Simplicial Effective Resistance and Tree Enumeration

Art Duval (University of Texas, El Paso) Woong Kook (Seoul National University) Kang-Ju Lee (Seoul National University) *Jeremy L. Martin (University of Kansas)

University of Delaware Discrete Mathematics and Algebra Seminar December 9, 2021

The Menu

1. Spanning Trees and How To Count Them you probably know most of this part already

2. Resistor Networks

you might have seen this in a course on graph theory

3. Simplicial Trees

recent work of Art Duval, Carly Klivans, and myself

4. Simplicial Networks and Applications

finally, the new stuff

1. Spanning Trees and How To Count Them

Spanning Trees and the Matrix-Tree Theorem

Let G = (V, E) be a connected loopless graph, V = [n].

- Spanning tree T: maximal acyclic edge set (or subgraph)
- ► Every spanning tree has n − 1 edges
- $\mathcal{T}(G) = \text{set of spanning trees}; \ \tau(G) = |\mathcal{T}(G)|$
- ► Lovely formulas: $\tau(K_n) = n^{n-2}$ ("Cayley"), $K_{p,q}$, Q_n , ...

Matrix-Tree Theorem: Let L = L(G) be the Laplacian matrix

$$L = [\ell_{ij}]_{i,j=1}^n \qquad \ell_{ij} = \begin{cases} \deg(i) & \text{if } i = j, \\ -|E_{i,j}| & \text{if } i \neq j \end{cases}$$

where $E_{i,j}$ = set of edges with endpoints i, j. Then

$$\tau(G) = \det L_{V \setminus i, V \setminus i} = \frac{\prod \text{nonzero eigenvalues of } L}{n}$$

One Proof of the Matrix-Tree Theorem

Orient each edge e = ij as \overrightarrow{ij} ; *i* is the *tail* and *j* is the *head*. The **signed incidence matrix** of *G* is

$$\partial = [\partial_{ie}]_{i \in V, e \in E} \qquad \partial_{i,e} = \begin{cases} 1 & \text{if } i = \text{head}(e), \\ -1 & \text{if } i = \text{tail}(e), \\ 0 & \text{otherwise.} \end{cases}$$

Then

$$L = \partial \partial^{T}, \qquad L_{V \setminus i, V \setminus i} = \partial_{V \setminus i, E} \partial^{tr}_{V \setminus i, E}$$

and by the Binet-Cauchy identity

$$\det L^{ii} = \sum_{A \subseteq E: \ |A| = n-1} \det(\partial_{V \setminus i, A}) \det(\partial^t_{V \setminus i, A}) = \sum_{A} \det(\partial_{V \setminus i, A})^2$$

and the summand is $(\pm 1)^2$ if A is a tree, 0 otherwise.

Weighted Tree Enumeration

Assign each edge a weight x_e . The weighted Laplacian is

$$\hat{L} = [\hat{\ell}_{ij}]_{i,j=1}^n \qquad \ell_{ij} = \begin{cases} \sum_{e \in E_i} x_e & \text{if } i = j, \\ -\sum_{e \in E_{i,j}} x_e & \text{if } i \neq j. \end{cases}$$

Weighted Matrix-Tree Theorem

$$\sum_{T\in\mathcal{T}(G)}\prod_{e\in T}x_e=\det\hat{L}_{V\setminus i,V\setminus i}.$$

Application: Introducing indeterminates $\{x_i : i \in V\}$ and setting $x_{ij} = x_i x_j$ can recover formulas like Cayley–Prüfer:

$$\sum_{T\in\mathcal{T}(G)}\prod_{\nu=1}^n x_i^{\deg_T(i)} = x_1\cdots x_n(x_1+\cdots+x_n)^{n-2}$$

2. Resistor Networks

Resistor Networks

A [resistor] network $N = (V, E, \mathbf{r})$ is a connected, undirected* graph (V, E) together with positive resistances $\mathbf{r} = (r_e)_{e \in E}$.

State of *N*: **currents** $\mathbf{i} = (i_e)_{e \in E}$ **voltages** $\mathbf{v} = (v_e)_{e \in E}$

Ohm's law Kirchhoff's current law Kirchhoff's voltage law

$$\begin{split} i_e r_e &= v_e \quad (\forall e \in E) \\ \sum_{e \in E^{\text{in}}(x)} i_e - \sum_{e \in E^{\text{out}}(x)} i_e = 0 \quad (\forall x \in V) \\ \sum_{e \in C} v_e &= 0 \quad (\forall \text{ cycle } C) \end{split}$$

Every voltage comes from a **potential** $(p_i)_{i \in V}$ via $v_{\overrightarrow{ii}} = p_j - p_i$

*Edges oriented for reference purposes only.

Kirchhoff's Laws and the Incidence Matrix

∂	12	31	41	52	34	45	63	74	67
1	(-1)	1	1	0	0	0	0	0	0)
2	1	0	0	1	0	0	0	0	0
3	0	$^{-1}$	0	0	$^{-1}$	0	1	0	0
4	0	0	$^{-1}$	0	1	$^{-1}$	0	1	0
5	0	0	0	$^{-1}$	0	1	0	0	0
6	0	0	0	0	0	0	$^{-1}$	0	-1
7	0	0	0	0	0	0	0	$^{-1}$	0
8	\ 0	0	0	0	0	0	0	0	-1/

KCL: $\mathbf{i} \in \ker \partial = \operatorname{nullspace}(\partial)$

Currents are flows

KVL: $\mathbf{v} \in (\ker \partial)^{\perp} = \operatorname{rowspace}(\partial)$

Voltages are cuts

Effective Resistance

Idea: Attach a **current generator**: an edge $\mathbf{e} = \overrightarrow{xy}$ with current $i_{\mathbf{e}}$, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique minimizer of "total energy" $\sum_{e} v_e i_e$ subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the system is equivalent to a single edge **e** with resistance

$$R_{\mathbf{e}}^{\mathrm{eff}} = R_{xy}^{\mathrm{eff}} = rac{p_y - p_x}{c_{\mathbf{e}}}$$

(the **effective resistance** of **e**).

To calculate R_e^{eff} : assign **e** unit current, find **v** and **i** minimizing energy. Then $R_e^{\text{eff}} = \mathbf{v}_e$.

Effective Resistance and Tree Counting

Theorem [Thomassen 1990] Let $N = (V, E, \mathbf{r})$ be a network and $e = xy \in E$.

• If $\mathbf{r} \equiv 1$, then

$$R_{xy}^{\text{eff}} = \frac{\tau(G/xy)}{\tau(G)} = \Pr[\text{random spanning tree contains } xy]$$

• Generalization for arbitrary resistances:

$$R_{xy}^{\text{eff}} = \frac{\hat{\tau}(G/xy)}{\hat{\tau}(G)} = \frac{\sum_{T \in \mathcal{T}(G/xy)} \prod_{e \in T} r_e^{-1}}{\sum_{T \in \mathcal{T}(G)} \prod_{e \in T} r_e^{-1}}.$$

Combinatorial application: weighted tree enumeration!

Application: Ferrers Graphs

The **Ferrers graph** G_{λ} of a partition λ has vertices corresponding to the rows and columns of λ , and edges corresponding to squares.

Here $\lambda = (4, 4, 2)$, $\lambda' = (3, 3, 2, 2)$, $n = 3 = \ell(\lambda)$, $m = 4 = \ell(\lambda')$.

Define a degree-weighted tree enumerator

$$\hat{\tau}(G) = \sum_{T \in \mathcal{T}(G_{\lambda})} \prod_{i=1}^{m} x_i^{\deg_{T}(u_i)} \prod_{j=1}^{n} y_j^{\deg_{T}(v_j)}$$

Application: Ferrers Graphs

Theorem (Ehrenborg and van Willigenburg, 2004):

$$\hat{\tau}(G_{\lambda}) = x_1 \cdots x_m y_1 \cdots y_n \prod_{i=2}^n (y_1 + \cdots + y_{\lambda_i}) \prod_{j=2}^n (x_1 + \cdots + x_{\lambda'_j})$$

(Proof sketch: Find effective resistance of a corner of λ ; induct.)

In the example above,

 $\begin{aligned} \hat{\tau}(G_{\lambda}) &= x_1 x_2 x_3 x_4 y_1 y_2 y_3 \\ &\times (y_1 + y_2 + y_3)(y_1 + y_2)^2 (x_1 + x_2 + x_3 + x_4)(x_1 + x_2) \\ \text{and in particular } \tau(G_{\lambda}) &= 3 \cdot 2^2 \cdot 4 \cdot 2. \end{aligned}$

3. Simplicial Trees

Simplicial Complexes

- Geometric simplicial complex: family of simplices (points, line segments, triangles, tetrahedra, ...) attached along faces
- Combinatorial simplicial complex: $\Delta \subseteq 2^V$ such that $\sigma \in \Delta, \ \rho \subseteq \sigma \implies \rho \in \Delta$

Facets Φ = Φ(Δ) = maximal faces
 Assume Δ^d pure: |φ| = d + 1 for all facets φ

Boundary Maps and Homology Groups

Boundary of a *k*-simplex $\sigma = (v_0 < v_1 < \cdots < v_k)$:

$$\partial_k (v_0 < v_1 < \cdots < v_k) = \sum_{i=0}^k (-1)^i (v_0 \cdots \widehat{v_i} \cdots v_k)$$

Extending linearly gives a map

$$\partial_k: C_k(\Delta; R) \to C_{k-1}(\Delta; R)$$

where $C_k(\Delta; R) =$ linear combos of k-simplices ($R = \mathbb{R}$ or \mathbb{Z})

Boundary Maps and Homology Groups

The simplicial chain complex is

$$0 o C_d(\Delta; R) \xrightarrow{\partial_d} C_{d-1}(\Delta; R) o \cdots$$

 $o C_1(\Delta; R) \xrightarrow{\partial_1} C_0(\Delta; R) \xrightarrow{\partial_0} C_1(\Delta; R) o 0.$

- (reduced simplicial) homology: $H_k(\Delta; R) = \ker \partial_k / \operatorname{im} \partial_{k+1}$
- Homology groups are topological invariants of Δ

• Over
$$\mathbb{Z}$$
: $H_k = \mathbb{Z}^{b_k} \oplus T_k$

- $b_k = Betti number$: counts k-dimensional holes
- $T_k = torsion group$: finite, measures nonorientability

• Over
$$\mathbb{R}$$
: $H_k = \mathbb{R}^{b_k}$

Spanning Trees of Simplicial Complexes

A spanning tree of Δ^d is a subcomplex $\Upsilon \subset \Delta$ such that:

- 1. Υ contains all non-maximal faces (spanning)
- 2. $H_d(\Upsilon; \mathbb{R}) = 0$ (acyclic)
- 3. $H_{d-1}(\Upsilon; \mathbb{R}) = 0$ (connected) $\iff H_{d-1}(\Upsilon; \mathbb{Z})$ finite

Examples:

- d = 1: standard definition of spanning tree of a graph
- $\Delta =$ simplicial sphere: remove a facet
- If d = 2: regard △ as bubble wrap pop all the bubbles but don't tear the bottom sheet

Counting Simplicial Spanning Trees

The right way to count simplicial trees:

$$\tau(\Delta) = \sum_{\Upsilon \in \mathcal{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \qquad (\text{unweighted})$$
$$\hat{\tau}(\Delta) = \sum_{\Upsilon \in \mathcal{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{\phi \in \Upsilon} x_{\phi} \qquad (\text{unweighted})$$

Kalai 1983: $\tau(K_{n_d}) = n^{\binom{n-2}{d}}$ using simplicial Laplacian $\partial \partial^{\text{tr}}$. (torsion factors arise naturally from Binet-Cauchy expansion)

Subsequent work: Adin 1992 (complete colorful complexes), Petersson, Duval–Klivans–JLM, Lyons, Catanzaro–Chernyak–Klein (all c. 2006–2010)

The Simplicial Matrix-Tree Theorem

Let Δ be a *d*-dimensional simplicial complex.

Assume
$$H_k(X; \mathbb{R}) = 0$$
 for $k = d - 1, d - 2$.

Let Γ be a (d-1)-dimensional spanning tree of Δ .

The **reduced simplicial Laplacian** L_{Γ} is the square matrix obtained from $\partial_d \partial_d^{tr}$ by deleting the rows and columns corresponding to facets of Γ .

Then,

$$\tau(\Delta) = \frac{|H_{d-2}(\Delta;\mathbb{Z})|^2}{|H_{d-2}(\Gamma;\mathbb{Z})|^2} \det L_{\Gamma}.$$

(In practice, the torsion junk often goes away.)

4. Simplicial Networks and Applications

Simplicial Networks

Simplicial network: pure *d*-complex with resistances $(r_{\phi})_{\phi \in \Phi}$

Currents $\mathbf{i} = (i_{\phi})_{\phi \in \Phi}$ Voltages $\mathbf{v} = (v_{\phi})_{\phi \in \Phi}$

Ohm's law i Kirchhoff's current law i Kirchhoff's voltage law

$$egin{aligned} & i_{\phi}r_{\phi}=v_{\phi} ext{ for all } \phi\in\Phi\ & \mathbf{i}\in \ker(\partial_d)\ & \mathbf{v}\in \ker(\partial_d)^{\perp} \end{aligned}$$

Dirichlet, Rayleigh, R^{eff} have natural simplicial analogues.

• Attach a unit current generator σ and minimize energy. Then $R_{\sigma}^{\text{eff}} = v_{\sigma}$.

Counting Simplicial Trees via Effective Resistance

Theorem [Kook–Lee 2018] Let (Δ, \mathbf{r}) be a simplicial network and σ a current generator. Then:

$$R_{\sigma}^{\mathsf{eff}} = \frac{\hat{\tau}(\Delta/\sigma)}{\hat{\tau}(\Delta)} = \frac{\sum_{T \in \mathcal{T}(\Delta/\sigma)} |\tilde{H}_{d-1}(T,\mathbb{Z})|^2 \prod_{\phi \in T} r_{\phi}^{-1}}{\sum_{T \in \mathcal{T}(\Delta)} |\tilde{H}_{d-1}(T,\mathbb{Z})|^2 \prod_{\phi \in T} r_{\phi}^{-1}}.$$

• Generalizes Thomassen's theorem for R^{eff} in graphs

- Δ/σ = quotient space (not simplicial, but close enough)
- Application: count trees by induction on facets

Shifted Complexes

A (pure) simplicial complex Δ on vertices $\{1, \ldots, n\}$ is **shifted** if any vertex of a face may be replaced with a smaller vertex.

Equivalently, the facets of Δ form an order ideal in *Gale order* or *componentwise order* (best explained by a picture)

$$\begin{split} \Delta &= \langle 135, 234 \rangle_{\mathsf{Gale}} \\ \textbf{Facets} \\ \mathsf{Nonfaces} \\ \textbf{Critical pairs} \end{split}$$

Shifted complexes are **nice:** shellable, good h-vectors, arise in algebra, Gröbner degenerations of arbitrary complexes. . .

Shifted Complexes

Duval–Klivans–JLM '09: recursion for $\hat{\tau}(\Delta)$ via the shifted complexes $\langle \phi \in \Delta \mid 1 \in \phi \rangle$ and $\langle \phi \in \Delta \mid 1 \notin \phi \rangle$.

Here $\hat{\tau}(\Delta)$ is the finely weighted degree enumerator

$$\hat{\tau}(\Delta) = \sum_{\Upsilon \in \mathcal{T}(\Delta)} |H_{d-1}(\Upsilon; \mathbb{Z})|^2 \prod_{\substack{\text{facets} \\ \{v_0 < \cdots < v_d\}}} x_{0, v_0} \cdots x_{d, v_d}$$

Punchline: Critical pairs *P* correspond to factors f_P of $\hat{\tau}(\Delta)$.

Duval–Kook–Lee–JLM '21⁺:

• Calculate $R^{\text{eff}} = \hat{\tau}(\Delta/\sigma)/\hat{\tau}(\Delta)$ for a Gale-maximal face σ

Show that

$$R^{\rm eff} = \frac{\prod_{P \text{ vanishes }} f_P}{\prod_{P \text{ appears }} f_P}.$$

Shifted Complexes

$$R^{\text{eff}}(\sigma) = \frac{\hat{\tau}(\Delta/\sigma)}{\hat{\tau}(\Delta)} = \frac{\prod_{\text{yellow } P} f_P}{\prod_{\text{green } P} f_P}$$

Color-Shifted Complexes

A simplicial complex Δ^d is **color-shifted** [Babson–Novik '06] if:

$$\blacktriangleright \ V(\Delta) = V_1 \cup \cdots \cup V_{d+1}, \text{ where } V_q = \{v_{q1}, \ldots, v_{q\ell_q}\}$$

- Each facet contains exactly one vertex of each color
- A vertex may be replaced with a smaller vertex of same color
- A 1-dimensional color-shifted complex is just a Ferrers graph.

Color-Shifted Complexes

Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

$$egin{aligned} \hat{ au}(\Delta) &= \sum_{\Upsilon \in \mathcal{T}(\Delta)} |\mathcal{H}_{d-1}(\Upsilon;\mathbb{Z})|^2 \prod_{\phi \in \Upsilon} \prod_{\mathsf{v}_{qj} \in \phi} x_{qj} \ &= \sum_{\Upsilon \in \mathcal{T}(\Delta)} |\mathcal{H}_{d-1}(\Upsilon;\mathbb{Z})|^2 \prod_{q,j} x_{qj}^{\deg_{\Upsilon}(\mathsf{v}_{qj})} \end{aligned}$$

Proposition [Duval–Kook–Lee–JLM 2021⁺] Let Δ^d color-shifted, $\sigma = v_{1,k_1}v_{2,k_2} \dots v_{d+1,k_{d+1}} \notin \Delta$. Then:

$$R^{\text{eff}}(\sigma) = \frac{\hat{\tau}(\Delta + \sigma)}{\tau(\Delta)} = \prod_{q=1}^{d+1} \frac{x_{q,1} + \dots + x_{q,k_q}}{x_{q,1} + \dots + x_{q,k_q-1}}$$

.

Trees in Color-Shifted Complexes

Theorem [Duval–Kook–Lee–JLM 2021⁺]

$$\hat{\tau}(\Delta) = \prod_{q,i} x_{q,i}^{e(q,i)} \prod_{\substack{\rho \in \Delta \\ \dim \rho = d-1}} (x_{m(\rho),1} + \dots + x_{m(\rho),k(\rho)})$$

where

$$e(q, i) = \#\{\sigma \in \Delta_d \mid v_{q,i} \in \sigma \text{ and } v_{q',1} \in \sigma \text{ for some } q' \neq q\}$$
$$m(\rho) = \text{unique color missing from } \rho$$
$$k(\rho) = \max\{j \mid \rho \cup v_{m(\rho),j} \in \Delta\}$$

- Special case d = 1 is Ehrenborg–van Willigenburg
- Previously conjectured by Aalipour and Duval [unpublished]
- Result seems inaccessible without effective resistance

References

C. Tomassen, *Resistances and currents in infinite electrical networks*, J. Combin. Theory Ser. B 49, no. 1 (1990), 87–102

R. Ehrenborg and S. van Willigenburg, *Enumerative properties of Ferrers graphs*, Discrete Comput. Geom. 32, no. 4 (2004), 481–492

A.M. Duval, C.J. Klivans, and J.L. Martin, *Simplicial and cellular trees*, Recent trends in combinatorics, 713–752, IMA Vol. Math. Appl., 159, Springer, 2016. arXiv:1506.06819

W. Kook and K.-J. Lee, *Simplicial networks and effective resistance*, Adv. Appl. Math. 100 (2018), 71–86

A.M. Duval, W. Kook, K.-J. Lee, and J.L. Martin, *Simplicial effective resistance and enumeration of spanning trees*, coming soon to an arXiv near you...

Thank you!