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The Menu

1. Spanning Trees and How To Count Them
you probably know most of this part already

2. Resistor Networks
you might have seen this in a course on graph theory

3. Simplicial Trees
recent work of Art Duval, Carly Klivans, and myself

4. Simplicial Networks and Applications
finally, the new stuff



1. Spanning Trees and How To Count Them



Spanning Trees and the Matrix-Tree Theorem

Let G = (V ,E ) be a connected loopless graph, V = [n].

▶ Spanning tree T : maximal acyclic edge set (or subgraph)

▶ Every spanning tree has n − 1 edges

▶ T (G ) = set of spanning trees; τ(G ) = |T (G )|
▶ Lovely formulas: τ(Kn) = nn−2 (“Cayley”), Kp,q, Qn, . . .

Matrix-Tree Theorem: Let L = L(G ) be the Laplacian matrix

L = [ℓij ]
n
i ,j=1 ℓij =

{
deg(i) if i = j ,

−|Ei ,j | if i ̸= j

where Ei ,j = set of edges with endpoints i , j . Then

τ(G ) = det LV \i ,V \i =

∏
nonzero eigenvalues of L

n
.



One Proof of the Matrix-Tree Theorem

Orient each edge e = ij as
−→
ij ; i is the tail and j is the head. The

signed incidence matrix of G is

∂ = [∂ie ]i∈V , e∈E ∂i ,e =


1 if i = head(e),

−1 if i = tail(e),

0 otherwise.

Then
L = ∂∂T , LV \i ,V \i = ∂V \i ,E∂

tr
V \i ,E

and by the Binet-Cauchy identity

det Lii =
∑

A⊆E : |A|=n−1

det(∂V \i ,A) det(∂
t
V \i ,A) =

∑
A

det(∂V \i ,A)
2

and the summand is (±1)2 if A is a tree, 0 otherwise.



Weighted Tree Enumeration
Assign each edge a weight xe . The weighted Laplacian is

L̂ = [ℓ̂ij ]
n
i ,j=1 ℓij =

{∑
e∈Ei

xe if i = j ,

−
∑

e∈Ei,j
xe if i ̸= j .

Weighted Matrix-Tree Theorem∑
T∈T (G)

∏
e∈T

xe = det L̂V \i ,V \i .

Application: Introducing indeterminates {xi : i ∈ V } and setting
xij = xixj can recover formulas like Cayley–Prüfer:

∑
T∈T (G)

n∏
v=1

x
degT (i)
i = x1 · · · xn(x1 + · · ·+ xn)

n−2.



2. Resistor Networks



Resistor Networks
A [resistor] network N = (V ,E , r) is a connected, undirected∗

graph (V ,E ) together with positive resistances r = (re)e∈E .
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State of N:

currents i = (ie)e∈E
voltages v = (ve)e∈E

Ohm’s law iere = ve (∀e ∈ E )

Kirchhoff’s current law
∑

e∈E in(x)

ie −
∑

e∈Eout(x)

ie = 0 (∀x ∈ V )

Kirchhoff’s voltage law
∑
e⃗∈C

ve = 0 (∀ cycle C )

Every voltage comes from a potential (pi )i∈V via v−→
ij
= pj − pi

∗Edges oriented for reference purposes only.



Kirchhoff’s Laws and the Incidence Matrix
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∂ 12 31 41 52 34 45 63 74 67

1 −1 1 1 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0
3 0 −1 0 0 −1 0 1 0 0
4 0 0 −1 0 1 −1 0 1 0
5 0 0 0 −1 0 1 0 0 0
6 0 0 0 0 0 0 −1 0 −1
7 0 0 0 0 0 0 0 −1 0
8 0 0 0 0 0 0 0 0 −1



KCL: i ∈ ker ∂ = nullspace(∂)

▶ Currents are flows

KVL: v ∈ (ker ∂)⊥ = rowspace(∂)

▶ Voltages are cuts



Effective Resistance

Idea: Attach a current generator: an edge e = −→xy with current
ie, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique
minimizer of “total energy”

∑
e ve ie subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the
system is equivalent to a single edge e with resistance

Reff
e = Reff

xy =
py − px

ce
.

(the effective resistance of e).

To calculate Reff
e : assign e unit current, find v and i minimizing

energy. Then Reff
e = ve.



Effective Resistance and Tree Counting

Theorem [Thomassen 1990]
Let N = (V ,E , r) be a network and e = xy ∈ E .

• If r ≡ 1, then

Reff
xy =

τ(G/xy)

τ(G )
= Pr[random spanning tree contains xy ]

• Generalization for arbitrary resistances:

Reff
xy =

τ̂(G/xy)

τ̂(G )
=

∑
T∈T (G/xy)

∏
e∈T

r−1
e∑

T∈T (G)

∏
e∈T

r−1
e

.

Combinatorial application: weighted tree enumeration!



Application: Ferrers Graphs
The Ferrers graph Gλ of a partition λ has vertices corresponding
to the rows and columns of λ, and edges corresponding to squares.

1 2 3 4

1

2

3

u1 u2 u3 u4

v1 v2 v3

Here λ = (4, 4, 2), λ′ = (3, 3, 2, 2), n = 3 = ℓ(λ), m = 4 = ℓ(λ′).

Define a degree-weighted tree enumerator

τ̂(G ) =
∑

T∈T (Gλ)

m∏
i=1

xi
degT (ui )

n∏
j=1

yj
degT (vj )



Application: Ferrers Graphs

1 2 3 4

1

2

3

u1 u2 u3 u4

v1 v2 v3

Theorem (Ehrenborg and van Willigenburg, 2004):

τ̂(Gλ) = x1 · · · xm y1 · · · yn
n∏

i=2

(y1 + · · ·+ yλi
)

n∏
j=2

(x1 + · · ·+ xλ′
j
)

(Proof sketch: Find effective resistance of a corner of λ; induct.)

In the example above,

τ̂(Gλ) = x1x2x3x4 y1y2y3

× (y1 + y2 + y3)(y1 + y2)
2(x1 + x2 + x3 + x4)(x1 + x2)

and in particular τ(Gλ) = 3 · 22 · 4 · 2.



3. Simplicial Trees



Simplicial Complexes

▶ Geometric simplicial complex: family of simplices (points,
line segments, triangles, tetrahedra, . . . ) attached along faces

▶ Combinatorial simplicial complex: ∆ ⊆ 2V such that
σ ∈ ∆, ρ ⊆ σ =⇒ ρ ∈ ∆

3

1

4

2

5 6

⟨125, 135, 245, 345, 246⟩
= {125, 135, 245, 345, 246,

12, 13, 15, 24, 25, 26, 34, 35, 45, 46,
1, 2, 3, 4, 5, 6, ∅}

↗

↖

↓

▶ Facets Φ = Φ(∆) = maximal faces

▶ Assume ∆d pure: |ϕ| = d + 1 for all facets ϕ



Boundary Maps and Homology Groups

Boundary of a k-simplex σ = (v0 < v1 < · · · < vk):

∂k(v0 < v1 < · · · < vk) =
k∑

i=0

(−1)i (v0 · · · v̂i · · · vk)

Extending linearly gives a map

∂k : Ck(∆;R) → Ck−1(∆;R)

where Ck(∆;R) = linear combos of k-simplices (R = R or Z)

▶ Key fact: ∂k ◦ ∂k+1 = 0.

▶ Aha moment: ∂1 = signed incidence matrix of graph ∆(1)



Boundary Maps and Homology Groups

The simplicial chain complex is

0 → Cd(∆;R)
∂d−→ Cd−1(∆;R) → · · ·

→ C1(∆;R)
∂1−→ C0(∆;R)

∂0−→ C1(∆;R) → 0.

▶ ∂k∂k+1 = 0 implies ker ∂k ⊇ im ∂k+1

▶ (reduced simplicial) homology: Hk(∆;R) = ker ∂k/ im ∂k+1

▶ Homology groups are topological invariants of ∆
▶ Over Z: Hk = Zbk ⊕ Tk

▶ bk = Betti number : counts k-dimensional holes
▶ Tk = torsion group: finite, measures nonorientability

▶ Over R: Hk = Rbk



Spanning Trees of Simplicial Complexes

A spanning tree of ∆d is a subcomplex Υ ⊂ ∆ such that:

1. Υ contains all non-maximal faces (spanning)

2. Hd(Υ;R) = 0 (acyclic)

3. Hd−1(Υ;R) = 0 (connected) ⇐⇒ Hd−1(Υ;Z) finite

Examples:

▶ d = 1: standard definition of spanning tree of a graph

▶ ∆ = simplicial sphere: remove a facet

▶ d = 2: regard ∆ as bubble wrap — pop all the bubbles but
don’t tear the bottom sheet



Counting Simplicial Spanning Trees

The right way to count simplicial trees:

τ(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2 (unweighted)

τ̂(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
ϕ∈Υ

xϕ (unweighted)

Kalai 1983: τ(Knd ) = n(
n−2
d ) using simplicial Laplacian ∂∂tr.

(torsion factors arise naturally from Binet-Cauchy expansion)

Subsequent work: Adin 1992 (complete colorful complexes),
Petersson, Duval–Klivans–JLM, Lyons, Catanzaro–Chernyak–Klein
(all c. 2006–2010)



The Simplicial Matrix-Tree Theorem

Let ∆ be a d-dimensional simplicial complex.

Assume Hk(X ;R) = 0 for k = d − 1, d − 2.

Let Γ be a (d − 1)-dimensional spanning tree of ∆.

The reduced simplicial Laplacian LΓ is the square matrix
obtained from ∂d∂

tr
d by deleting the rows and columns

corresponding to facets of Γ.

Then,

τ(∆) =
|Hd−2(∆;Z)|2

|Hd−2(Γ;Z)|2
det LΓ.

(In practice, the torsion junk often goes away.)



4. Simplicial Networks and Applications



Simplicial Networks
Simplicial network: pure d-complex with resistances (rϕ)ϕ∈Φ

d = 1
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2

2 4 2 d = 2

Currents i = (iϕ)ϕ∈Φ Voltages v = (vϕ)ϕ∈Φ

Ohm’s law iϕrϕ = vϕ for all ϕ ∈ Φ
Kirchhoff’s current law i ∈ ker(∂d)
Kirchhoff’s voltage law v ∈ ker(∂d)

⊥

▶ Dirichlet, Rayleigh, Reff have natural simplicial analogues.

▶ Attach a unit current generator σ and minimize energy.

Then Reff
σ = vσ.



Counting Simplicial Trees via Effective Resistance

Theorem [Kook–Lee 2018]
Let (∆, r) be a simplicial network and σ a current generator. Then:

Reff
σ =

τ̂(∆/σ)

τ̂(∆)
=

∑
T∈T (∆/σ)

|H̃d−1(T ,Z)|2
∏
ϕ∈T

r−1
ϕ∑

T∈T (∆)

|H̃d−1(T ,Z)|2
∏
ϕ∈T

r−1
ϕ

.

▶ Generalizes Thomassen’s theorem for Reff in graphs

▶ ∆/σ = quotient space (not simplicial, but close enough)

▶ Application: count trees by induction on facets



Shifted Complexes

A (pure) simplicial complex ∆ on vertices {1, . . . , n} is shifted if
any vertex of a face may be replaced with a smaller vertex.

Equivalently, the facets of ∆ form an order ideal in Gale order or
componentwise order (best explained by a picture)

136 145 235

126 135 234

125 134

124

123

∆ = ⟨135, 234⟩Gale
Facets

Nonfaces

Critical pairs

Shifted complexes are nice: shellable, good h-vectors, arise in
algebra, Gröbner degenerations of arbitrary complexes. . .



Shifted Complexes

Duval–Klivans–JLM ’09: recursion for τ̂(∆) via the shifted
complexes ⟨ϕ ∈ ∆ | 1 ∈ ϕ⟩ and ⟨ϕ ∈ ∆ | 1 /∈ ϕ⟩.

Here τ̂(∆) is the finely weighted degree enumerator

τ̂(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
facets

{v0<···<vd}

x0,v0 · · · xd ,vd

Punchline: Critical pairs P correspond to factors fP of τ̂(∆).

Duval–Kook–Lee–JLM ’21+:

▶ Calculate Reff = τ̂(∆/σ)/τ̂(∆) for a Gale-maximal face σ

▶ Show that

Reff =

∏
P vanishes fP∏
P appears fP

.



Shifted Complexes

236 245

136 145 235

126 135 234

125 134

124

123∆

136 145 235

126 135 234

125 134

124

123∆/σ

Reff(σ) =
τ̂(∆/σ)

τ̂(∆)
=

∏
yellow P

fP∏
green P

fP



Color-Shifted Complexes

A simplicial complex ∆d is color-shifted [Babson–Novik ’06] if:

▶ V (∆) = V1 ∪ · · · ∪ Vd+1, where Vq = {vq1, . . . , vqℓq}
▶ Each facet contains exactly one vertex of each color

▶ A vertex may be replaced with a smaller vertex of same color

A 1-dimensional color-shifted complex is just a Ferrers graph.

1 2 3 4 5 6

1

2

3

4

5

1 2 3 4 5 6

1 2 3 4 5



Color-Shifted Complexes

v11

v21 v31

v12

v22v32 v11

v21 v31

v12

v22v32 v11

v21 v31

v12

v22v32



Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

τ̂(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
ϕ∈Υ

∏
vqj∈ϕ

xqj

=
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
q,j

x
degΥ(vqj )
qj

Proposition [Duval–Kook–Lee–JLM 2021+]
Let ∆d color-shifted, σ = v1,k1v2,k2 . . . vd+1,kd+1

/∈ ∆.
Then:

Reff(σ) =
τ̂(∆ + σ)

τ(∆)
=

d+1∏
q=1

xq,1 + · · ·+ xq,kq
xq,1 + · · ·+ xq,kq−1

.



Trees in Color-Shifted Complexes

Theorem [Duval–Kook–Lee–JLM 2021+]

τ̂(∆) =
∏
q,i

x
e(q,i)
q,i

∏
ρ∈∆

dim ρ= d−1

(xm(ρ),1 + · · ·+ xm(ρ),k(ρ))

where

e(q, i) = #{σ ∈ ∆d | vq,i ∈ σ and vq′,1 ∈ σ for some q′ ̸= q}
m(ρ) = unique color missing from ρ

k(ρ) = max{j | ρ ∪ vm(ρ),j ∈ ∆}

▶ Special case d = 1 is Ehrenborg–van Willigenburg

▶ Previously conjectured by Aalipour and Duval [unpublished]

▶ Result seems inaccessible without effective resistance
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Thank you!


