Simplicial Effective Resistance and Tree Enumeration

Art Duval (University of Texas, El Paso)
Woong Kook (Seoul National University)
Kang-Ju Lee (Seoul National University)
*Jeremy L. Martin (University of Kansas)

University of Delaware
Discrete Mathematics and Algebra Seminar
December 9, 2021

The Menu

1. Spanning Trees and How To Count Them
you probably know most of this part already
2. Resistor Networks
you might have seen this in a course on graph theory
3. Simplicial Trees
recent work of Art Duval, Carly Klivans, and myself
4. Simplicial Networks and Applications
finally, the new stuff

1. Spanning Trees and How To Count Them

Spanning Trees and the Matrix-Tree Theorem

Let $G=(V, E)$ be a connected loopless graph, $V=[n]$.

- Spanning tree T : maximal acyclic edge set (or subgraph)
- Every spanning tree has $n-1$ edges
- $\mathcal{T}(G)=$ set of spanning trees; $\tau(G)=|\mathcal{T}(G)|$
- Lovely formulas: $\tau\left(K_{n}\right)=n^{n-2}$ ("Cayley"), $K_{p, q}, Q_{n}, \ldots$

Matrix-Tree Theorem: Let $L=L(G)$ be the Laplacian matrix

$$
L=\left[\ell_{i j}\right]_{i, j=1}^{n} \quad \ell_{i j}= \begin{cases}\operatorname{deg}(i) & \text { if } i=j \\ -\left|E_{i, j}\right| & \text { if } i \neq j\end{cases}
$$

where $E_{i, j}=$ set of edges with endpoints i, j. Then

$$
\tau(G)=\operatorname{det} L_{V \backslash i, V \backslash i}=\frac{\prod \text { nonzero eigenvalues of } L}{n} .
$$

One Proof of the Matrix-Tree Theorem

Orient each edge $e=i j$ as $\overrightarrow{i j} ; i$ is the tail and j is the head. The signed incidence matrix of G is

$$
\partial=\left[\partial_{i e}\right]_{i \in V, e \in E} \quad \partial_{i, e}= \begin{cases}1 & \text { if } i=\operatorname{head}(e), \\ -1 & \text { if } i=\operatorname{tail}(e) \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
L=\partial \partial^{T}, \quad L_{V \backslash i, V \backslash i}=\partial_{V \backslash i, E} \partial_{V \backslash i, E}^{t r}
$$

and by the Binet-Cauchy identity

$$
\operatorname{det} L^{i i}=\sum_{A \subseteq E:|A|=n-1} \operatorname{det}\left(\partial_{V \backslash i, A}\right) \operatorname{det}\left(\partial_{V \backslash i, A}^{t}\right)=\sum_{A} \operatorname{det}\left(\partial_{V \backslash i, A}\right)^{2}
$$

and the summand is $(\pm 1)^{2}$ if A is a tree, 0 otherwise.

Weighted Tree Enumeration

Assign each edge a weight x_{e}. The weighted Laplacian is

$$
\hat{L}=\left[\hat{\ell}_{i j}\right]_{i, j=1}^{n} \quad \ell_{i j}= \begin{cases}\sum_{e \in E_{i}} x_{e} & \text { if } i=j, \\ -\sum_{e \in E_{i, j}} x_{e} & \text { if } i \neq j .\end{cases}
$$

Weighted Matrix-Tree Theorem

$$
\sum_{T \in \mathcal{T}(G)} \prod_{e \in T} x_{e}=\operatorname{det} \hat{L}_{V \backslash i, V \backslash i}
$$

Application: Introducing indeterminates $\left\{x_{i}: i \in V\right\}$ and setting $x_{i j}=x_{i} x_{j}$ can recover formulas like Cayley-Prüfer:

$$
\sum_{T \in \mathcal{T}(G)} \prod_{v=1}^{n} x_{i}^{\operatorname{deg}_{T}(i)}=x_{1} \cdots x_{n}\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

2. Resistor Networks

Resistor Networks

A [resistor] network $N=(V, E, \mathbf{r})$ is a connected, undirected* graph (V, E) together with positive resistances $\mathbf{r}=\left(r_{e}\right)_{e \in E}$.

State of N :
currents $\mathbf{i}=\left(i_{e}\right)_{e \in E}$
voltages $\mathbf{v}=\left(v_{e}\right)_{e \in E}$

Ohm's law
Kirchhoff's current law

$$
\begin{aligned}
& i_{e} r_{e}=v_{e} \quad(\forall e \in E) \\
& \sum_{e \in E^{\text {in }}(x)} i_{e}-\sum_{e \in E^{\text {out }}(x)} i_{e}=0 \quad(\forall x \in V) \\
& \sum_{\vec{e} \in C} v_{e}=0 \quad(\forall \text { cycle } C)
\end{aligned}
$$

Kirchhoff's voltage law

Every voltage comes from a potential $\left(p_{i}\right)_{i \in V}$ via $v_{\overrightarrow{i j}}=p_{j}-p_{i}$

[^0]
Kirchhoff's Laws and the Incidence Matrix

∂	12	31	41	52	34	45	63	74	67
1	(-1	1	1	0	0	0	0	0	0
2	1	0	0	1	0	0	0	0	0
3	0	-1	0	0	-1	0	1	0	0
4	0	0	-1	0	1	-1	0	1	0
5	0	0	0	-1	0	1	0	0	0
6	0	0	0	0	0	0	-1	0	-1
7	0	0	0	0	0	0	0	-1	
8	0	0	0	0	0	0	0	0	-1)

KCL: $\mathbf{i} \in \operatorname{ker} \partial=$ nullspace (∂)

- Currents are flows
$\mathrm{KVL}: \mathbf{v} \in(\operatorname{ker} \partial)^{\perp}=\operatorname{rowspace}(\partial)$
- Voltages are cuts

Effective Resistance

Idea: Attach a current generator: an edge $\mathbf{e}=\overrightarrow{x y}$ with current i_{e}, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique minimizer of "total energy" $\sum_{e} v_{e} i_{e}$ subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the system is equivalent to a single edge \mathbf{e} with resistance

$$
R_{\mathrm{e}}^{\mathrm{eff}}=R_{x y}^{\mathrm{eff}}=\frac{p_{y}-p_{x}}{c_{\mathrm{e}}}
$$

(the effective resistance of \mathbf{e}).

To calculate $R_{\mathrm{e}}^{\text {eff. }}$ assign \mathbf{e} unit current, find \mathbf{v} and \mathbf{i} minimizing energy. Then $R_{\mathrm{e}}^{\text {eff }}=\mathbf{v}_{\mathbf{e}}$.

Effective Resistance and Tree Counting

Theorem [Thomassen 1990]
Let $N=(V, E, \mathbf{r})$ be a network and $e=x y \in E$.

- If $\mathbf{r} \equiv 1$, then

$$
R_{x y}^{\mathrm{eff}}=\frac{\tau(G / x y)}{\tau(G)}=\operatorname{Pr}[\text { random spanning tree contains } x y]
$$

- Generalization for arbitrary resistances:

$$
R_{x y}^{\mathrm{eff}}=\frac{\hat{\tau}(G / x y)}{\hat{\tau}(G)}=\frac{\sum_{T \in \mathcal{T}(G / x y)} \prod_{e \in T} r_{e}^{-1}}{\sum_{T \in \mathcal{T}(G)} \prod_{e \in T} r_{e}^{-1}}
$$

Combinatorial application: weighted tree enumeration!

Application: Ferrers Graphs

The Ferrers graph G_{λ} of a partition λ has vertices corresponding to the rows and columns of λ, and edges corresponding to squares.

Here $\lambda=(4,4,2), \lambda^{\prime}=(3,3,2,2), n=3=\ell(\lambda), m=4=\ell\left(\lambda^{\prime}\right)$.
Define a degree-weighted tree enumerator

$$
\hat{\tau}(G)=\sum_{T \in \mathcal{T}\left(G_{\lambda}\right)} \prod_{i=1}^{m} x_{i} \operatorname{deg}_{T}\left(u_{i}\right) \prod_{j=1}^{n} y_{j} \operatorname{deg}_{T}\left(v_{j}\right)
$$

Application: Ferrers Graphs

Theorem (Ehrenborg and van Willigenburg, 2004):

$$
\hat{\tau}\left(G_{\lambda}\right)=x_{1} \cdots x_{m} y_{1} \cdots y_{n} \prod_{i=2}^{n}\left(y_{1}+\cdots+y_{\lambda_{i}}\right) \prod_{j=2}^{n}\left(x_{1}+\cdots+x_{\lambda_{j}^{\prime}}\right)
$$

(Proof sketch: Find effective resistance of a corner of λ; induct.) In the example above,

$$
\begin{aligned}
\hat{\tau}\left(G_{\lambda}\right)= & x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} \\
& \times\left(y_{1}+y_{2}+y_{3}\right)\left(y_{1}+y_{2}\right)^{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}\right)
\end{aligned}
$$

and in particular $\tau\left(G_{\lambda}\right)=3 \cdot 2^{2} \cdot 4 \cdot 2$.

3. Simplicial Trees

Simplicial Complexes

- Geometric simplicial complex: family of simplices (points, line segments, triangles, tetrahedra, ...) attached along faces
- Combinatorial simplicial complex: $\Delta \subseteq 2^{V}$ such that $\sigma \in \Delta, \rho \subseteq \sigma \Longrightarrow \rho \in \Delta$

$$
\begin{aligned}
& \langle 125,135,245,345,246\rangle \\
& =\{125,135,245,345,246, \\
& \quad 12,13,15,24,25,26,34,35,45,46, \\
& \quad 1,2,3,4,5,6, \quad \emptyset\}
\end{aligned}
$$

- Facets $\Phi=\Phi(\Delta)=$ maximal faces
- Assume Δ^{d} pure: $|\phi|=d+1$ for all facets ϕ

Boundary Maps and Homology Groups

Boundary of a k-simplex $\sigma=\left(v_{0}<v_{1}<\cdots<v_{k}\right)$:

$$
\partial_{k}\left(v_{0}<v_{1}<\cdots<v_{k}\right)=\sum_{i=0}^{k}(-1)^{i}\left(v_{0} \cdots \widehat{v}_{i} \cdots v_{k}\right)
$$

Extending linearly gives a map

$$
\partial_{k}: C_{k}(\Delta ; R) \rightarrow C_{k-1}(\Delta ; R)
$$

where $C_{k}(\Delta ; R)=$ linear combos of k-simplices $(R=\mathbb{R}$ or $\mathbb{Z})$

- Key fact: $\partial_{k} \circ \partial_{k+1}=0$.
- Aha moment: $\partial_{1}=$ signed incidence matrix of graph $\Delta^{(1)}$

Boundary Maps and Homology Groups

The simplicial chain complex is

$$
\begin{aligned}
0 \rightarrow C_{d}(\Delta ; R) \xrightarrow{\partial_{d}} & C_{d-1}(\Delta ; R) \rightarrow \cdots \\
& \rightarrow C_{1}(\Delta ; R) \xrightarrow{\partial_{1}} C_{0}(\Delta ; R) \xrightarrow{\partial_{0}} C_{1}(\Delta ; R) \rightarrow 0 .
\end{aligned}
$$

- $\partial_{k} \partial_{k+1}=0$ implies ker $\partial_{k} \supseteq \operatorname{im} \partial_{k+1}$
- (reduced simplicial) homology: $H_{k}(\Delta ; R)=\operatorname{ker} \partial_{k} / \operatorname{im} \partial_{k+1}$
- Homology groups are topological invariants of Δ
- Over $\mathbb{Z}: H_{k}=\mathbb{Z}^{b_{k}} \oplus T_{k}$
- $b_{k}=$ Betti number: counts k-dimensional holes
- $T_{k}=$ torsion group: finite, measures nonorientability
- Over $\mathbb{R}: H_{k}=\mathbb{R}^{b_{k}}$

Spanning Trees of Simplicial Complexes

A spanning tree of Δ^{d} is a subcomplex $\Upsilon \subset \Delta$ such that:

1. Υ contains all non-maximal faces (spanning)
2. $H_{d}(\Upsilon ; \mathbb{R})=0$ (acyclic)
3. $H_{d-1}(\Upsilon ; \mathbb{R})=0$ (connected $) \Longleftrightarrow H_{d-1}(\Upsilon ; \mathbb{Z})$ finite

Examples:

- $d=1$: standard definition of spanning tree of a graph
- $\Delta=$ simplicial sphere: remove a facet
$-d=2$: regard Δ as bubble wrap - pop all the bubbles but don't tear the bottom sheet

Counting Simplicial Spanning Trees

The right way to count simplicial trees:

$$
\begin{aligned}
& \tau(\Delta)=\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \\
& \hat{\tau}(\Delta)=\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{\phi \in \Upsilon} x_{\phi} \quad \text { (unweighted) }
\end{aligned}
$$

Kalai 1983: $\tau\left(K_{n_{d}}\right)=n n^{\binom{n-2}{d}}$ using simplicial Laplacian $\partial \partial^{\mathrm{tr}}$. (torsion factors arise naturally from Binet-Cauchy expansion)

Subsequent work: Adin 1992 (complete colorful complexes), Petersson, Duval-Klivans-JLM, Lyons, Catanzaro-Chernyak-Klein (all c. 2006-2010)

The Simplicial Matrix-Tree Theorem

Let Δ be a d-dimensional simplicial complex.
Assume $H_{k}(X ; \mathbb{R})=0$ for $k=d-1, d-2$.
Let Γ be a $(d-1)$-dimensional spanning tree of Δ.
The reduced simplicial Laplacian L_{Γ} is the square matrix obtained from $\partial_{d} \partial_{d}^{\text {tr }}$ by deleting the rows and columns corresponding to facets of Γ.

Then,

$$
\tau(\Delta)=\frac{\left|H_{d-2}(\Delta ; \mathbb{Z})\right|^{2}}{\left|H_{d-2}(\Gamma ; \mathbb{Z})\right|^{2}} \operatorname{det} L_{\Gamma}
$$

(In practice, the torsion junk often goes away.)

4. Simplicial Networks and Applications

Simplicial Networks

Simplicial network: pure d-complex with resistances $\left(r_{\phi}\right)_{\phi \in \Phi}$
$d=1$

Currents $\mathbf{i}=\left(i_{\phi}\right)_{\phi \in \Phi} \quad$ Voltages $\mathbf{v}=\left(v_{\phi}\right)_{\phi \in \Phi}$

Ohm's law
Kirchhoff's current law
Kirchhoff's voltage law

$$
\begin{aligned}
& i_{\phi} r_{\phi}=v_{\phi} \text { for all } \phi \in \Phi \\
& \mathbf{i} \in \operatorname{ker}\left(\partial_{d}\right) \\
& \mathbf{v} \in \operatorname{ker}\left(\partial_{d}\right)^{\perp}
\end{aligned}
$$

- Dirichlet, Rayleigh, $R^{\text {eff }}$ have natural simplicial analogues.
- Attach a unit current generator σ and minimize energy. Then $R_{\sigma}^{\text {eff }}=v_{\sigma}$.

Counting Simplicial Trees via Effective Resistance

Theorem [Kook-Lee 2018]
Let (Δ, \boldsymbol{r}) be a simplicial network and σ a current generator. Then:

$$
R_{\sigma}^{\text {eff }}=\frac{\hat{\tau}(\Delta / \sigma)}{\hat{\tau}(\Delta)}=\frac{\sum_{T \in \mathcal{T}(\Delta / \sigma)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \prod_{\phi \in T} r_{\phi}^{-1}}{\sum_{T \in \mathcal{T}(\Delta)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \prod_{\phi \in T} r_{\phi}^{-1}}
$$

- Generalizes Thomassen's theorem for $R^{\text {eff }}$ in graphs
- $\Delta / \sigma=$ quotient space (not simplicial, but close enough)
- Application: count trees by induction on facets

Shifted Complexes

A (pure) simplicial complex Δ on vertices $\{1, \ldots, n\}$ is shifted if any vertex of a face may be replaced with a smaller vertex.

Equivalently, the facets of Δ form an order ideal in Gale order or componentwise order (best explained by a picture)

$\Delta=\langle 135,234\rangle_{\text {Gale }}$
Facets
Nonfaces
Critical pairs
123

Shifted complexes are nice: shellable, good h-vectors, arise in algebra, Gröbner degenerations of arbitrary complexes. . .

Shifted Complexes

Duval-Klivans-JLM '09: recursion for $\hat{\tau}(\Delta)$ via the shifted complexes $\langle\phi \in \Delta \mid 1 \in \phi\rangle$ and $\langle\phi \in \Delta \mid 1 \notin \phi\rangle$.

Here $\hat{\tau}(\Delta)$ is the finely weighted degree enumerator

$$
\hat{\tau}(\Delta)=\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{\substack{\text { facets } \\\left\{v_{0}<\cdots<v_{d}\right\}}} x_{0, v_{0}} \cdots x_{d, v_{d}}
$$

Punchline: Critical pairs P correspond to factors f_{P} of $\hat{\tau}(\Delta)$.
Duval-Kook-Lee-JLM '21+:

- Calculate $R^{\text {eff }}=\hat{\tau}(\Delta / \sigma) / \hat{\tau}(\Delta)$ for a Gale-maximal face σ
- Show that

$$
R^{\text {eff }}=\frac{\prod_{P \text { vanishes }} f_{P}}{\prod_{P \text { appears }} f_{P}} .
$$

Shifted Complexes

$$
R^{\mathrm{eff}}(\sigma)=\frac{\hat{\tau}(\Delta / \sigma)}{\hat{\tau}(\Delta)}=\frac{\prod_{\text {gellow } P} f_{P}}{\prod_{\text {green } P} f_{P}}
$$

Color-Shifted Complexes

A simplicial complex Δ^{d} is color-shifted [Babson-Novik '06] if:

- $V(\Delta)=V_{1} \cup \cdots \cup V_{d+1}$, where $V_{q}=\left\{v_{q 1}, \ldots, v_{q \ell_{q}}\right\}$
- Each facet contains exactly one vertex of each color
- A vertex may be replaced with a smaller vertex of same color

A 1-dimensional color-shifted complex is just a Ferrers graph.

Color-Shifted Complexes

Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

$$
\begin{aligned}
\hat{\tau}(\Delta) & =\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{\phi \in \Upsilon} \prod_{v_{q j} \in \phi} x_{q j} \\
& =\sum_{\Upsilon \in \mathcal{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{q, j} x_{q j}^{\operatorname{deg}_{\curlyvee}\left(v_{q j}\right)}
\end{aligned}
$$

Proposition [Duval-Kook-Lee-JLM 2021 ${ }^{+}$]
Let Δ^{d} color-shifted, $\sigma=v_{1, k_{1}} v_{2, k_{2}} \ldots v_{d+1, k_{d+1}} \notin \Delta$.
Then:

$$
R^{\mathrm{eff}}(\sigma)=\frac{\hat{\tau}(\Delta+\sigma)}{\tau(\Delta)}=\prod_{q=1}^{d+1} \frac{x_{q, 1}+\cdots+x_{q, k_{q}}}{x_{q, 1}+\cdots+x_{q, k_{q}-1}}
$$

Trees in Color-Shifted Complexes

Theorem [Duval-Kook-Lee-JLM 2021 ${ }^{+}$]

$$
\hat{\tau}(\Delta)=\prod_{q, i} x_{q, i}^{e(q, i)} \prod_{\substack{\rho \in \Delta \\ \operatorname{dim} \rho=d-1}}\left(x_{m(\rho), 1}+\cdots+x_{m(\rho), k(\rho)}\right)
$$

where

$$
\begin{aligned}
e(q, i) & =\#\left\{\sigma \in \Delta_{d} \mid v_{q, i} \in \sigma \text { and } v_{q^{\prime}, 1} \in \sigma \text { for some } q^{\prime} \neq q\right\} \\
m(\rho) & =\text { unique color missing from } \rho \\
k(\rho) & =\max \left\{j \mid \rho \cup v_{m(\rho), j} \in \Delta\right\}
\end{aligned}
$$

- Special case $d=1$ is Ehrenborg-van Willigenburg
- Previously conjectured by Aalipour and Duval [unpublished]
- Result seems inaccessible without effective resistance

References

C. Tomassen, Resistances and currents in infinite electrical networks, J. Combin. Theory Ser. B 49, no. 1 (1990), 87-102
R. Ehrenborg and S. van Willigenburg, Enumerative properties of Ferrers graphs, Discrete Comput. Geom. 32, no. 4 (2004), 481-492
A.M. Duval, C.J. Klivans, and J.L. Martin, Simplicial and cellular trees, Recent trends in combinatorics, 713-752, IMA Vol. Math. Appl., 159, Springer, 2016. arXiv:1506.06819
W. Kook and K.-J. Lee, Simplicial networks and effective resistance, Adv. Appl. Math. 100 (2018), 71-86
A.M. Duval, W. Kook, K.-J. Lee, and J.L. Martin, Simplicial effective resistance and enumeration of spanning trees, coming soon to an arXiv near you...

Thank you!

[^0]: *Edges oriented for reference purposes only.

