as we will see) to analyze the single (non-closed) fan E X BCq.

We will now calculate each of χ1, χ2, and χ3 separately, working either geometrically
or combinatorially as convenient and assuming in each case that the conditions of Propo-
sition 7.4 hold.

Proposition 7.9. Under the locality assumptions of Proposition 7.4, we have

χ1 “

#

´1 if u “ w, p “ q, and D “ Nw,P “ A0,
0 otherwise.

Proof. The fan Cw X Cq “ CNw,Q
(Proposition 2.3) is convex and closed and is nonempty

(because it contains σA0). Therefore, ČNw,Q
is either the trivial simplicial complex tHu

(when Nw,P “ A0) or a topological ball (otherwise). Hence

χ1 “

#

´1 if Nw,Q “ A0,
0 otherwise.

(7.3)

In fact we can sharpen this statement by incorporating the locality assumptions. First,
by (‹), we can replace the condition CW X CQ “ tA0u with CW X C˝Q “ tA0u. For this to
happen, it is necessary that q “ p. Moreover, since D P CQ by assumption (‹‹), the case
χ1 “ ´1 occurs only when D “ A0, or equivalently u “ w. �

Remark 7.10. The conditions q “ p and u “ w are not sufficient to imply χ1 “ ´1 (see
Example 7.20), although the three conditions q “ p, u “ w, and dim p “ n´ 1 together are
sufficient.

Proposition 7.11. Under the locality assumptions of Proposition 7.4, we have

χ2 “

"

p´1qdespu´1wq if u ‰ w and D “ Nw,Q, and C˝Q X Cw ‰ H,
0 otherwise.

Proof. There are three cases to consider.
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(1) If |D| “ 1 (i.e., D “ A0), then F “ H and clearly χ2 “ 0. Therefore, in the remaining
cases, we assume henceforth that |D| ą 1, or equivalently u ‰ w.

(2) If Cq contains a star point of F other than the origin — that is, if it contains some
cone σA such that A0 ‰ A ď W and A^D “ A0 — then that point is also a star point
of F X Cq. Therefore, intersecting with Σn´2 produces a topological ball, whose
reduced Euler characteristic χ2 vanishes. (This case occurs only when 1 ă |D| ă n.)

(3) Suppose that Cq contains no star point of F . That is, no cone σA P FXCq, other than
σA0 , satisfies A^ D “ A0. But in particular this is true when σA is a ray in Cq, so in
fact Cw X Cq Ď rA0, σDs “ CD and then equality holds by assumption (‹‹). Since F
contains every cone in CD other than σD itself, it follows that F X Cq “ CDztσDu “
BCD and therefore χ2 “ ´p´1qdimσD “ p´1qdespu´1wq by (2.18).

Now rewriting the results of the case analysis combinatorially gives the desired formula
for χ2. (The first locality assumption ‹was not used, so it needs to be included in the first
case of the formula.) �

Proposition 7.12. Under the locality assumptions of Proposition 7.4, we have

χ3 “

"

p´1qdespu´1wqχ̃pǦq if D P BCQ and C˝Q X CW ‰ H

0 otherwise,

where Ǧ “ ǦpQ,w, uq is a certain Scrope complex (to be constructed in the proof).

Proof. Recall that χ3 “
ř

APGp´1q|A|, where G “ GpQ,w, uq “ E X BCQ. By Lemma 2.5 and
Prop. 2.3, we have

G “ tA P CQ : D E A EW and A collapses some relation of Qu
“ tA P ComppIq : D E A E N and A collapses some relation of Qu (7.4)

where N “ Nw,Q is the w-naturalization of Q (see §2.3). Now, given a pair ci, di P I
such that ci ăQ di and ci ”D di, let Nxi

and Nyi
be the blocks of N containing ci and di

respectively (so that xi ă yi), and let

Si “ N1 | ¨ ¨ ¨ |Nxi´1 |Nxi
Y ¨ ¨ ¨ YNyi

|Nyi`1 | ¨ ¨ ¨ |Nk.

Then Si P G by (7.4). Moreover, every composition in G is refined by or equal to some Si.
In other words,

G “
r
ď

i“1
rD, Sis.

The maximal Boolean intervals rD, Sis of this form are those for which the integer interval
rci, dis is minimal; in this case we call ci ăQ di a short relation. Thus in computing G it
suffices to consider only short relations.

As usual, let us identify every set composition in rD,Ws with the simplex on its sep-
arators (by passing to braid cones and intersecting with Sn´2, as in §2.3). Then the sim-
plicial complex Ǧ “ ǦpQ,w, uq corresponding to G is a Scrope complex whose vertices
correspond to the separators between blocks of N; specifically, Ǧ – Scrpk, zq, where z “
ppx1, y1q, . . . , pxr, yrqq. It follows that χ3 “ p´1q|D|´1χ̃pǦq “ p´1qdespu´1wqχ̃pǦq P t0,´1, 1u,
as desired.

For the locality assumptions, note that D P BCQ directly implies p‹‹q. Condition p‹q did
not arise in the calculation, so it is incorporated directly into the formula for χ3. �
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Example 7.13. Let w “ u “ 12345678 (as linear orders) so that D “ A0 “ 12345678. Let Q
be the w-natural preposet shown below, so that that N “ 1|234|567|8.

567 8

234

1
The compositions A such that D E A E N are

91 92
9
34

9
5678 91 92

9
34

9
567|8 91 9234|5678 91 9234|567|8

1|2
9
34

9
5678 1|2

9
34

9
567|8 1|234|5678 1|234|567|8

where each of the short relations 1 ăQ 2 and 3 ăQ 5 is marked whenever it occurs in a
block. Thus the last two compositions listed do not belong to G. Moreover,

G “ rD,S12s Y rD,S35s

“ r12345678, 1234|567|8s Y r12345678, 1|234567|8s.
whose geometric realization is shown below. Note that χ̃pGq “ 0.

1234|5678

1234|567|8

1234567|8

1|234567|8

1|234567|8

J

Proposition 7.14. The formula aw,pu,q “ χ1 ´ χ2 ´ χ3 is multiplicity- and cancellation-free. That
is, each of the terms χ1, χ2, χ3 is 0, 1, or ´1, and at most one of them is nonzero.
Proof. First, suppose that χ1 ‰ 0. Then by Proposition 7.9 u “ w (so D “ A0) and p “ q.
It follows from Proposition 7.11 that χ2 “ 0. Moreover, the preposet Q has no proper
relations, so G “ H and χ3 “ 0.

Second, suppose that χ1 “ 0 and χ2 ‰ 0. Then D P C˝Q, but then D R BCQ and so
χ3 “ 0. �

By Proposition 7.14, we can combine Propositions 7.9, 7.11, and 7.12 into a single for-
mula for the coefficients of the antipode:

aw,pu,q “

$

’

’

’

&

’

’

’

%

´1 if u “ w, p “ q, and D “ Nw,P “ A0,
´p´1qdespu´1wq if D ‰ A0 and D “ Nw,Q, and CW X C˝Q ‰ H,
´p´1qdespu´1wqχ̃pǦpQ,w, uqq if D P BCQ and CW X C˝Q ‰ H,
0 otherwise.

(7.5)
We can finally write down a combinatorial formula for the antipode in OGP`:

spw b pq “ ´ξw b p´
ÿ

pu,qqPp`̀̀prIsztwuqˆFppq:
D“Nw,Q, CWXC˝Q‰H

p´1qdespu´1wqub q

´
ÿ

pu,qqP`̀̀prIsˆFppq:
DPBCQ, CWXC˝Q‰H

p´1qdespu´1wqχ̃pǦpQ,w, uqqub q
(7.6)
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where ξ is 1 if CWXCP “ tA0u and 0 otherwise. (In particular, ξ “ 1 if p has full dimension
|I| ´ 1.)

In fact this expression can be simplified. Suppose we extend the range of summation
for u in the first sum from `̀̀prIsztwu to `̀̀prIs. If u “ w, then D “ A0 and CD “ tA0u, so
CW X CQ “ CD if and only if A0 P CQ, i.e., q “ p and ξ “ 1. Therefore, we can absorb the
term ´ξw b p into the first sum to obtain the final result, as follows.

Theorem 7.15. The antipode in OGP` is given by the formula

spw b pq “
ÿ

pu,qqP`̀̀prIsˆFppq:
D“Nw,Q, CWXC˝Q‰H

p´1q1`despu´1wqub q

s1

`
ÿ

pu,qqP`̀̀prIsˆFppq:
DPBCQ, CWXC˝Q‰H

p´1q1`despu´1wqχ̃pǦqub q

s2

where Ǧ “ ǦpQ,w, uq is the Scrope complex defined above.

Remark 7.16. Recall that summing over all w P Sn produces the much simpler expres-
sion (4.6). It is not immediately clear why so much cancellation occurs in that symmetriza-
tion.

Remark 7.17. It is tempting to try to combine s1 and s2 into a single sum. To accom-
plish this, it is necessary to understand the Scrope complex ǦpQ,w, uq in the case D “ N.
By (7.4), if N P BCQ then G “ tNu, while if N P C˝Q then G “ H. But in the first of those
cases the condition CW X C˝Q ‰ H fails, while in the second case χpGq “ χpHq is 0, not 1,
so the sums cannot be combined.

Remark 7.18. The expression s2 may contain some zero summands, since Scrope com-
plexes can be contractible. However, it is not clear how to predict when this will happen.
It would be helpful to have a non-recursive way of determining the topology of a Scrope
complex. On the other hand, whenD P BCQ is a maximal element, then the corresponding
Scrope is the trivial complex, whose Euler characteristic is nonzero. So s2 is nonzero.

Example 7.19. The sign of a term u b q in spw b pq may depend on u as well as on q.
For example, let p be the three-dimensional cone of Example 2.6. This cone has a unique
vertex q “ p1, 2, 3, 4q, whose normal cone Cq is the union of three braid cones (see Figure 1).
Let w “ 1234. The intersection BCq X Cw has two maximal elements, the vertex 1|234 and
the edge 12|3|4. Hence

‚ If u “ 2314, then Dpw, uq “ 1|234 P Cq X Cw and p´1q1`despu´1wqχ̃pǦq “ 1.
‚ If u “ 4312, then Dpw, uq “ 12|3|4 P Cq X Cw and p´1q1`despu´1wqχ̃pǦq “ ´1.

J

Example 7.20. We give an example of an antipode calculation for an unbounded polytope.
Let p be the segment convtp1, 0, 0q, p0, 1, 0qu, and let p1 be the ray with vertex p0, 1, 0q and
direction p1,´1, 0q. Thus p1 Ą p, and in fact the normal fan Np1 is a non-complete subfan
of Np, as shown below.

The computation of spwbpq is shown in the table below. If p1 is bounded in the direction
given by w (that is, if the braid cone σw appears in Np1), then the computation of spw b p1q
is identical to that of spw b pq, replacing p with p1. Note that the point a, which is a face of
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p

ba

2|3|1

2|1|3 1|2|3

1|3|2

3|1|23|2|1

N ˝
p paq N ˝

p pbq

3|12

12|3

23|1

2|13 1|23

13|2

A0

Np

p1
b

1|2|3

1|3|2

3|1|2

N ˝
p pbq

3|12

12|3

1|23

13|2

A0

Np1

p but not of p1, does not appear in these cases.

w χ1 χ2 χ3 p1 bounded?

123 0 p132` 312q b p´ 321b b p´132´ 312q b b Yes

132 ´132b p ´231b b `132b b Yes

312 0 p123` 132q b p´ 213b b p´123´ 132q b b Yes

321 0 p213` 231q b p´ 123b a p´213´ 231q b a No

231 ´231b p ´132b a `231b a No

213 0 p231` 321q b p´ 312b a p´231´ 321q b a No

Observe that each row is itself cancellation-free, and that adding rows together recovers
the symmetrized formulas

ÿ

wPS3

spw b pq “
ÿ

wPS3

w b pp´ a´ bq

and
ÿ

wPNp1

spw b p1q “
ÿ

wPNp1

w b p1 ´
ÿ

wPS3

w b b

confirming (4.6) in this case. J

8. SPECIAL CASES OF THE ANTIPODE

In this section, we specialize the antipode formula of Theorem 7.15 to several natural
families of OGPs: standard permutohedra, hypersimplices, and zonotopes of star graphs.
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We discuss the difficulties involved in calculating the antipode for other families, includ-
ing general graphical zonotopes and matroid complexes. Throughout, we fix the ground
set I “ rns, so that we can identify orderings in `̀̀rIswith permutations in Sn.

8.1. The standard permutohedron. Let p “ Πn´1 Ă Rrns be the standard permutohedron
(see §2.4) and letw P Sn. The normal fan of Πn´1 is exactly the braid fan, so its faces q “ pQ
are labeled by ordered set partitions Q, and every CQ is a principal order ideal (in fact a
Boolean interval) in Comppnq. We compute the antipode of w bΠn´1 using Theorem 7.15.

(1) Since Q must be w-natural in order to show up in the antipode (Corollary 7.5), the
condition CW X CQ “ CD becomes simply CQ “ CD, or Q “ D. Therefore, the first
sum in Theorem 7.15 becomes

s1 “
ÿ

u,Q: Dpw,uq“Q
p´1qdespu´1wqub pQ “ p´1q|Q|

ÿ

u:Dpw,uq“Q
ub pQ.

(2) The condition Dpw, uq P BCQ is equivalent to Dpw, uq C Q. SinceQ is an ordered set
partition, we have Q “ N , so G “ tA : D E A C Qu, which is a Boolean interval
with its top element missing. Therefore Ǧ “ ǦpQ,w, uq is the boundary of a simplex
of dimension |Q| ´ |D| ´ 1 “ |Q| ´ despu´1q ´ 2 and so χ̃pǦq “ p´1q|Q|´despu´1q. So
the second sum in Theorem 7.15 becomes

s2 “ p´1qdespu´1wq
ÿ

u,Q: Dpw,uqCQ
p´1q|Q|´despu´1qub pQ “ p´1q|Q|

ÿ

u,Q: Dpw,uqCQ
ub pQ.

Putting the two sums together gives

spw b Πn´1q “ s1` s2 “
ÿ

Q w-natural
p´1q|Q|

ÿ

u: Dpw,uqEQ
ub pQ. (8.1)

The condition Dpw, uq E Q is equivalent to Despu´1wq Ď t|Q1|, |Q1| ` |Q2|, . . . , |Q1| ` ¨ ¨ ¨ `

|Qk´1|u, where Q “ Q1| ¨ ¨ ¨ |Qk. See [Sta12, §1.4] for more information about enumerating
permutations according to their descent set.

8.2. Spider preposets. For our next two examples of antipodes in OGP`, we need the
following family of preposets.

Definition 8.1. Let A,B be disjoint subsets of I . The corresponding spider Q “ QpA,Bq
is the preposet on I such that C “ CpQq “ IzpA Y Bq is a block of Q (called the center),
and every other element is a singleton block; C lies above the singletons in A and below
the singletons in B.

Let w be a linear order on rns such that Q is w-natural. Equivalently, A and B are
respectively initial and final segments of w; that is, A “ inikpwq “ twp1q, . . . , wpkqu and
B “ fin`pwq “ twpn´ `´ 1q, ¨ ¨ ¨ , wpnqu. For the purpose of the antipode formula, we need
to understand the poset BCQ X CW.
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Write A “ ta1, . . . , aku and B “ tb1, . . . , b`u, with elements indexed according to their
order in w. Define set compositions

NQ “ a1 | ¨ ¨ ¨ | ak´1 | ak | C | b1 | b2 | ¨ ¨ ¨ | b`,

Na
Q “ a1 | ¨ ¨ ¨ | ak´1 | ak Y C | b1 | b2 | ¨ ¨ ¨ | b`,

Nb
Q “ a1 | ¨ ¨ ¨ | ak´1 | ak | C Y b1 | b2 | ¨ ¨ ¨ | b`,

Nab
Q “ a1 | ¨ ¨ ¨ | ak´1 | ak Y C Y b1 | b2 | ¨ ¨ ¨ | b`.

Here NQ is the same set composition defined in the proof of Proposition 7.12; moreover,
BCQ X CW is the order ideal of Comppnq generated by Na

Q and Nb
Q. In all cases, the interval

rNab
Q ,NQs “ tNab

Q ,Na
Q,Nb

Q,NQu is Boolean; however, if one or more of A,B,C is empty,
then some of these set compositions coincide. For reference, the various cases are shown
in Figure 6.

NQ

Na
QNb

Q

Nab
Q

(i) A, B, C ‰ H

Na
Q “ NQ

Nab
Q “ Nb

Q

(ii) A “ H
B, C ‰ H

Nb
Q “ NQ

Nab
Q “ Na

Q

(iii) B “ H

A, C ‰ H

NQ

Nab
Q “ Na

Q “ Nb
Q

(iv) C “ H

A, B ‰ H

FIGURE 6. Possibilities for the interval rNab
Q ,NQs.

If two or more of A,B,C vanish, then NQ “ Na
Q “ Nb

Q “ Nab
Q .

Lemma 8.2. Let Q “ QpA,Bq be a spider on rns and w a linear order on rns such that Q is
w-natural. Let u P Sn and D “ Dpw, uq, and Ǧ “ Ǧpq, w, uq, as constructed in the proof of
Proposition 7.12. Then

χ̃pǦq “

#

p´1q|Q|´|D| if Nab
Q E D C NQ,

0 otherwise.

Proof. If at least two of A,B,C are empty, then Ǧ is the void complex, with reduced Euler
characteristic 0. Meanwhile, the interval rNab

Q ,NQs is trivial, so the condition Nab
Q E D C

NQ is impossible.
If A “ H and B,C ‰ H, then Q has one short relation, namely C ăQ b1, so Ǧ – rD,Nb

Qs,
which is either a simplex or void (hence has reduced Euler characteristic zero) unless
D “ Nb

Q “ Nab
Q . In this case Ǧ is the trivial complex, with reduced Euler characteristic ´1.

The case that B “ H and A,C ‰ H is analogous.
Similarly, ifC “ H andA,B ‰ H, then againQ has one short relation, namely ak ăQ b1,

so Ǧ – rD,Nab
Q s, whose Euler characteristic is ´1 if D “ Nab

Q and 0 otherwise.
Finally, suppose that A,B,C are all nonempty. Then Q has two short relations, namely

ak ăQ C and C ăQ b1. Thus the face poset of Ǧ is isomorphic to rD,Na
Qs Y rD,Nb

Qs Ď

Comppnq. The cases are as follows:
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‚ If D “ Nab
Q then Ǧ – S0, whose reduced Euler characteristic is `1.

‚ If D “ Na
Q or S “ Nb

Q, then Ǧ is the trivial complex, with reduced Euler character-
istic ´1.

‚ If D coarsens exactly one of Na
Q or Nb

Q, then the face poset is Boolean of positive
rank, so Ǧ is a simplex, hence contractible.

‚ IfD C Nab
Q , then Ǧ is the union of two simplices that intersect in a common subface,

so again it is contractible.
‚ Otherwise, Ǧ is the void complex.

Thus the claimed formula holds in all cases. �

8.3. Hypersimplices. For positive integers n ą r, the pn, rq hypersimplex is defined as
the polytope

∆pn, rq “
#

px1, . . . , xnq P r0, 1sn :
n
ÿ

i“1
xi “ r

+

.

The hypersimplex is the matroid base polytope of the uniform matroid of rank r on n
ground elements; in particular, it is a generalized permutohedron of dimension n ´ 1.
Its vertices are the vectors px1, . . . , xnq with exactly r entries equal to 1 and the rest equal
to zero. In particular, ∆pn, 0q is a point and ∆pn, 1q is the standard simplex, and the
polytopes ∆pn, rq and ∆pn, n´ rq are congruent.

It is not hard to describe and count the faces of a hypersimplex, but we have been
unable to find an explicit statement in the literature, so we give a short proof here.

Proposition 8.3. The faces of ∆pn, rq are precisely the polytopes

qpA,Bq “ tpx1, . . . , xnq P ∆pn, rq : xa “ 0 @a P A, xb “ 1 @b P Bu (8.2)

where A,B are disjoint subsets of rns such that either |A| “ n ´ r and |B| “ r (when qpA,Bq is
a vertex) or |A| ă n´ r and |B| ă r (when dim qpA,Bq “ n´ 1´ |A| ´ |B|). Consequently, the
number of d-dimensional faces is

f0p∆pn, rqq “
ˆ

n

r

˙

, fdp∆pn, rqq “
ˆ

n

d` 1

˙ r´1
ÿ

k“r´d

ˆ

n´ d´ 1
k

˙

p1 ď d ď n´ 1q.

Proof. Let λpx1, . . . , xnq “ λ1x1 ` ¨ ¨ ¨ ` λnxn be a linear functional on Rn. Without loss
of generality, suppose λ1 ď ¨ ¨ ¨ ď λn. If λr ă λr`1 then λ is maximized uniquely at the
vertex qpr1, n ´ rs, rn ´ r ` 1, nsq. Otherwise, let i, j be such that λi ă λi` 1 “ ¨ ¨ ¨ “

λn´r “ λn´r`1 “ ¨ ¨ ¨ “ λj´1 ă λj . Then λ is maximized at the vertices in qpr1, is, rj, nsq,
and |r1, is| ă n´ r and |rj, ns| ă r. �

The normal preposet of qpA,Bq is the spider QpA,Bq of Definition 8.1.
For w P Sn, the spider QpA,Bq is w-natural if and only if A and B are initial and final

segments of w, say A “ inikpwq and B “ fin`pwq. In this case we write QpA,Bq “ Qw
k,`,

and we also write qwk,` for the corresponding face of ∆pn, rq. By Corollary 7.5, the qwk,` are
the only faces occurring in the antipode of w b ∆pn, rq. This is a strong restriction; for
instance, the only vertex that can occur is v “ qn´r,r. For ∆p4, 2q and w “ r1234s, the
w-natural faces are those indicated in Figure 5.
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Theorem 8.4. Let w P `̀̀rIs “ Sn. Then

spw b∆pn, rqq “
ÿ

k,`

ÿ

uP`̀̀rIs:
Nab

Q EDpw,uqENQ

ub p´1qn´dim qq

where either pk, `q “ pn´ r, rq, or else 0 ď k ă n´ r and 0 ď ` ă r; Q “ Qw
k,`; and q “ qwk,`.

The condition Nab
Q E Dpw, uq E NQ in the above formula is equivalent to r1, k´1sY rn´

`, n´ 1s Ď Despu´1wq Ď r1, ks Y rn´ `´ 1, n´ 1s.

Proof. In s1 we have D “ NQ, so that despu´1wq ` 1 “ |D| “ |NQ| “ |Q| “ n ´ dim q.
Meanwhile, by Lemma 8.2, the summand in s2 vanishes unless D P tNa

Q,Nb
Q,Nab

Q u, all of
which belong to BCQ. Therefore, Theorem 7.15 boils down to

spw b∆pn, rqq “
ÿ

k,`

ÿ

uP`̀̀rIs:
Dpw,uq“NQ

p´1q|Q|ub q`
ÿ

k,`

ÿ

uP`̀̀rIs:
Nab

Q EDpw,uqCNQ

p´1q|D|p´1q|Q|´|D|ub q,

and combining the two sums and rewriting in terms of q gives the theorem. �

8.4. Zonotopes of stars. Let G be a simple graph on vertex set rns. The corresponding
graphical zonotope is the Minkowski sum

ř

ij sij , where ij ranges over all edges ofG and
sij is the line segment from ei to ej . There does not appear to be a combinatorial formula
for the antipode of an ordered graphic zonotope, since we lack a general description of
the preposets corresponding to normal cones of faces. However, in the following special
case, we can give an explicit formula. LetG “ Stpn, cq be the star graph with center vertex
c and leaves rnsztcu, for some c P rns, so that the corresponding zonotope is

zn,c “
ÿ

i‰c

sic “

#

px1, . . . , xnq P Rn :
n
ÿ

i“1
xi “ n´ 1, 0 ď xj ď 1 @j ‰ c

+

, (8.3)

which is a parallelepiped. The faces of zn,c are precisely the polytopes

qpA,Bq “ tpx1, . . . , xnq P zpn, cq : xa “ 0 @a P A, xb “ 1 @b P Bu
where A,B are disjoint subsets of rnsztcu. We reuse the notation of the previous example
because, as before, dim qpA,Bq “ n ´ 1 ´ |A| ´ |B|, and the normal preposet of qpA,Bq
is the spider QpA,Bq of Definition 8.1; the spiders that arise are precisely those whose
center contains c.

Theorem 8.5. Let w P `̀̀rIs “ Sn. Then

spw b zpn, cqq “
ÿ

k,`

ÿ

uP`̀̀rIs:
Nab

q EDpw,uqENq

ub p´1qn´dim qq

where k, ` are nonnegative integers with k ď w´1pcq ´ 1 and ` ď n´ w´1pcq, and q “ qk,`.

Proof. The proof is the same as in Theorem 8.4 mutatis mutandis. �

In general, an explicit antipode formula for a class of generalized permutohedra re-
quires a description of their normal fans in terms of preposets, as well as an understand-
ing of the Scrope complexes that arise in the s2 piece of Theorem 7.15. For this reason, it is
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probably intractable to ask for a formula for a class as large as all matroid polytopes, for
instance.

9. OPEN QUESTIONS

(1) Is there a closed formula for the Euler characteristic of a Scrope complex? For
individual examples it can be calculated efficiently using Proposition 7.2, but for
the purpose of simplifying antipode calculations it would be better to have a non-
recursive combinatorial condition in terms of the intervals that define facets. What
else can be said about Scrope complexes?

(2) A character on a Hopf monoid H is essentially a multiplicative function: a collection
of linear maps ζ : HrIs Ñ C such that ζpx ¨ yq “ ζpxqζpyq; see [AA17, §8] for
details. Ardila and Aguiar used character theory on GP and its submonoids for
numerous applications, including formulas for multiplicative and compositional
inverses of power series, polynomial invariants of Hopf monoids. What are the
parallel results for OGP` and its submonoids?

(3) Further refine the hierarchy of Hopf classes described in Figure 2 (§3.3). In partic-
ular, resolve Conjectures 3.14 and 3.15.

(4) What can be said about Hopf classes containing non-prefix-pure complexes (hence,
containing non-pure complexes)?

(5) Recall (§5) that Mat` is the class of pure simplicial complexes whose facets are the
supports of vertices of some extended (i.e., possibly unbounded) generalized per-
mutohedron. What can we say about these complexes? What properties, if any, do
they share with matroid complexes? Is there a result analogous to the characteri-
zation [GGMS87, Thm. 4.1] of matroid polytopes as the generalized permutohedra
that are 0/1-polytopes?

(6) For which Hopf classes can we obtain a cancellation-free formula for the antipode
in the corresponding Hopf monoid? When is the antipode multiplicity-free, or
equivalently, when do the albums C˝Ω defined in (6.3) have always “Euler charac-
teristic” in t0,˘1u? (This is Conjecture 6.1.)

(7) For what other families of ordered generalized permutohedra, other than those
studied in §8, does the general antipode formula (Theorem 7.15) simplify nicely?
Families of interest include associahedra and nestohedra; see [PRW08]. As men-
tioned at the end of §8, it is necessary to know their normal fans explicitly and to
understand which Scrope complexes arise in the antipode.

(8) The Hopf class OMAT of ordered matroids is geometric, in the sense that map-
ping every matroid to its base polytope gives an embedding OMat “ OMAT6 Ñ
OGP`. For which other Hopf classes is there a comparable geometric embedding?
Of particular interest is the Hopf class BC of broken-circuit complexes (see Exam-
ple 3.12), in light of their crucial role in the recent work of Ardila, Denham, and
Huh [ADH20]. Is there a maximal Hopf class that embeds in OGP`, and if so,
can it be characterized in purely combinatorial terms? Aguiar and Ardila’s uni-
versality theorem for GP [AA17, Theorem 6.1] implies that any such embedding
necessarily involves polyhedra that are either unbounded or contain vertices that
are not 0/1 vectors.
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(9) Extend OGP` to a Hopf monoid of fans that coarsen the braid arrangement, but
are not necessarily polytopal. See [PRW08, Example 3.8].

(10) The basis elements of L˚ are permutations, which correspond to maximal cones in
the braid fan. We know that the antipode of an elementwbp of OGP` “ L˚ˆGP`

“sees” the local geometry of p near the vertex maximized by w. Can we replace L˚
with some Hopf monoid H of set compositions (which correspond to all braid
cones), so that the antipode of Ab p in the resulting Hadamard product HˆGP`

is local with respect to the face of p maximized by A? Aguiar and Mahajan [AM10,
§§12.4–12.5] describe a dual pair of Hopf monoids Σ, Σ˚ of set compositions and
give explicit antipode formulas; there are maps L Ñ Σ and Σ˚ Ñ L˚ [AM10,
Thm. 12.57] arising from the inclusion of permutations into set compositions.

(11) While the antipode of an elementwbp P OGP` can be very complicated, we know
that symmetrizing by summing over all w produces the much nicer formula (4.6).
What about the “partial symmetrization” obtained by summing over all permuta-
tions minimizing some fixed vertex of p?

(12) It is tempting to try to construct a Hopf monoid on Coxeter matroids, or more
generally on Coxeter generalized permutohedra [ACEP20]. The main obstacle is
that equation (2.8), which is essential to define the coproduct, no longer holds. In
fact [AA17, Theorem 6.1] seems to close the door on considering a larger family of
polytopes, so some new idea is called for.

(13) We have two cancellation-free formulas for the antipode of an ordered shifted
(Schubert) matroid (see §6.3). One is the general formula (6.13) for shifted com-
plexes (or more compactly Theorem 6.3 when there are no loops or coloops). The
other formula arises from Theorem 7.15, because matroid base polytopes are gen-
eralized permutohedra. What can we learn about shifted matroids by comparing
these two formulas? More generally, what can we learn about an arbitrary shifted
complex by comparing its antipode (using (6.13)) with that of its matroid hull (us-
ing Theorem 7.15)?

(14) The Hopf morphism Υ̃ : OIGP` Ñ OMat` described in Proposition 5.3 is sur-
jective (by definition), but not injective. What is its kernel? What can be said
about 0/1 extended generalized permutohedra with the same indicator complex
(whether or not it is a matroid complex)?

(15) Ardila and Sanchez [AS20] recently studied valuations of generalized permuto-
hedra by passing to a quotient of GP` by inclusion/exclusion relations, as in Mc-
Mullen’s polytope algebra [McM89]. They showed that this quotient is isomorphic
to a Hopf monoid of weighted ordered partitions. One could look for an ordered
analogue of their results, perhaps with a view toward a notion of valuations com-
patible with linear orders.
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[Sam20] José Alejandro Samper. Quasi-matroidal classes of ordered simplicial complexes. J. Combin.

Theory Ser. A, 175:105274, 2020. 3, 5, 22, 23, 24, 25
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