Unbounded Matroids

Jonah Berggren (University of Kentucky)
Jeremy L. Martin (University of Kansas)
Ignacio Rojas (Pontificia Universidad Católica de Chile) José A. Samper (Pontificia Universidad Católica de Chile)

KU Combinatorics Seminar
September 17, 2021

Matroids: Definition

A matroid M on ground set $E=[n]$ is a combinatorial structure that can be defined in many equivalent ways.

A basis system is a family \mathcal{B} of subsets of E (called bases) such that:

- Purity: there is some $r \in \mathbb{N}$ such that $|B|=r$ for every $B \in \mathcal{B}$
- r is called the rank of M.
- Exchange: For all $B, B^{\prime} \in \mathcal{B}$:
- $\forall e \in B \backslash B^{\prime}: \exists e^{\prime} \in B^{\prime} \backslash B: \quad B \backslash e \cup e^{\prime} \in \mathcal{B}$
- $\forall e \in B \backslash B^{\prime}: \exists e^{\prime} \in B^{\prime} \backslash B: \quad B^{\prime} \backslash e^{\prime} \cup e \in \mathcal{B}$

Matroids: Standard Examples

1. Linear matroids.

- $E=$ set of vectors that span some vector space V
- $\mathcal{B}=$ subsets of E that are bases for V
- rank $=\operatorname{dim} V$

2. Graphic matroids.

- $E=$ edge set of a connected graph G
- $\mathcal{B}=$ spanning trees (maximal acyclic subsets of E)
- rank $=|V(G)|-1$

Matroid Polytopes

Every matroid M gives rise to a matroid polytope.

$$
\text { basis } B \subseteq[n] \rightsquigarrow \quad \text { characteristic vector } \chi_{B} \in \mathbb{R}^{n}
$$

matroid with basis system $\mathcal{B} \rightsquigarrow P_{M}=\operatorname{conv}\left\{\chi_{B} \mid B \in \mathcal{B}\right\}$

$$
\mathcal{B}=\{12,13,14,24,34\}
$$

Every edge of P_{M} corresponds to a basis exchange in \mathcal{B}, hence is parallel to a difference of two standard basis vectors.

Matroid Rank Functions

The rank function of a matroid M with basis system \mathcal{B} on E is

$$
\rho: 2^{E} \rightarrow \mathbb{N}, \quad \rho(I)=\max _{B \in \mathcal{B}}|I \cap B|
$$

- Linear matroids: $\rho(I)=\operatorname{dim}$ span I
- Graphic matroids: $\rho(I)=|V(G)|-$ \# components of $G[I]$

General properties of rank functions:

- bounded by cardinality: $\rho(I) \leq|I|$
- monotone: $I \subseteq J \Longrightarrow \rho(I) \leq \rho(J)$
- submodular: $\rho(I)+\rho(J) \geq \rho(I \cup J)+\rho(I \cap J)$.

Fact: Every function with these properties gives rise to a matroid basis system.

Matroid Rank Functions

Definition/Theorem: A polytope in \mathbb{R}^{n} is (i) the convex hull of a finite point set. Equivalently, it is (ii) the bounded solution space of a finite system of linear equalities.

Type (i) description of P_{M} : uses its basis system.
Type (ii) description of P_{M} : uses its rank function:

$$
P_{M}=\left\{\begin{array}{l|ll}
\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} & \begin{array}{l}
x_{i} \geq 0 \\
x_{I} \leq \rho(I)
\end{array} & \forall I \subseteq[n] \\
x_{E}=\rho(E)
\end{array}\right\}
$$

where $x_{I}=\sum_{i \in I} x_{i}$.

Polymatroids

A polymatroid rank function is a function $\rho: 2^{E} \rightarrow \mathbb{R}_{\geq 0}$ that is

- monotone: $I \subseteq J \Longrightarrow \rho(I) \leq \rho(J)$
- submodular: $\rho(I)+\rho(J) \geq \rho(I \cup J)+\rho(I \cap J)$.

A polymatroid rank function gives rise to a polytope called a generalized permutahedron ("genperm"):

$$
P_{\rho}=\left\{\begin{array}{l|l}
\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \left\lvert\, \begin{array}{l}
x_{I} \leq \rho(I) \forall I \subseteq E \\
x_{E}=\rho(E)
\end{array}\right.
\end{array}\right\}
$$

where $x_{I}=\sum_{i \in I} x_{i}$.

Matroids, Polymatroids, and Polytopes

- A polytope P is a genperm if and only if every edge is parallel to a difference of two standard basis vectors.
- Equivalently, the normal fan of P coarsens the braid fan.
- That is, the face of P maximizing some linear functional $\lambda(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$ depends only on the relative order of c_{1}, \ldots, c_{n}, not their specific values.
- Every matroid polytope is a genperm whose vertices are 0,1-vectors (not too hard).
- In fact, the converse is true (Gel'fand-Goresky-Macpherson-Serganova 1987; harder!)

Extended Generalized Permutahedra

- An extended generalized permutahedron (EGP) is a polyhedron P, not necessarily bounded, whose 1-dimensional faces (edges and rays) are all parallel to a difference of two standard basis vectors.
- Equivalently, the normal fan of P coarsens some subfan of the braid fan.
- That is, the face of P maximizing some bounded linear functional $\lambda(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$ depends only on the relative order of c_{1}, \ldots, c_{n}, not their specific values.

EGPs and Submodular Systems

A submodular system is a triple $M=(E, \mathcal{D}, \rho)$ such that:

- $E=[n]$ is a finite set;
- \mathcal{D} is a distributive sublattice of 2^{E};
- I.e., a family of subsets of E, containing \emptyset and E, and closed under intersection and union
- We typically assume \mathcal{D} is simple, i.e., contains an element of every possible cardinality
- $\rho: \mathcal{D} \rightarrow \mathbb{R}_{\geq 0}$ is a monotone submodular function.
- Every submodular system M gives rise to an EGP P_{M}.
- Polymatroids are just submodular systems with $\mathcal{D}=2^{E}$.
- The recession cone (the set of unbounded directions) is determined by \mathcal{D} [details].

A Hierarchy

A More Complete Hierarchy

Unbounded

Bounded

Unbounded Matroids

This polyhedron is called (by us) the stalactite.

The corresponding submodular system is an unbounded matroid.

- Bases: $\{12,13,23,14\}$ (not a matroid basis system!)
- $\mathcal{D}=\langle 12,13,23,14\rangle=2^{E} \backslash\{4,24,34,234\}$
- $\rho(A)=\min (A,|2|)$ for $A \subseteq[4]$

Unbounded Matroids

Definition

An unbounded matroid (or D-matroid) is a submodular system (E, \mathcal{D}, ρ) satisfying the following conditions, for all $I, J \in \mathcal{D}$:

1. (Integrality) $\rho(I) \in \mathbb{Z}$;
2. (Unit-increase) If $J=I \cup\{e\}$, then $\rho(J)-\rho(I) \leq 1$. Equivalently, if $I \subseteq J$, then $\rho(J)-\rho(I) \leq|J|-|I|$.

Completing the Hierarchy

Theorem (BMRS 2021 ${ }^{+}$)

1. A D-matroid is a matroid if and only if $\mathcal{D}=2^{E}$.
2. A submodular system is a matroid if and only if it is both a polymatroid and a D-matroid.
3. The bijection between submodular systems and EGPs restricts to a bijection between D-matroids and 0,1-EGPs.

Extensions of D-Matroids

Definition

Let $M=([n], \mathcal{D}, \rho)$ be a submodular system. An extension of M is a D-matroid $N=\left(E, \mathcal{D}^{\prime}, \sigma\right)$ such that $\mathcal{D} \subseteq \mathcal{D}^{\prime}$ and $\left.\sigma\right|_{\mathcal{D}}=\rho$.

In this case $P_{N} \subseteq P_{M}$ and $V\left(P_{N}\right) \supseteq V\left(P_{M}\right)$. We say that P_{N} is a HIVE polyhedron ${ }^{1}$ of P_{M}.

1 "hull-internal, vertex-external"

Extensions of D-Matroids

- When do extensions exist?
- Does every 0/1-EGP have a HIVE polytope? Equivalently, can every D-matroid be extended to a matroid?
- If so, is there a "canonical" matroid extension of any given D-matroid?

Generous Extensions

Let (E, \mathcal{D}, ρ) be a D-matroid. Let $a \in E$ such that $\{a\} \notin \mathcal{D}$. Let $\mathcal{D}[a]$ be the distributive sublattice of 2^{E} generated by \mathcal{D} and $\{a\}$.

For $J \subseteq E$, define $\sup _{\mathcal{D}}(J)=\bigcap_{\substack{K \in \mathcal{D} \\ K \supseteq J}} K$.
The generous extension of ρ to $\mathcal{D}[a]$ is the function $\rho_{a}: \mathcal{D}[a] \rightarrow \mathbb{N}$ defined by

$$
\rho_{\mathrm{a}}(J)= \begin{cases}\rho(J) & \text { if } J \in \mathcal{D}, \\ \rho(J-a) & \text { if } J \notin \mathcal{D} \text { and } \rho(J-a)=\rho\left(\sup _{\mathcal{D}}(J)\right), \\ \rho(J-a)+1 & \text { if } J \notin \mathcal{D} \text { and } \rho(J-a)<\rho\left(\sup _{\mathcal{D}}(J)\right) .\end{cases}
$$

Theorem (BMRS 2021+)
Let $M=(E, \mathcal{D}, \rho)$ be a D-matroid.

1. The generous extension ρ_{a} is a D-matroid rank function (monotone, unit-increase, and submodular).
2. ρ_{a} dominates all other extensions. That is, if $N=(E, \mathcal{D}[a], \sigma)$ is any extension of M, then $\rho_{a}(J) \geq \sigma(J)$ for all J.
3. The iterated generous matroid extension $\hat{\rho}$ of ρ to 2^{E} is independent of the order of iteration, and dominates every other matroid extension.
4. The foregoing is true if 2^{E} is replaced with any lattice \mathcal{D}^{\prime} between \mathcal{D} and 2^{E}.

Corollary

Every $0,1-E G P P$ contains a unique maximal matroid polytope \hat{P}. Moreover, $\hat{P}=Q+R(P)$, where $R(P)$ is the recession cone.

More Questions

- Which pure set systems arise as unbounded matroids?
- Is the maximal matroid subpolytope \hat{P} equal to the convex hull of the $0 / 1$-vectors in P ?
- What do the normal fans of D-matroid polyhedra look like?
(The supports of normal fans of submodular systems are essentially preposets.)
- What about non-generous extensions?
- What can you say about the poset of all HIVE polyhedra/polytopes of P ordered by inclusion?
- Do other matroid axiomatizations (bases, circuits, closure operator, greedy algorithm, ...) have reasonable D-matroid analogues? (Some do for general submodular systems.)
- Are D-matroid complexes shellable? (José thinks yes; he and Ignacio are working on it.)
- Applications in combinatorial optimization?

Thanks!

The Details

Proposition

Let $M=([n], \mathcal{D}, \rho)$ be a submodular system. A linear functional $\lambda(\mathbf{x})=\mathbf{c} \cdot \mathbf{x}$ is bounded on P_{M} if and only if \mathcal{D} contains every $J \subseteq[n]$ such that $c_{j} \geq c_{i}$ for all $j \in J$ and $i \notin J$.

Example
Let $\lambda(\mathbf{x})=4 x_{1}-x_{2}-2 x_{3}+3 x_{4}-x_{5}$, so that

$$
c_{1}>c_{4}>c_{2}=c_{5}>c_{3}
$$

Then λ is bounded on P_{M} if and only if \mathcal{D} contains each of

$$
\emptyset, 1,14,142,145,1425,14253 .
$$

