
Problem HP11: This ended up being too hard (the complete solution requires techniques we haven’t
discussed yet), but it will make a reappearance later in the semester.

Problem HP12: Many solvers gave the proof of the power rule for nonnegative integers, i.e.,
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xn−1 = nxn−1.

The problem with this argument is that the binomial theorem does not hold for non-integer powers — indeed,
neither the binomial coefficient

(
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is not well-defined unless k is a nonnegative integer, nor does it make
sense to sum over all k from 0 to n.

The right approach is to rationalize the numerator in an expression such as
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Recall that if p/q = 1/2, then the numerator of this expression is (x + h)1/2 − x1/2 =
√
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x, and
we can rationalize the numerator by multiplying both numerator and denominator of the fraction by the
conjugate expression is (x + h)1/2 + x1/2 =

√
x + h +

√
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For more general powers, we can use the algebraic identity

aq − bq = (a − b)(aq−1 + aq−2b + aq−3b2 + · · · + abq−2 + bq−1)

where q is any positive integer. (This specializes to the well-known formulas for factoring differences of
squares or cubes in the cases q = 2 and q = 3 respectively.) Putting a = (x + h)p/q and b = xp/q, so that



aq = (x + h)p and bq = xp, we see (assuming for the moment that p ≥ 0 and q > 0) that
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because the denominator has q terms, all of which tend to xp(q−1)/q as h → 0. This expression, meanwhile,
becomes
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as desired.

For the case that p < 0 is an integer, one can use the definition of derivative as a limit to show that
d/dx(1/f(x)) = −f ′(x)/f(x)2, then apply the positive case.


