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Matroids: Definition

A matroid M on ground set E = [n] is a combinatorial structure
that can be defined in many equivalent ways.

Basis system: family B of subsets of E (called bases) such that:

▶ Purity: there is some r ∈ N such that |B| = r for every B ∈ B
▶ r is called the rank of M.

▶ Exchange: For all B,B ′ ∈ B:
▶ ∀e ∈ B \ B ′ : ∃e′ ∈ B ′ \ B : B \ e ∪ e′ ∈ B
▶ ∀e ∈ B \ B ′ : ∃e′ ∈ B ′ \ B : B ′ ∪ e \ e′ ∈ B

Subsets of bases are called independent sets.

▶ The independent sets form a simplicial complex ∆.

▶ Donation: I , J ∈ ∆, |I | < |J| =⇒ ∃e ∈ J \ I : I ∪ e ∈ ∆.



Matroid Basics

Let M be a matroid on ground set E = [n] with basis system B.

Dual: matroid M∗ with basis system B∗ = {E \ B : B ∈ B}

Rank function: ρ : 2E → N defined by ρ(A) = maxB∈B |A ∩ B|

Circuits of M: minimal dependent sets = smallest sets not
contained in any basis of M

Cocircuits of M = circuits of M∗ = smallest sets intersecting
every basis of M nontrivially

Fact
Basis system, independence complex, rank function, circuit system,
and cocircuit system are “cryptomorphic” (all contain equivalent
information and characterize a matroid).



Paving and Sparse Paving Matroids

Let M be a matroid of rank r . Then every circuit of M has
cardinality at most r + 1 (because |A| ≥ r + 1 =⇒ A dependent)

Fact
The only matroid on [n] with no circuits of size < r + 1 is the
uniform matroid Ur (n), with basis system

([n]
r

)
.

Definition
M is a paving matroid if it has no circuits of size < r .
M is sparse paving if M and M∗ are both paving.

Example

Projective plane matroids (E = (F3
q \ {0})/F×

q ) are paving, but not
sparse paving (except q = 2)

Conjecture

Almost all matroids are paving matroids.



Matroid Polytopes
Every matroid M on [n] has a matroid base polytope:

PM = conv{χB | B ∈ B}

The matroid base polytope of Ur (n) is the hypersimplex:

∆n,r = conv{vectors in Rn with r 1’s and n − r 0’s}
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▶ ∆n,0
∼= ∆n,n = point; ∆n,1

∼= ∆n,n−1 = simplex
▶ ∆n,k

∼= ∆n,n−k (note: PM
∼= PM∗ in general)



Ehrhart Theory

Let P ⊆ Rn be a polytope and k ∈ N.

kth dilate of P: {kx : x ∈ P}
Ehrhart function: ehrP(k) = #(kP ∩ Zn)

P ehrP(k)

Unit cube [0, 1]n (k + 1)n

Simplex #{(x1, . . . , xn) : xi ≤ 0, 0 ≤
∑

xi ≤ k}

conv(0, e1, . . . , en) =
(k+n

n

)
= (k+n)(k+n−1)···(k+1)

n!

Line segment [0, 1/2]

{
k+1
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Ehrhart Theory

Ehrhart’s Theorem: (1) If P is a lattice polytope (vertices in
Zn) then ehrP(k) is a polynomial in k.

▶ Degree of ehrP(k) = dimP

▶ Leading coefficient = volume

(2) if P has vertices in Qn then ehrP(k) is a quasipolynomial:

ehrP(k) =


f0(k) if k ≡ 0 mod p
...

...

fp−1(k) if k ≡ p − 1 mod p

where f0, . . . , fp−1 are polynomials in k; p is the period of P.

▶ When are the coefficients of the Ehrhart polynomial positive?

▶ What are the Ehrhart functions of matroid polytopes?



Ehrhart Theory of Matroid Polytopes

Volume of a matroid polytope: Ardila–Benedetti–Doker 2010 (uses
toric varieties, other ingredients)

Ehrhart polynomial of a hypersimplex: Katzman 2005
(commutative algebra context):

ehr∆n,r (k) =
r−1∑
j=0

(−1)j
(
n

j

)(
(r − j)k − j + n − 1

n − 1

)

Conjecture (De Loera–Haws–Köppe 2009) Matroid base
polytopes are Ehrhart positive.

Theorem (Ferroni 2021)

▶ Positivity conjecture fails for certain “sparse paving matroids”

▶ Positivity holds for hypersimplices and “minimal matroids”



A Recharacterization of Paving Matroids

Theorem (MA-DH-JLM-DMcG-DM-GDN-ARVM-MY 2021+) Let
r ≤ n. Let H ⊂ 2[n] be a set family satisfying the following
conditions:

1. |H| ≥ r for all H ∈ H.

2.
⋃

H∈H
(H
r

)
̸=

([n]
r

)
(to avoid trivialities).

3. If H,H ′ ∈ H with H ̸= H ′, then |H ∩ H ′| ≤ r − 2.

Then the family

B(n, r ,H) =

{
B ∈

(
[n]

r

) ∣∣∣ B ̸⊆ H ∀H ∈ H
}

is a matroid basis system for a matroid M(n, r ,H). The elements
of H are hyperplanes.



Ehrhart Polynomials of Paving Matroids

Idea: For M = M(n, r ,H) a paving matroid, construct PM from
∆n,r by ‘cutting off corners”.

Example: If H = {H}: Delete vertices of ∆n,r with all r of their
1-coordinates in H; keep vertices with a 1-coordinate outside H.
Equivalently, impose either of the equivalent inequalities∑

i∈H
xi ≤ r − 1 or

∑
i∈[n]\H

xi ≥ 1

Then P ∪ Q = ∆n,r and P ∩ Q = R, where

Q = conv{v ∈ V (H) |
∑

i∈H vi = r − 1 or r},
R = conv{v ∈ V (H) |

∑
i∈H vi = r − 1}

so ehrP = ehr∆n,r − ehrQ +ehrR .



Ehrhart Polynomials of Paving Matroids

Thus, we need to understand the Ehrhart polynomials of

Q = conv{v ∈ V (H) |
∑
i∈H

vi = r − 1 or r},

R = conv{v ∈ V (H) |
∑
i∈H

vi = r − 1}.

▶ R is the easy one: it is ∆|H|,r−1 ×∆n−|H|,1.

▶ Q is the subtle one: it is a thing called (by us) a panhandle
matroid, which is an instance of a lattice path matroid



Lattice Path Matroids

Use the chalk, Jeremy.



Panhandle Matroids

A panhandle matroid Pan(n, r , s) is a lattice path matroid for a
partition shaped like this:

s − r + 1

n − r

r

Key observation: The polytope

Q = conv{v ∈ V (H) |
∑
i∈H

vi = r − 1 or r}

is the base polytope of the panhandle matroid Pan(n, r , |H|).



Ehrhart Polynomials of Paving Matroids

Example Again: If M(n, r , {H}) is a paving matroid with one
hyperplane, then

ehrPM
= ehr∆n,r − ehrQ +ehrR

= ehr∆n,r︸ ︷︷ ︸
Katzman

− ehrPan(n,r ,|H|)+(ehr∆|H|,r−1
)(ehr∆n−|H|,1)

Good News: The corners don’t overlap!

So for every paving matroid M = M(n, r ,H):

ehrPM
= ehr∆n,r +

∑
H∈H

(
− ehrPan(n,r ,|H|)+(ehr∆|H|,r−1

)(ehr∆n−|H|,1)
)



Ehrhart Polynomials of Panhandle Matroids

Conjecture: Panhandle matroids are Ehrhart positive.

We can do a whole lot of algebra to boil this down to the
conjecture that

ξ(k , ℓ,m, r , s) =
r∑

i=0

(−1)i
(
s

i

)(
k + r − i − 1

k − 1

)
× es−ℓ−m[−i + 1, s − 1− ℓ− i ]eℓ−k+m[s − ℓ− i , s − 1− i ]

is positive for all k , ℓ,m, r , s in appropriate ranges.

We are sure that ξ(k , ℓ,m, r , s) is the number of labeled “chain
gangs” of a certain kind. . .


