Unbounded Matroids

Jonah Berggren (University of Kentucky) Jeremy L. Martin (University of Kansas) Ignacio Rojas (Pontificia Universidad Católica de Chile) José A. Samper (Pontificia Universidad Católica de Chile)

> KU Combinatorics Seminar September 17, 2021

Matroids: Definition

A matroid M on ground set E = [n] is a combinatorial structure that can be defined in many equivalent ways.

A **basis system** is a family \mathcal{B} of subsets of E (called **bases**) such that:

- *Purity:* there is some r ∈ N such that |B| = r for every B ∈ B
 r is called the rank of M.
- ► *Exchange:* For all $B, B' \in \mathcal{B}$:
 - $\blacktriangleright \quad \forall e \in B \setminus B': \quad \exists e' \in B' \setminus B: \quad B \setminus e \cup e' \in B$
 - $\blacktriangleright \quad \forall e \in B \setminus B' : \quad \exists e' \in B' \setminus B : \quad B' \setminus e' \cup e \in \mathcal{B}$

Matroids: Standard Examples

1. Linear matroids.

- E = set of vectors that span some vector space V
- $\mathcal{B} =$ subsets of *E* that are bases for *V*
- rank = dim V

2. Graphic matroids.

- E = edge set of a connected graph G
- \mathcal{B} = spanning trees (maximal acyclic subsets of E)

• rank =
$$|V(G)| - 1$$

Matroid Polytopes

Every matroid *M* gives rise to a **matroid polytope**.

basis
$$B \subseteq [n] \quad \rightsquigarrow \quad$$
 characteristic vector $\chi_B \in \mathbb{R}^n$

matroid with basis system $\mathcal{B} \rightsquigarrow \mathcal{P}_M = \operatorname{conv}\{\chi_B \mid B \in \mathcal{B}\}$

Every edge of P_M corresponds to a basis exchange in \mathcal{B} , hence is parallel to a difference of two standard basis vectors.

Matroid Rank Functions

The rank function of a matroid M with basis system \mathcal{B} on E is

$$\rho: 2^{\mathcal{E}} \to \mathbb{N}, \qquad \rho(I) = \max_{B \in \mathcal{B}} |I \cap B|.$$

- Linear matroids: $\rho(I) = \dim \operatorname{span} I$
- Graphic matroids: $\rho(I) = |V(G)| \#$ components of G[I]

General properties of rank functions:

- bounded by cardinality: $\rho(I) \leq |I|$
- monotone: $I \subseteq J \implies \rho(I) \leq \rho(J)$
- submodular: $\rho(I) + \rho(J) \ge \rho(I \cup J) + \rho(I \cap J)$.

Fact: Every function with these properties gives rise to a matroid basis system.

Matroid Rank Functions

Definition/Theorem: A **polytope** in \mathbb{R}^n is (i) the convex hull of a finite point set. Equivalently, it is (ii) the bounded solution space of a finite system of linear equalities.

Type (i) description of P_M : uses its basis system.

Type (ii) description of P_M : uses its rank function:

$$P_M = \left\{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \mid \begin{array}{cc} x_i \ge 0 & \forall i \in [n], \\ x_I \le \rho(I) & \forall I \subseteq [n], \\ x_E = \rho(E) \end{array} \right\}$$

where $x_I = \sum_{i \in I} x_i$.

Polymatroids

A polymatroid rank function is a function $\rho: 2^E \to \mathbb{R}_{\geq 0}$ that is

- monotone: $I \subseteq J \implies \rho(I) \leq \rho(J)$
- submodular: $\rho(I) + \rho(J) \ge \rho(I \cup J) + \rho(I \cap J)$.

A polymatroid rank function gives rise to a polytope called a **generalized permutahedron** ("genperm"):

$$P_{\rho} = \left\{ \mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n \mid \begin{array}{c} x_I \leq \rho(I) \quad \forall I \subseteq E, \\ x_E = \rho(E) \end{array} \right\}$$

where $x_I = \sum_{i \in I} x_i$.

Matroids, Polymatroids, and Polytopes

- A polytope P is a genperm if and only if every edge is parallel to a difference of two standard basis vectors.
- Equivalently, the normal fan of *P* coarsens the braid fan.
- ► That is, the face of *P* maximizing some linear functional $\lambda(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ depends only on the relative *order* of c_1, \ldots, c_n , not their specific values.
- Every matroid polytope is a genperm whose vertices are 0,1-vectors (not too hard).
- In fact, the converse is true (Gel'fand–Goresky–Macpherson–Serganova 1987; harder!)

Extended Generalized Permutahedra

- An extended generalized permutahedron (EGP) is a polyhedron P, not necessarily bounded, whose 1-dimensional faces (edges and rays) are all parallel to a difference of two standard basis vectors.
- Equivalently, the normal fan of P coarsens some subfan of the braid fan.
- ► That is, the face of P maximizing some bounded linear functional λ(x) = c · x depends only on the relative order of c₁,..., c_n, not their specific values.

EGPs and Submodular Systems

A submodular system is a triple $M = (E, D, \rho)$ such that:

- E = [n] is a finite set;
- \mathcal{D} is a distributive sublattice of 2^E ;
 - ► I.e., a family of subsets of *E*, containing Ø and *E*, and closed under intersection and union
 - We typically assume D is simple, i.e., contains an element of every possible cardinality
- $\rho: \mathcal{D} \to \mathbb{R}_{\geq 0}$ is a monotone submodular function.
- Every submodular system M gives rise to an EGP P_M .
- Polymatroids are just submodular systems with $\mathcal{D} = 2^{\mathcal{E}}$.
- The recession cone (the set of unbounded directions) is determined by D [details].

A Hierarchy

A More Complete Hierarchy

Combinatorics

Unbounded

Bounded

Unbounded Matroids

This polyhedron is called (by us) the stalactite.

The corresponding submodular system is an unbounded matroid.

Unbounded Matroids

Definition

An **unbounded matroid** (or **D-matroid**) is a submodular system (E, \mathcal{D}, ρ) satisfying the following conditions, for all $I, J \in \mathcal{D}$:

- 1. (Integrality) $\rho(I) \in \mathbb{Z}$;
- 2. (Unit-increase) If $J = I \cup \{e\}$, then $\rho(J) \rho(I) \leq 1$. Equivalently, if $I \subseteq J$, then $\rho(J) - \rho(I) \leq |J| - |I|$.

Completing the Hierarchy

Theorem (BMRS 2021⁺)

- 1. A D-matroid is a matroid if and only if $\mathcal{D} = 2^{\mathcal{E}}$.
- 2. A submodular system is a matroid if and only if it is both a polymatroid and a D-matroid.
- 3. The bijection between submodular systems and EGPs restricts to a bijection between D-matroids and 0,1-EGPs.

Extensions of D-Matroids

Definition

Let $M = ([n], \mathcal{D}, \rho)$ be a submodular system. An **extension** of M is a D-matroid $N = (E, \mathcal{D}', \sigma)$ such that $\mathcal{D} \subseteq \mathcal{D}'$ and $\sigma|_{\mathcal{D}} = \rho$.

In this case $P_N \subseteq P_M$ and $V(P_N) \supseteq V(P_M)$. We say that P_N is a **HIVE polyhedron**¹ of P_M .

¹ "hull-internal, vertex-external"

Extensions of D-Matroids

- When do extensions exist?
- Does every 0/1-EGP have a HIVE polytope? Equivalently, can every D-matroid be extended to a matroid?
- If so, is there a "canonical" matroid extension of any given D-matroid?

Generous Extensions

Let (E, \mathcal{D}, ρ) be a D-matroid. Let $a \in E$ such that $\{a\} \notin \mathcal{D}$. Let $\mathcal{D}[a]$ be the distributive sublattice of 2^E generated by \mathcal{D} and $\{a\}$.

For
$$J \subseteq E$$
, define $\sup_{\mathcal{D}} (J) = \bigcap_{\substack{K \in \mathcal{D} \\ K \supseteq J}} K$.

The generous extension of ρ to $\mathcal{D}[a]$ is the function $\rho_a : \mathcal{D}[a] \to \mathbb{N}$ defined by

$$\rho_{a}(J) = \begin{cases} \rho(J) & \text{if } J \in \mathcal{D}, \\ \rho(J-a) & \text{if } J \notin \mathcal{D} \text{ and } \rho(J-a) = \rho(\sup_{\mathcal{D}}(J)), \\ \rho(J-a) + 1 & \text{if } J \notin \mathcal{D} \text{ and } \rho(J-a) < \rho(\sup_{\mathcal{D}}(J)). \end{cases}$$

Theorem (BMRS 2021⁺)

Let $M = (E, D, \rho)$ be a D-matroid.

- 1. The generous extension ρ_a is a D-matroid rank function (monotone, unit-increase, and submodular).
- 2. ρ_a dominates all other extensions. That is, if $N = (E, \mathcal{D}[a], \sigma)$ is any extension of M, then $\rho_a(J) \ge \sigma(J)$ for all J.
- 3. The iterated generous matroid extension $\hat{\rho}$ of ρ to 2^{E} is independent of the order of iteration, and dominates every other matroid extension.
- The foregoing is true if 2^E is replaced with any lattice D' between D and 2^E.

Corollary

Every 0,1-EGP P contains a unique maximal matroid polytope \hat{P} . Moreover, $\hat{P} = Q + R(P)$, where R(P) is the recession cone.

More Questions

- Which pure set systems arise as unbounded matroids?
- Is the maximal matroid subpolytope P̂ equal to the convex hull of the 0/1-vectors in P?
- What do the normal fans of D-matroid polyhedra look like? (The supports of normal fans of submodular systems are essentially preposets.)
- What about non-generous extensions?
- What can you say about the poset of all HIVE polyhedra/polytopes of P ordered by inclusion?
- Do other matroid axiomatizations (bases, circuits, closure operator, greedy algorithm, ...) have reasonable D-matroid analogues? (Some do for general submodular systems.)
- Are D-matroid complexes shellable? (José thinks yes; he and Ignacio are working on it.)
- Applications in combinatorial optimization?

Thanks!

The Details

Proposition

Let $M = ([n], \mathcal{D}, \rho)$ be a submodular system. A linear functional $\lambda(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ is bounded on P_M if and only if \mathcal{D} contains every $J \subseteq [n]$ such that $c_j \geq c_i$ for all $j \in J$ and $i \notin J$.

Example

Let $\lambda(\mathbf{x}) = 4x_1 - x_2 - 2x_3 + 3x_4 - x_5$, so that

 $c_1 > c_4 > c_2 = c_5 > c_3$.

Then λ is bounded on P_M if and only if \mathcal{D} contains each of

 \emptyset , 1, 14, 142, 145, 1425, 14253.