Math 243, Fall 2015
Extra Honors Problem for Week 4

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\left(x^{2}+y^{2}\right)^{-1 / 2}\right) & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Show that f is continuous and differentiable at $(0,0)$, but is not of class C^{1} because its partial derivatives are not continuous there. You should definitely find out what the graph looks like, because it's pretty wacky. You can use this Java applet (which has a hint on the problem that may or may not help you), or you can draw your own graph using Sage, Matlab, Grapher, etc. Be sure to zoom in a few times to see what the graph looks like.

