Monday 1/28/08

Birkhoff's Theorem

Definition: A lattice L is <u>distributive</u> if the following two equivalent conditions hold:

$$\begin{aligned} x \wedge (y \lor z) &= (x \wedge y) \lor (x \wedge z) \qquad \forall x, y, z \in L, \\ x \lor (y \wedge z) &= (x \lor y) \land (x \lor z) \qquad \forall x, y, z \in L. \end{aligned}$$

Recall that an <u>(order) ideal</u> of P is a set $I \subseteq P$ such that if $x \in I$ and $y \leq x$, then $y \in I$. The poset J(P) of all order ideals of P (ordered by containment) is a distributive lattice. It is a sublattice of the Boolean algebra \mathscr{B}_n (where n = |P|), and is itself ranked, of rank n (i.e., $r(\hat{1}) = n$), because it is possible to build a chain of order ideals by adding one element at a time.

Definition: The ideal **generated** by x_1, \ldots, x_n is

$$\langle x_1, \dots, x_n \rangle := \{ y \in L \mid y \le x_i \text{ for some } i \}.$$

So, e.g., $\langle a, d \rangle = \{a, c, d\}$ in the lattice above.

Definition: Let *L* be a lattice. An element $x \in L$ is **join-irreducible** if it cannot be written as the join of two other elements. That is, if $x = y \lor z$ then either x = y or x = z. The subposet (not sublattice!) of *L* consisting of all join-irreducible elements is denoted Irr(L).

Provided that L has no infinite descending chains, every element of L can be written as the join of joinirreducibles (but not necessarily uniquely; e.g., M_5).

All atoms are join-irreducible, but not all join-irreducible elements need be atoms. An extreme (and slightly trivial) example is a chain: *every* element is join-irreducible, but there is only one atom. As a less trivial example, in the lattice below, a, b, c, d are all join-irreducible, although the only atoms are a and c.

Theorem 1 (Birkhoff 1933; Fundamental Theorem of Finite Distributive Lattices (FTFDL)). Up to isomorphism, the finite distributive lattices are exactly the lattices J(P), where P is a finite poset. Moreover, $L \cong J(\operatorname{Irr}(L))$ for every lattice L and $P \cong \operatorname{Irr}(J(P))$ for every poset P.

Lemma 2. Let L be a distributive lattice and let $p \in L$ be join-irreducible. Suppose that $p \leq a_1 \vee \cdots \vee a_n$. Then $p \leq a_i$ for some i. *Proof.* By distributivity we have

$$p = p \land (a_1 \lor \dots \lor a_n) = (p \land a_1) \lor \dots \lor (p \land a_n)$$

and since p is join-irreducible, it must equal $p \wedge a_i$ for some i, whence $p \leq a_i$.

(Analogue: If a prime p divides a product of positive numbers, then it divides at least one of them. This is in fact exactly what Lemma 2 says when applied to the divisor lattice D_n .)

Proposition 3. Let L be a distributive lattice. Then every $x \in L$ can be written uniquely as an irredundant join of join-irreducible elements.

Proof. We have observed above that any element in a finite lattice can be written as an irredundant join of join-irreducibles, so we have only to prove uniqueness. So, suppose that we have two irredundant decompositions

(1) $x = p_1 \vee \cdots \vee p_n = q_1 \vee \cdots \vee q_m$

with $p_i, q_j \in \operatorname{Irr}(L)$ for all i, j.

By Lemma 1, $p_1 \leq q_j$ for some j. Again by Lemma 1, $q_j \leq p_i$ for some i. If $i \neq 1$, then $p_1 \leq p_i$, which contradicts the fact that the p_i form an antichain. Therefore $p_1 = q_j$. Replacing p_1 with any join-irreducible appearing in (1) and repeating this argument, we find that the two decompositions must be identical. \Box

Sketch of proof of Birkhoff's Theorem. The lattice isomorphism $L \to J(\operatorname{Irr}(L))$ is given by

$$\phi(x) = \langle p \mid p \in \operatorname{Irr}(L), \ p \le x \rangle.$$

Meanwhile, the join-irreducible order ideals in P are just the principal order ideals, i.e., those generated by a single element. So the poset isomorphism $P \to \operatorname{Irr}(J(P))$ is given by

 $\psi(y) = \langle y \rangle.$

These facts need to be checked (as a homework problem).

Corollary 4. Every distributive lattice is isomorphic to a sublattice of a Boolean algebra (whose atoms are the join-irreducibles in L).

Corollary 5. Let L be a finite distributive lattice. TFAE:

- (1) L is a Boolean algebra;
- (2) Irr(L) is an antichain;
- (3) L is atomic (i.e., every element in L is the join of atoms).
- (4) Every join-irreducible element is an atom;
- (5) L is complemented. That is, for each $x \in L$, there exists $y \in L$ such that $x \lor y = \hat{1}$ and $x \land y = \hat{0}$.
- (6) L is relatively complemented. That is, whenever $x \le y \le z$ in L, there exists $u \in L$ such that $y \lor u = z$ and $y \land u = x$.

Proof. $(6) \implies (5)$ Trivial.

 $(5) \implies (4)$ Suppose that L is complemented, and suppose that $z \in L$ is a join-irreducible that is not an atom. Let x be an atom in $[\hat{0}, z]$, and let y be the complement of x. Then

$$\begin{aligned} (x \lor y) \land z &= 1 \land z = z \\ &= (x \land z) \lor (y \land z) = x \lor (y \land z), \end{aligned}$$

by distributivity. Since z is join-irreducible, we must have $y \wedge z = z$, i.e., $y \ge z$. But then y > x and $y \wedge x = x \neq \hat{0}$, a contradiction.

(4) \iff (3) Trivial.

 $(4) \implies (2)$ Atoms are clearly incomparable.

(2)
$$\implies$$
 (1) By FTFDL, since $L = J(Irr(L))$.

(1)
$$\implies$$
 (6) If $X \subseteq Y \subseteq Z$ are sets, then let $U = X \cup (Y \setminus Z)$. Then $Y \cap U = X$ and $Y \cup U = Z$.

• We could dualize all of this: show that every element in a distributive lattice can be expressed uniquely as the meet of meet-irreducible elements. (This might be a roundabout way to show that distributivity is a self-dual condition.)