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Matroids: Definition

A matroid M on ground set E = [n] is a combinatorial structure
that can be defined in many equivalent ways.

A basis system is a family B of subsets of E (called bases) such
that:

I Purity: there is some r ∈ N such that |B| = r for every B ∈ B
I r is called the rank of M.

I Exchange: For all B,B ′ ∈ B:
I ∀e ∈ B \ B ′ : ∃e′ ∈ B ′ \ B : B \ e ∪ e′ ∈ B
I ∀e ∈ B \ B ′ : ∃e′ ∈ B ′ \ B : B ′ \ e′ ∪ e ∈ B



Matroids: Standard Examples

1. Linear matroids.

I E = set of vectors that span some vector space V

I B = subsets of E that are bases for V

I rank = dimV

2. Graphic matroids.

I E = edge set of a connected graph G

I B = spanning trees (maximal acyclic subsets of E )

I rank = |V (G )| − 1



Matroid Polytopes
Every matroid M gives rise to a matroid polytope.

basis B ⊆ [n]  characteristic vector χB ∈ Rn

matroid with basis system B  PM = conv{χB | B ∈ B}

B = {12, 13, 14, 24, 34} 0011

0101

1010

1100

1001

Every edge of PM corresponds to a basis exchange in B,
hence is parallel to a difference of two standard basis vectors.



Matroid Rank Functions

The rank function of a matroid M with basis system B on E is

ρ : 2E → N, ρ(I ) = max
B∈B
|I ∩ B|.

I Linear matroids: ρ(I ) = dim span I

I Graphic matroids: ρ(I ) = |V (G )| −# components of G [I ]

General properties of rank functions:

I bounded by cardinality : ρ(I ) ≤ |I |
I monotone: I ⊆ J =⇒ ρ(I ) ≤ ρ(J)

I submodular : ρ(I ) + ρ(J) ≥ ρ(I ∪ J) + ρ(I ∩ J).

Fact: Every function with these properties gives rise to a matroid
basis system.



Matroid Rank Functions

Definition/Theorem: A polytope in Rn is (i) the convex hull of
a finite point set. Equivalently, it is (ii) the bounded solution space
of a finite system of linear equalities.

Type (i) description of PM : uses its basis system.

Type (ii) description of PM : uses its rank function:

PM =

x = (x1, . . . , xn) ∈ Rn

∣∣∣∣∣
xi ≥ 0 ∀i ∈ [n],
xI ≤ ρ(I ) ∀I ⊆ [n],
xE = ρ(E )


where xI =

∑
i∈I xi .



Polymatroids

A polymatroid rank function is a function ρ : 2E → R≥0 that is

I monotone: I ⊆ J =⇒ ρ(I ) ≤ ρ(J)

I submodular : ρ(I ) + ρ(J) ≥ ρ(I ∪ J) + ρ(I ∩ J).

A polymatroid rank function gives rise to a polytope called a
generalized permutahedron (“genperm”):

Pρ =

{
x = (x1, . . . , xn) ∈ Rn

∣∣∣ xI ≤ ρ(I ) ∀I ⊆ E ,
xE = ρ(E )

}
where xI =

∑
i∈I xi .



Matroids, Polymatroids, and Polytopes

I A polytope P is a genperm if and only if every edge is parallel
to a difference of two standard basis vectors.

I Equivalently, the normal fan of P coarsens the braid fan.

I That is, the face of P maximizing some linear functional
λ(x) = c · x depends only on the relative order of c1, . . . , cn,
not their specific values.

I Every matroid polytope is a genperm whose vertices are
0,1-vectors (not too hard).

I In fact, the converse is true
(Gel’fand–Goresky–Macpherson–Serganova 1987; harder!)



Extended Generalized Permutahedra

I An extended generalized permutahedron (EGP) is a
polyhedron P, not necessarily bounded, whose 1-dimensional
faces (edges and rays) are all parallel to a difference of two
standard basis vectors.

I Equivalently, the normal fan of P coarsens some subfan of the
braid fan.

I That is, the face of P maximizing some bounded linear
functional λ(x) = c · x depends only on the relative order of
c1, . . . , cn, not their specific values.



EGPs and Submodular Systems

A submodular system is a triple M = (E ,D, ρ) such that:

I E = [n] is a finite set;

I D is a distributive sublattice of 2E ;
I I.e., a family of subsets of E , containing ∅ and E , and closed

under intersection and union
I We typically assume D is simple, i.e., contains an element of

every possible cardinality

I ρ : D → R≥0 is a monotone submodular function.

I Every submodular system M gives rise to an EGP PM .

I Polymatroids are just submodular systems with D = 2E .

I The recession cone (the set of unbounded directions) is
determined by D [details].



A Hierarchy
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A More Complete Hierarchy
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Unbounded Matroids
This polyhedron is called (by us) the stalactite.

0011

0101

0110

1010

1100

1001

The corresponding submodular system is an unbounded matroid.

I Bases: {12, 13, 23, 14} (not a matroid basis system!)

I D = 〈12, 13, 23, 14〉 = 2E \ {4, 24, 34, 234}
I ρ(A) = min(A, |2|) for A ⊆ [4]



Unbounded Matroids

Definition
An unbounded matroid (or D-matroid) is a submodular system
(E ,D, ρ) satisfying the following conditions, for all I , J ∈ D:

1. (Integrality) ρ(I ) ∈ Z;

2. (Unit-increase) If J = I ∪ {e}, then ρ(J)− ρ(I ) ≤ 1.
Equivalently, if I ⊆ J, then ρ(J)− ρ(I ) ≤ |J| − |I |.



Completing the Hierarchy

Theorem (BMRS 2021+)

1. A D-matroid is a matroid if and only if D = 2E .

2. A submodular system is a matroid if and only if it is both a
polymatroid and a D-matroid.

3. The bijection between submodular systems and EGPs restricts
to a bijection between D-matroids and 0,1-EGPs.



Extensions of D-Matroids

Definition
Let M = ([n],D, ρ) be a submodular system. An extension of M
is a D-matroid N = (E ,D′, σ) such that D ⊆ D′ and σ|D = ρ.

In this case PN ⊆ PM and V (PN) ⊇ V (PM). We say that PN is a
HIVE polyhedron1 of PM .

0011

0101

1010

1100

1001

1“hull-internal, vertex-external”



Extensions of D-Matroids

I When do extensions exist?

I Does every 0/1-EGP have a HIVE polytope? Equivalently, can
every D-matroid be extended to a matroid?

I If so, is there a “canonical” matroid extension of any given
D-matroid?



Generous Extensions

Let (E ,D, ρ) be a D-matroid. Let a ∈ E such that {a} /∈ D. Let
D[a] be the distributive sublattice of 2E generated by D and {a}.

For J ⊆ E , define sup
D

(J) =
⋂
K∈D
K⊇J

K .

The generous extension of ρ to D[a] is the function
ρa : D[a]→ N defined by

ρa(J) =


ρ(J) if J ∈ D,
ρ(J − a) if J 6∈ D and ρ(J − a) = ρ(supD(J)),

ρ(J − a) + 1 if J 6∈ D and ρ(J − a) < ρ(supD(J)).



Theorem (BMRS 2021+)

Let M = (E ,D, ρ) be a D-matroid.

1. The generous extension ρa is a D-matroid rank function
(monotone, unit-increase, and submodular).

2. ρa dominates all other extensions. That is, if N = (E ,D[a], σ)
is any extension of M, then ρa(J) ≥ σ(J) for all J.

3. The iterated generous matroid extension ρ̂ of ρ to 2E is
independent of the order of iteration, and dominates every
other matroid extension.

4. The foregoing is true if 2E is replaced with any lattice D′
between D and 2E .

Corollary

Every 0,1-EGP P contains a unique maximal matroid polytope P̂.
Moreover, P̂ = Q + R(P), where R(P) is the recession cone.



More Questions

I Which pure set systems arise as unbounded matroids?

I Is the maximal matroid subpolytope P̂ equal to the convex
hull of the 0/1-vectors in P?

I What do the normal fans of D-matroid polyhedra look like?
(The supports of normal fans of submodular systems are
essentially preposets.)

I What about non-generous extensions?

I What can you say about the poset of all HIVE
polyhedra/polytopes of P ordered by inclusion?

I Do other matroid axiomatizations (bases, circuits, closure
operator, greedy algorithm, . . . ) have reasonable D-matroid
analogues? (Some do for general submodular systems.)

I Are D-matroid complexes shellable? (José thinks yes; he and
Ignacio are working on it.)

I Applications in combinatorial optimization?



Thanks!



The Details

Proposition

Let M = ([n],D, ρ) be a submodular system. A linear functional
λ(x) = c · x is bounded on PM if and only if D contains every
J ⊆ [n] such that cj ≥ ci for all j ∈ J and i /∈ J.

Example

Let λ(x) = 4x1 − x2 − 2x3 + 3x4 − x5, so that

c1 > c4 > c2 = c5 > c3.

Then λ is bounded on PM if and only if D contains each of

∅, 1, 14, 142, 145, 1425, 14253.


