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Resistor networks

A [resistor] network N = (V ,E , r) is a connected, undirected∗

graph (V ,E ) together with positive resistances r = (re)e∈E .
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State of N:

currents i = (ie)e∈E
voltages v = (ve)e∈E

Ohm’s law iere = ve (∀e ∈ E )

Kirchhoff’s current law
∑

e∈E in(x)

ie −
∑

e∈Eout(x)

ie = 0 (∀x ∈ V )

Kirchhoff’s voltage law
∑
~e∈C

ve = 0 (∀ cycle C )

∗Edges oriented for reference purposes only.



Effective resistance

Idea: Attach a current generator: an edge e = −→xy with current
ie, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique
minimizer of “total energy”

∑
e ve ie subject to OL, KCL, KPL.

Rayleigh principle As far as the external world is concerned, the
system is equivalent to a single edge e with resistance

Reff
e = Reff

xy =
py − px

ce
.

(the effective resistance of e).



Effective resistance and tree counting

Theorem [Thomassen 1990]
Let N = (V ,E , r) be a network and e = xy ∈ E .

• If r ≡ 1, then

Reff
xy =

τ(G/xy)

τ(G )
=
|T (G/xy)|
|T (G )|

where T (G ) is the set of spanning trees of G .

• More generally,

Reff
xy =

τ̂(G/xy)

τ̂(G )
=

∑
T∈T (G/xy)

∏
e∈T

r−1
e∑

T∈T (G)

∏
e∈T

r−1
e

.

Combinatorial application: weighted tree enumeration!



Simplicial complexes

I Geometric simplicial complex: family of simplices (points,
line segments, triangles, tetrahedra, . . . ) attached along faces

I Combinatorial simplicial complex: ∆ ⊆ 2V such that
σ ∈ ∆, τ ⊆ σ =⇒ τ ∈ ∆
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I Facets = maximal faces (denoted by Φ)

I Assume ∆d pure: |φ| = d + 1 for all facets φ



Boundary map and homology groups

Boundary of a k-simplex σ = (v0 < v1 < · · · < vk):

∂k(v0 < v1 < · · · < vk) =
k∑

i=0

(−1)i (v0 · · · v̂i · · · vk)

Extending linearly gives a map

∂k : Ck(∆;R)→ Ck−1(∆;R)

where Ck(∆;R) = linear comb’ns of k-simplices (R = R or Z)

I Key fact: ∂k ◦ ∂k+1 = 0.

Homology: Hk(∆;R) = ker ∂k/ im ∂k+1 (topological invariants)

I Homology groups are topological invariants of ∆



Spanning trees of simplicial complexes

A spanning tree of ∆d is a subcomplex Υ ⊂ ∆ such that:

1. Υ contains all non-maximal faces (spanning)

2. Hd(Υ;R) = 0 (acyclic)

3. Hd−1(Υ;R) = 0 (connected)
I Equivalent condition: Hd−1(Υ;Z) is finite

Examples:

I d = 1: standard definition of spanning tree of a graph

I ∆ = simplicial sphere: remove a facet

I ∆ = bubble wrap: pop all the bubbles (don’t tear the sheet!)



Counting simplicial spanning trees

The right way to count simplicial trees:

τ(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2 (unweighted)

τ̂(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
φ∈Υ

xφ (unweighted)

Kalai 1983: τ(Knd ) = n(n−2
d ) using simplicial Laplacian ∂∂tr.

(torsion factors arise naturally from Binet-Cauchy expansion)

Subsequent work: Adin 1992 (complete colorful complexes),
Petersson, Duval–Klivans–JLM, Lyons, Catanzaro–Chernyak–Klein
(all c. 2006–2010)



Simplicial networks

Simplicial network: pure d-complex with resistances (rφ)φ∈Φ

d = 1
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Currents i = (iφ)φ∈Φ Voltages v = (vφ)φ∈Φ

Ohm’s law iφrφ = vφ for all φ ∈ Φ
Kirchhoff’s current law i ∈ ker(∂d)
Kirchhoff’s voltage law v ∈ ker(∂d)⊥

Dirichlet, Rayleigh, Reff have natural simplicial analogues.



Counting simplicial trees via effective resistance

Theorem [Kook–Lee 2018]
Let (∆, r) be a simplicial network and σ a current generator. Then:

Reff
σ =

τ̂(∆/σ)

τ̂(∆)
=

∑
T∈T (∆/σ)

|H̃d−1(T ,Z)|2
∏
φ∈T

r−1
φ∑

T∈T (∆)

|H̃d−1(T ,Z)|2
∏
φ∈T

r−1
φ

.

I Generalizes Thomassen’s theorem for Reff in graphs

I ∆/σ = quotient space (not simplicial, but close enough)

I Application: count trees by induction on facets



Shifted complexes

A simplicial complex on vertices {1, . . . , n} is shifted if any vertex
of a face may be replaced with a smaller vertex.

Ex: threshold graphs; ∆ = 〈123, 124, 134, 234, 125, 135, 235〉

Duval–Klivans–JLM ’09: recursion for τ̂(∆) via the shifted
complexes 〈φ ∈ ∆ | 1 ∈ φ〉 and 〈φ ∈ ∆ | 1 /∈ φ〉; induct on n

Duval–Kook–Lee–JLM ’21+: calculated Reff for a
shifted-maximal face; to obtain formula for τ̂(∆), induct on |Φ|



Color-shifted complexes

A simplicial complex ∆d is color-shifted [Babson–Novik ’06] if:

I V (∆) = V1 ∪ · · · ∪ Vd+1, where Vq = {vq1, . . . , vq`q}
I Each facet contains exactly one vertex of each color

I A vertex may be replaced with a smaller vertex of same color

d =1: Ferrers graphs [Ehrenborg–van Willigenburg ’04]
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Color-shifted complexes
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Trees in color-shifted complexes

Vertex-weighted spanning tree enumerators:

τ̂(∆) =
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
φ∈Υ

∏
vqj∈φ

xqj

=
∑

Υ∈T (∆)

|Hd−1(Υ;Z)|2
∏
q,j

x
degΥ(vqj )
qj

Proposition [Duval–Kook–Lee–JLM 2021+]
Let ∆d color-shifted, σ = v1,k1v2,k2 . . . vd+1,kd+1

/∈ ∆.
Then:

Reff(σ) =
τ̂(∆ ∪ σ)

τ(∆)
=

d+1∏
q=1

xq,1 + · · ·+ xq,kq
xq,1 + · · ·+ xq,kq−1

.



Trees in color-shifted complexes

Theorem [Duval–Kook–Lee–JLM 2021+]

τ̂(∆) =
∏
q,i

x
e(q,i)
q,i

∏
ρ∈∆

dim ρ= d−1

(xm(ρ),1 + · · ·+ xm(ρ),k(ρ))

where

e(q, i) = #{σ ∈ ∆d | vq,i ∈ σ and vq′,1 ∈ σ for some q′ 6= q}
m(ρ) = unique color missing from ρ

k(ρ) = max{j | ρ ∪ vm(ρ),j ∈ ∆}

I Previously conjectured by Aalipour and Duval [unpublished]

I Result seems inaccessible without effective resistance



Thank you!


