Oscillation estimates of eigenfunctions via the combinatorics of noncrossing partitions

Vera M. Hur (University of Illinois) Mathew A. Johnson (University of Kansas)
Jeremy L. Martin (University of Kansas)

SIAM Central States Section Meeting
University of Oklahoma
October 6, 2018

Combinatorics and PDE: A Love Story

Vera M. Hur (University of Illinois) Mathew A. Johnson (University of Kansas)
Jeremy L. Martin (University of Kansas)

SIAM Central States Section Meeting University of Oklahoma October 6, 2018

The Problem

PDE Setup: Suppose that $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is an eigenfunction for the fractional Schrödinger operator

$$
H_{\alpha}=\underbrace{\left(-\frac{d^{2}}{d x^{2}}\right)^{\alpha / 2}}_{\text {fractional Laplacian }}+V(x)
$$

where $0<\alpha<2$ and $V: \mathbb{R} \rightarrow \mathbb{R}$ is some potential function.
(Note that $\alpha=2$ gives the classical Laplacian).
Problem: Determine, or at least bound, the number of times ϕ changes sign (relevant in stability theory.)

Motivation

The fractional Laplacian appears in several PDEs related to wave motion:

$$
\begin{array}{r}
u_{t}+u_{x}+\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} u_{x}+f(u)_{x}=0 \\
u_{t}+u_{x}+\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} u_{t}+f(u)_{x}=0 \\
i u_{t}-\left(-\frac{\partial^{2}}{\partial x^{2}}\right)^{\alpha / 2} u+f(|u|) u=0 \tag{fNLS}
\end{array}
$$

Classical $(\alpha=2)$: arise in water wave theory; NLS also in nonlinear optics, Bose-Einstein condensates, etc.
Fractional $(0<\alpha<2)$: changes dispersion

From The Line To The Half-Plane

Suppose that the $L^{2}(\mathbb{R})$ spectrum of the fractional Schrödinger operator H_{α} has at least N eigenvalues (with multiplicity):

$$
\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}
$$

with corresponding eigenfunctions $\phi_{1}, \ldots, \phi_{N} \in H^{\alpha / 2}(\mathbb{R}) \cap C^{0}(\mathbb{R})$.
Each ϕ gives rise to a classical boundary value problem on the upper half-plane \mathbb{P}^{2} :

$$
\begin{cases}\nabla \cdot\left(y^{1-\alpha} \nabla w\right)=0 & \text { for } \quad(x, y) \in \mathbb{P}^{2} \\ w=\phi & \text { on } \quad \partial \mathbb{P}^{2}=\mathbb{R} \times\{0\}\end{cases}
$$

which admits a unique solution $E(\phi)$.

Nodal Domains

Courant's Nodal Domain Theorem: For each $n=1,2, \ldots, N$, the extension $E\left(\phi_{n}\right)$ has at most n nodal domains.

Nodal domains of a continuous function $f: X \rightarrow \mathbb{R}$
$=$ connected components of $\{x \in X: f(x) \neq 0\}$
$=$ maximal subsets of X on which f has constant sign

Nodal Domains and Sign Changes

Theorem [Frank and Lenzmann 2013]
The second eigenfunction ϕ_{2} of H_{α} changes sign at most twice.

Nodal Domains and Sign Changes

Theorem [Frank and Lenzmann 2013]
The second eigenfunction ϕ_{2} of H_{α} changes sign at most twice.
Proof. Suppose $x_{1}^{+}<x_{1}^{-}<x_{2}^{+}<x_{2}^{-} \in \mathbb{R}$ such that ϕ_{2} is positive at each x_{i}^{+}and negative at each x_{i}^{-}.

Nodal Domains and Sign Changes

Theorem [Frank and Lenzmann 2013]
The second eigenfunction ϕ_{2} of H_{α} changes sign at most twice.
Proof. Suppose $x_{1}^{+}<x_{1}^{-}<x_{2}^{+}<x_{2}^{-} \in \mathbb{R}$ such that ϕ_{2} is positive at each x_{i}^{+}and negative at each x_{i}^{-}.

By Courant's theorem, $E\left(\phi_{2}\right)$ has at most two, hence exactly two nodal domains: $U^{+} \supset\left\{x_{1}^{+}, x_{2}^{+}\right\}$and $U^{-} \supset\left\{x_{1}^{-}, x_{2}^{-}\right\}$.

Nodal Domains and Sign Changes

Theorem [Frank and Lenzmann 2013]
The second eigenfunction ϕ_{2} of H_{α} changes sign at most twice.
Proof. Suppose $x_{1}^{+}<x_{1}^{-}<x_{2}^{+}<x_{2}^{-} \in \mathbb{R}$ such that ϕ_{2} is positive at each x_{i}^{+}and negative at each x_{i}^{-}.

By Courant's theorem, $E\left(\phi_{2}\right)$ has at most two, hence exactly two nodal domains: $U^{+} \supset\left\{x_{1}^{+}, x_{2}^{+}\right\}$and $U^{-} \supset\left\{x_{1}^{-}, x_{2}^{-}\right\}$.

Nodal Domains and Sign Changes

Theorem [Frank and Lenzmann 2013]
The second eigenfunction ϕ_{2} of H_{α} changes sign at most twice.
Proof. Suppose $x_{1}^{+}<x_{1}^{-}<x_{2}^{+}<x_{2}^{-} \in \mathbb{R}$ such that ϕ_{2} is positive at each x_{i}^{+}and negative at each x_{i}^{-}.

By Courant's theorem, $E\left(\phi_{2}\right)$ has at most two, hence exactly two nodal domains: $U^{+} \supset\left\{x_{1}^{+}, x_{2}^{+}\right\}$and $U^{-} \supset\left\{x_{1}^{-}, x_{2}^{-}\right\}$.

This can't happen. ("Don't cross the streams!")

Higher Eigenfunctions

Goal: Generalize the Frank-Lenzmann approach to higher eigenfunctions. If ϕ has $2 k-1$ sign changes, the picture might look like this:

Which roots lie in common nodal domains can be modeled combinatorially as a noncrossing partition.

Noncrossing Partitions

Definition

A partition of a totally ordered set X is the family of equivalence classes ("blocks") of an equivalence relation \sim on X.

A partition is noncrossing if

$$
i<j<k<\ell, \quad i \sim k, j \sim \ell \quad \Longrightarrow \quad i \sim j \sim k \sim \ell .
$$

Noncrossing partition

$1,3,5,11$ is a crossing

Monochromatic Noncrossing Partitions

Definition

A noncrossing partition of [2n] is monochromatic if no block has both even and odd elements.

Monochromatic Noncrossing Partitions

Definition

A noncrossing partition of [2n] is monochromatic if no block has both even and odd elements.

An MNP models (some of) the nodal domain structure for an extension $E(\phi)$ of an (eigen)function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ with $2 n-1$ sign changes.

Combinatorial Interlude

Fact

The number of noncrossing partitions on n is the Catalan number

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

[Classical; NCPs are interpretation (pp) in Stanley's EC2, Exercise 6.19.]

Fact

The number of monochromatic noncrossing partitions on [2n] is

$$
\frac{1}{2 n+1}\binom{3 n}{n}
$$

[Exercise or appendix.]

Bounding the Number of Blocks

Proposition (Block Count Bound)

Every MNP on $[2 n]$ has at least $n+1$ blocks.
(Proof: Inductive; purely combinatorial/topological.)

Bounding the Number of Blocks

Proposition (Block Count Bound)

Every MNP on $[2 n]$ has at least $n+1$ blocks.
(Proof: Inductive; purely combinatorial/topological.)

Bounding the Number of Blocks

Proposition (Block Count Bound)

Every MNP on $[2 n]$ has at least $n+1$ blocks.
(Proof: Inductive; purely combinatorial/topological.)

Bounding the Number of Blocks

Proposition (Block Count Bound)

Every MNP on $[2 n]$ has at least $n+1$ blocks.
(Proof: Inductive; purely combinatorial/topological.)

MNPs and Eigenfunctions

Theorem [HJM '17]

Let $\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}$ be $L^{2}(\mathbb{R})$-eigenvalues of the fractional Schrödinger operator H_{α}, with eigenfunctions $\phi_{1}, \ldots, \phi_{N}$.

Then, each ϕ_{n} changes sign at most $2(n-1)$ times in \mathbb{R}.

Proof. If ϕ_{n} has $>2(n-1)$ sign changes, then the Block Count Bond says that $E\left(\phi_{n}\right)$ has at least $n+1$ nodal domains, which contradicts Courant's Theorem.

Periodic Potentials

Suppose that the potential function $V(x)$ for the fractional Schrödinger operator $H_{\alpha}=\left(-d^{2} / d x^{2}\right)^{\alpha / 2}+V(x)$ is smooth, bounded, and periodic with period T.

Theorem [HJM '17]
Let $\lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{N}$ be $L^{2}(\mathbb{R})$-eigenvalues of H_{α}, with corresponding periodic eigenfunctions $\phi_{1}, \ldots, \phi_{N}$.

Then, each ϕ_{n} changes sign at most $2(n-1)$ times in each period.

Proof. Essentially the same argument as the nonperiodic case.

The Steklov Problem

Let $\Omega \subset \mathbb{R}^{2}$ be a smooth bounded domain, i.e., an open and connected set whose closure $\bar{\Omega}$ is compact with smooth boundary $\partial \Omega$.

The Steklov problem on Ω is

$$
\begin{cases}\frac{\partial^{2} u}{\partial x^{2}}=0 & \text { in } \Omega \tag{1}\\ \frac{\partial u}{\partial \mathbf{n}}=\lambda u & \text { on } \partial \Omega\end{cases}
$$

where \mathbf{n} is the outward normal to $\partial \Omega$.
Fact The solutions to the Steklov problem have eigenvalues $\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots$, accumulating only at $+\infty$

Fact Courant's nodal domain theorem applies: the eigenfunction u_{n} associated with λ_{n} has at most n nodal domains in Ω.

Non-Simply Connected Domains

Theorem [HJM '17]
Let Ω be a bounded domain in \mathbb{R}^{2} of genus g (so that $\partial \Omega$ consists of $g+1$ simple closed curves). Let $f: \bar{\Omega} \rightarrow \mathbb{R}$ be a continuous function. Then

$$
s \leq 2(n+g-1),
$$

where n is the number of nodal domains of f in Ω and s is the number of sign changes of f along $\partial \Omega$.

Corollary

The Steklov eigenfunction associated with the Steklov eigenvalue λ_{n} changes its sign at most $2(n+g-1)$ times on $\partial \Omega$.

Non-Simply Connected Domains

Proof sketch. Induct on genus. Base case $g=0$ is same as before.

- Find two points x, y on different boundary components that belong to the same nodal domain U.
- Perform "mitosis" on U, which
- reduces genus by 1
- increases the number of nodal domains by 1
- preserves the number of sign changes

Possible Future Directions

These bounds are definitely not sharp!
Do some solutions to some PDE problems admit further analytic constraints that can be translated into combinatorics, thus giving better (possibly even sharp) bounds?

Thanks for listening!

Full paper: Vera Mikyoung Hur, Mathew A. Johnson, and Jeremy L. Martin, Oscillation estimates of eigenfunctions via the combinatorics of noncrossing partitions, Discrete Analysis 2017:13, 20 pp.

Counting MNPs

Let P be an NCP on [n]. Its Kreweras dual $K(P)$ is as follows.

- Insert a point \bar{s} between each pair of points s and $s+1$.
- Blocks of P dissect the circle into cells that contain the points \bar{s}.
- $K(P)$ is then the partition whose blocks are the cells.

$$
\begin{gathered}
P=\{13,2,46 \mathrm{C}, 5,7,8,9 \mathrm{~B}, \mathrm{~A}\} \\
K(P)=\{\overline{1} \overline{2}, \overline{3} \overline{\mathrm{C}}, \overline{4} \overline{5}, \overline{6} \overline{7} \overline{8} \overline{\mathrm{~B}}, \overline{9} \overline{\mathrm{~A}}\}
\end{gathered}
$$

Counting MNPs

- $|K(P)|=n-|P|+1$
- P monochromatic $\Longleftrightarrow K(P)$ 2-divisible (all blocks have even cardinality)
- Fact (D. Armstrong): the number of k-divisible NCPs on [kn] is given by the Fuss-Catalan or Raney numbers:

$$
\frac{1}{k n+1}\binom{(k+1) n}{n} .
$$

> Alternative proof of Block Count Bound: A 2-divisible partition of $\{1, \ldots, 2 n\}$ can have at most n blocks, so its (monochromatic) Kreweras dual MNP must have at least $n+1$ blocks

