Problem HP11: This ended up being too hard (the complete solution requires techniques we haven’t
discussed yet), but it will make a reappearance later in the semester.

Problem HP12: Many solvers gave the proof of the power rule for nonnegative integers, i.e.,
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The problem with this argument is that the binomial theorem does not hold for non-integer powers — indeed,
neither the binomial coefficient (Z) is not well-defined unless k is a nonnegative integer, nor does it make
sense to sum over all k£ from 0 to n.

The right approach is to rationalize the numerator in an expression such as
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Recall that if p/q = 1/2, then the numerator of this expression is (z + h)'/? — 22 = /x + h — \/z, and
we can rationalize the numerator by multiplying both numerator and denominator of the fraction by the

conjugate expression is (z + )2 + /2 = Vo + h 4 \/z.

For more general powers, we can use the algebraic identity
a? —b? = (a— b)(aq*1 +a? 24+ a3 4+ -+ ab? 2 + be 1)

where ¢ is any positive integer. (This specializes to the well-known formulas for factoring differences of
squares or cubes in the cases ¢ = 2 and ¢ = 3 respectively.) Putting a = (z + h)p/q and b = 2P/, so that



a? = (x + h)? and b? = 2P, we see (assuming for the moment that p > 0 and ¢ > 0) that
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because the denominator has ¢ terms, all of which tend to zP(¢=1/9 as h — 0. This expression, meanwhile,

becomes
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as desired.

For the case that p < 0 is an integer, one can use the definition of derivative as a limit to show that
d/dx(1/f(x)) = —f'(z)/f(x)?, then apply the positive case.



