Simplicial and Cellular Trees

Jeremy L. Martin
Department of Mathematics
University of Kansas

Great Plains Combinatorics Conference
North Dakota State University
May 1, 2022

Spanning Trees

Let $G=(V, E)$ be a graph (connected, finite, not necessarily simple), with vertices $V=[n]$ and edges oriented arbitrarily.

Definition The signed incidence matrix $\partial=\partial(G)$ has rows and columns corresponding to vertices and edges of G, with entries

$$
\partial_{v, e}= \begin{cases}+1 & \text { if } v=\operatorname{head}(e) \\ -1 & \text { if } v=\operatorname{tail}(e) \\ 0 & \text { if } v \notin e \text { or } e \text { is a loop }\end{cases}
$$

Definition A spanning tree of G is a set of edges (or a subgraph) corresponding to a column basis of ∂.
$\mathscr{T}(G)=$ set of spanning trees of $G ; \quad \tau(G)=|\mathscr{T}(G)|$

The Laplacian Matrix

Definition Let G be a connected graph with vertices $[n]=\{1, \ldots, n\}$ and no loops. The Laplacian of G is the $n \times n$ matrix $L=\partial \partial^{T}=\left[\ell_{i j}\right]$:

$$
\ell_{i j}= \begin{cases}\operatorname{deg}_{G}(i) & \text { if } i=j \\ -(\text { number of edges between } i \text { and } j) & \text { if } i \neq j\end{cases}
$$

- L is symmetric and positive semi-definite
- $\operatorname{rank} L=n-1$
- $\operatorname{ker} L$ is spanned by the all-1's vector

The Matrix-Tree Theorem

Matrix-Tree Theorem [Kirchhoff 1847]
(1) Let $0, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n-1}$ be the eigenvalues of L. Then the number of spanning trees of G is

$$
\tau(G)=\frac{\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}}{n}
$$

(2) Let $1 \leq i \leq n$. Form the reduced Laplacian L_{i} by deleting the $i^{\text {th }}$ row and $i^{t h}$ column of L. Then

$$
\tau(G)=\operatorname{det} L_{i}
$$

The Matrix-Tree Theorem: Proof Sketch

Proof Sketch:

- Note that $L=\partial \partial^{T}$ and $L_{i}=\partial_{i} \partial_{i}^{T}$.
- Column bases of $\partial=$ spanning trees of G.
- Binet-Cauchy:

$$
\operatorname{det}\left(\partial_{i} \partial_{i}^{T}\right)=\sum_{\substack{A \subseteq E(T) \\|A|=n-1}}\left(\operatorname{det} \partial_{A}\right)^{2}=\sum_{T \in \mathscr{T}(G)}(\pm 1)^{2}=\tau(G) .
$$

Complete and Complete Bipartite Graphs

The complete graph K_{n} has n vertices, with every pair connected by one edge.

- Nonzero Laplacian spectrum: n^{n-1}
- $\tau\left(K_{n}\right)=n^{n-2}$ (Cayley's formula)

The complete bipartite graph $K_{p, q}$ has p red vertices and q blue vertices, with every red/blue pair connected by one edge.

- Nonzero Laplacian spectrum: $(p+q)^{1} p^{q-1} q^{p-1}$
- $\tau\left(K_{p, q}\right)=p^{q-1} q^{p-1}$

Both these formulas can also be obtained bijectively [classical]

Hypercubes

The hypercube graph Q_{n} has 2^{n} vertices, labeled by strings of n bits (0's and 1's), with two vertices adjacent if they agree in all but one bit.

Theorem The eigenvalues of the Laplacian of Q_{n} are $0,2,4, \ldots, 2 n$, with $2 k$ having multiplicity $\binom{n}{k}$. Therefore,

$$
\tau\left(Q_{n}\right)=2^{2^{n}-n-1} \prod_{k=2}^{n} k\binom{n}{k}
$$

Combinatorial proof: [Bernardi '12]

Threshold Graphs

A graph G with vertex set $\{1,2, \ldots, n\}$ is a threshold graph if, whenever $a b$ is an edge, so is $a^{\prime} b^{\prime}$ for all $a^{\prime} \leq a$ and $b^{\prime} \leq b$.

Equivalently, the edges of G form an order ideal under componentwise order.

Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a threshold graph G on vertices [n] are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\quad \tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a threshold graph G on vertices $[n]$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\quad \tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Vertex degrees: 4, 4, 3, 3, 2

Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a threshold graph G on vertices $[n]$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\quad \tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

Laplacian eigenvalues: 5, 5, 4, 2, 0

Threshold Graphs

Theorem [Merris '94] The eigenvalues of the Laplacian of a threshold graph G on vertices $[n]$ are the columns λ_{j}^{\prime} of the partition $\lambda=\lambda(G)$ whose rows are the vertex degrees.

Corollary $\quad \tau(G)=\lambda_{2}^{\prime} \lambda_{3}^{\prime} \cdots \lambda_{n-1}^{\prime}$.

$\tau=5 \times 4 \times 2=40 \quad$ Laplacian eigenvalues: 5, 5, 4, 2, 0

Weighted Counting

$G=(V, E)$ graph; $\left\{x_{e}: e \in E\right\}$ commuting indeterminates
Weighted Laplacian $\hat{L}=\left[\hat{\ell}_{i j}\right]_{i, j \in V}$:

$$
\hat{\ell}_{i j}= \begin{cases}\sum_{e \ni i} x_{e} & \text { if } i=j \\ -\sum_{e=i j} x_{e} & \text { if } i \neq j\end{cases}
$$

Reduced Laplacian \hat{L}_{i} : pick a vertex i; delete $i^{\text {th }}$ row and $i^{t h}$ column of \hat{L}

Weighted Matrix-Tree Theorem

$$
\operatorname{det} L_{i}=\sum_{T \in \mathscr{T}(G)} \prod_{e \in T} x_{e} .
$$

Weighted Counting

Combinatorial information about $\mathscr{T}(G)$ can be obtained by specializing edge weights x_{e}. Often, tree enumerators factor nicely.

- Complete graphs: $x_{i j}=x_{i} x_{j}$ gives Cayley-Prüfer formula

$$
\sum_{T \in \mathscr{T}\left(K_{n}\right)} x_{1}^{\operatorname{deg}_{T}(1)} \cdots x_{n}^{\operatorname{deg}_{T}(n)}=x_{1} \cdots x_{n}\left(x_{1}+\cdots+x_{n}\right)^{n-2}
$$

- Generalization to extended [Prüfer] graphs [Kelmans '92]
- Threshold graphs [Remmel-Williamson '02, JLM-Reiner '03]: factorization for bidegree generating function:

$$
\sum_{T \in \mathscr{T}(G)} \prod_{e=i<j \in T} x_{i} y_{j}=x_{1} y_{n} \prod_{r=2}^{n-1}\left(\sum_{i=1}^{\lambda_{r}^{\prime}} x_{\min (i, r)} y_{\max (i, r)}\right)
$$

- Hypercubes: different weighting factors [JLM-Reiner '03]

Simplicial Complexes

A \boldsymbol{d}-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

A simplicial complex is a space built (properly) from simplices.

Simplicial Complexes

A \boldsymbol{d}-simplex is the convex hull of $d+1$ general points in \mathbb{R}^{d+1}.

A simplicial complex is a space built (properly) from simplices.

Simplicial Complexes

Combinatorially, a simplicial complex is a set family $\Delta \subseteq 2^{\{1,2, \ldots, n\}}$ such that if $\sigma \in \Delta$ and $\sigma^{\prime} \subseteq \sigma$, then $\sigma^{\prime} \in \Delta$.

$$
\Delta_{1}=\langle 12,14,24,24,25,35\rangle
$$

$\Delta_{2}=\langle 124,245,35\rangle$

- faces or simplices: elements of Δ
- dimension: $\operatorname{dim} \sigma=|\sigma|-1$
- facet: a maximal face
- pure complex: all facets have equal dimension
- \boldsymbol{k}-skeleton $\Delta_{(k)}=\{\sigma \in \Delta: \operatorname{dim} \sigma \leq k\}$

Simplicial Boundary Maps and Homology

Let Δ be a simplicial complex on vertices $[n]$. Write Δ_{k} for the set of k-dimensional faces.

The $\boldsymbol{k}^{\text {th }}$ simplicial boundary matrix of Δ is

$$
\partial_{k}=\partial_{k}(\Delta)=\left[d_{\rho, \sigma}\right]_{\rho \in \Delta_{k-1}, \sigma \in \Delta_{k}}
$$

where

$$
d_{\rho, \sigma}= \begin{cases}(-1)^{j} & \text { if } \sigma=\left\{v_{0}<v_{1}<\cdots<v_{k}\right\} \text { and } \rho=\sigma \backslash v_{j} \\ 0 & \text { if } \rho \nsubseteq \sigma\end{cases}
$$

Note: ∂_{1} is the signed incidence matrix of the 1 -skeleton of Δ.
Fact: $\operatorname{ker} \partial_{k} \supseteq \operatorname{im} \partial_{k+1}$ for all k.

Simplicial Boundary Maps and Homology

Fact: $\operatorname{ker} \partial_{k} \supseteq \operatorname{im} \partial_{k+1}$ for all k.
Definition For a ring R, the homology groups of Δ with coefficients in R are defined by

$$
\tilde{H}_{k}(\Delta ; R)=\operatorname{ker}\left(\partial_{k} ; R\right) / \operatorname{im}\left(\partial_{k+1} ; R\right)
$$

(Default: $R=\mathbb{Z}$.)

Homology groups are topological invariants.

- $\tilde{H}_{0}(\Delta ; R)=0 \Longleftrightarrow \Delta$ is connected
- $\tilde{H}_{1}(\Delta ; R)=0 \Longleftarrow \Delta$ is simply connected
- Δ is contractible $\Longrightarrow \tilde{H}_{k}(\Delta ; R)=0$ for all k, R

Simplicial Spanning Trees

Definition Let Δ^{d} be a pure simplicial complex of dimension d. A spanning tree (ST) is a complex Υ such that $\Delta_{(d-1)} \subseteq \Upsilon \subseteq \Delta$ and either of the following equivalent conditions hold:

1. The columns of $\partial_{d}(\Delta)$ corresponding to faces of Υ form a basis for its column space over \mathbb{Q}
(i.e., Υ is a basis of the simplicial matroid of ∂_{d}).
2. $\tilde{H}_{d}(\Upsilon ; \mathbb{Q})=0$ and $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Q})=0$.
3. $\tilde{H}_{d}(\Upsilon ; \mathbb{Z})=0$ and $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ is finite.

As before, let $\mathscr{T}(\Delta)$ denote the set of spanning trees of Δ.

Note that we are not defining $\tau(\Delta)$ to be the cardinality of $\mathscr{T}(\Delta)$!

Examples of STs

- $\operatorname{dim} \Delta=1: \mathscr{T}(\Delta)=$ usual graph-theoretic spanning trees
- $\operatorname{dim} \Delta=0: \mathscr{T}(\Delta)=$ vertices of Δ
- If Δ is contractible: it has only one ST, namely itself.
- Contractible complexes \approx acyclic graphs
- Some noncontractible complexes also qualify, notably $\mathbb{R P}^{2}$
- If Δ is a simplicial sphere: STs are $\Delta \backslash\{\sigma\}$, where $\sigma \in \Delta$ is any facet (maximal face)
- Simplicial spheres are analogous to cycle graphs

Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

Solution: 15.

- Either remove triangle 123 and any other triangle (6 STs)...
- ... or one each "northern" and "southern" triangle (9 STs).

Examples of STs

Pop quiz: How many spanning trees does the equatorial bipyramid $\Delta=\langle 123,124,134,234,125,135,235\rangle$ have?

- Either remove triangle 123 and any other triangle (6 STs)...
- ... or one each "northern" and "southern" triangle (9 STs).

Torsion

If Δ is a graph, then every spanning tree $\Upsilon \in \mathscr{T}(\Delta)$ is contractible, hence $\tilde{H}_{0}(\Upsilon ; \mathbb{Z})=0$.

On the other hand, if $\operatorname{dim} \Delta=d \geq 2$ then $\tilde{H}_{d-1}(\Upsilon ; \mathbb{Z})$ can be nontrivial.

Example $\Delta=$ complete 2-dimensional complex on 6 vertices; Υ $=$ triangulation of $\mathbb{R} \mathbb{P}^{2}$. Then

$$
\tilde{H}_{1}(\Upsilon ; \mathbb{Z}) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

Geometrically: torsion suggests non-orientability.
Combinatorially: torsion affects the count of spanning trees.

Simplicial Laplacians

Definition Updown Laplacian matrix of Δ in dimension $k-1$:

$$
L_{k-1}^{\mathrm{ud}}(\Delta)=\partial_{k} \partial_{k}^{T} .
$$

- $L_{0}^{\text {ud }}(\Delta)$ is the usual graph Laplacian (rows/columns indexed by vertices).
- $L_{k-1}^{\text {ud }}(\Delta)$ is a symmetric square matrix with rows/columns indexed by $\rho, \pi \in \Delta_{k-1}$:

$$
\ell_{\rho, \pi}= \begin{cases}\#\left\{\sigma \in \Delta_{k} \mid \sigma \supseteq \rho\right\} & \text { if } \rho=\pi \\ \pm 1 & \text { if } \rho, \pi \text { lie in a common } k \text {-face } \\ 0 & \text { otherwise }\end{cases}
$$

Reduced Laplacian $L_{T}(\Delta)$: pick a $(k-1)$-tree T and delete rows/columns corresponding to its facets

The Simplicial Matrix-Tree Theorem

Simplicial Matrix-Tree Theorem

(Bolker, Kalai, Adin, Duval-Klivans-JLM, ...)
The "number" of spanning trees of Δ^{d} is

$$
\tau_{d}(\Delta) \stackrel{\text { def }}{=} \sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2}=c \operatorname{det} \hat{L}_{T}=\frac{c^{\prime} \operatorname{pdet} L}{\tau_{d-1}(\Delta)}
$$

- If $d=1$ (graphs) then all summands are 1
- pdet $M=$ product of nonzero eigenvalues (pseudodeterminant)
- Correction factors c, c^{\prime} involve torsion homology; often trivial
- When do L and/or L_{T} have integer eigenvalues?

Kalai's Theorem

Complete d-dimensional complex on n vertices:

$$
K_{n, d}=\{F \subseteq\{1, \ldots, n\} \quad \mid \quad \operatorname{dim} F \leq d\}
$$

(In particular $K_{n, 1}=K_{n}$.)
Theorem [Kalai '83]

$$
\tau\left(K_{n, d}\right)=n\binom{n-2}{d}
$$

Better yet,
$\sum_{\Upsilon \in \mathscr{T}(K)}\left|\tilde{H}_{d-1}(\Upsilon)\right|^{2} \prod_{i=1}^{n} x_{i}^{\operatorname{deg}_{\Upsilon}(i)}=\left(x_{1} \cdots x_{n}\right){ }^{\binom{n-2}{d-1}}\left(x_{1}+\cdots+x_{n}\right)^{\binom{n-2}{d}}$.

Kalai's Theorem

- Kalai's theorem reduces to $\tau\left(K_{n}\right)=n^{n-2}$ when $d=1$, and the weighted version reduces to Cayley-Prüfer.
- Bolker (1976): Observed that $n\binom{n-2}{d}$ is an exact count of trees for small n, d, but fails for $n=6, d=2$.
- The problem is torsion - $\mathbb{R} \mathbb{P}^{2}$ requires six vertices to triangulate
- Adin (1992): Analogous formula for complete colorful complexes, generalizing $\tau\left(K_{n, m}\right)=n^{m-1} m^{n-1}$
- Duval-Klivans-JLM (2009): Enumeration for shifted complexes (I might get to this later)

Resistor Networks

A [resistor] network $N=(V, E, \mathbf{r})$ is a connected graph (V, E) together with positive resistances $\mathbf{r}=\left(r_{e}\right)_{e \in E}$.

$$
\begin{aligned}
\text { currents } \mathbf{i} & =\left(i_{\vec{e}}\right)_{e \in E} \\
\text { voltages } \mathbf{v} & =\left(v_{\vec{e}}\right)_{e \in E}
\end{aligned}
$$

Ohm's law
Kirchhoff's current law
Kirchhoff's voltage law
$i_{e} r_{e}=v_{e} \quad(\forall e \in E)$
Net current out of every vertex is 0
Net voltage gain around every cycle is 0

Every voltage comes from a potential $\left(p_{x}\right)_{x \in V}$ via $v_{x \vec{y}}=p_{y}-p_{x}$

Kirchhoff's Laws and the Incidence Matrix

∂	12	31	41	52	34	45	63	74	67
1	(-1	1	1	0	0	0	0	0	0
2	1	0	0	1	0	0	0	0	0
3	0	-1	0	0	-1	0	1	0	0
4	0	0	-1	0	1	-1	0	1	0
5	0	0	0	-1	0	1	0	0	0
6	0	0	0	0	0	0	-1	0	-1
7	0	0	0	0	0	0	0	-1	0
8	0	0	0	0	0	0	0	0	-1)

KCL: $\mathbf{i} \in \operatorname{ker} \partial=$ nullspace (∂)

- Currents are flows
$\mathrm{KVL}: \mathbf{v} \in(\operatorname{ker} \partial)^{\perp}=$ rowspace (∂)
- Voltages are cuts

Effective Resistance

Idea: Attach a current generator: edge $\mathbf{e}=\overrightarrow{x y}$ with current $i_{\mathbf{e}}$, then look for currents and voltages satisfying OL, KCL, KPL.

Dirichlet principle The state of the system is the unique minimizer of "total energy" $\sum_{e} v_{e} i_{e}$ subject to OL, KCL, KPL.
Rayleigh principle As far as the external world is concerned, the system is equivalent to a single edge \mathbf{e} with resistance

$$
R_{\mathrm{e}}^{\mathrm{eff}}=R_{x y}^{\mathrm{eff}}=\frac{p_{y}-p_{x}}{c_{\mathrm{e}}}
$$

(the effective resistance of \mathbf{e}).
Fact: If (\mathbf{v}, \mathbf{i}) obeys $\mathrm{OL}+\mathrm{KCL}+\mathrm{KPL}$ and minimize energy, then

$$
R_{\mathrm{e}}^{\mathrm{eff}}=v_{\mathrm{e}} / i_{\mathrm{e}}
$$

Effective Resistance and Tree Counting

Theorem [Thomassen 1990]
Let $N=(V, E, \mathbf{r})$ be a network and $e=x y \in E$.

- If $\mathbf{r} \equiv 1$, then

$$
R_{x y}^{\mathrm{eff}}=\frac{\tau(G / x y)}{\tau(G)}=\operatorname{Pr}[\text { random spanning tree contains } x y]
$$

- Generalization for arbitrary resistances:

$$
R_{x y}^{\mathrm{eff}}=\frac{\hat{\tau}(G / x y)}{\hat{\tau}(G)}=\frac{\sum_{T \in \mathscr{T}(G / x y)} \prod_{e \in T} r_{e}^{-1}}{\sum_{T \in \mathscr{T}(G)} \prod_{e \in T} r_{e}^{-1}}
$$

Combinatorial application: weighted tree enumeration!

Application: Ferrers Graphs

The Ferrers graph G_{λ} of a partition λ has vertices corresponding to the rows and columns of λ, and edges corresponding to squares.

Here $\lambda=(4,4,2), \lambda^{\prime}=(3,3,2,2), n=3=\ell(\lambda), m=4=\ell\left(\lambda^{\prime}\right)$.
Define a degree-weighted tree enumerator

$$
\hat{\tau}(G)=\sum_{T \in \mathscr{T}\left(G_{\lambda}\right)} \prod_{i=1}^{m} x_{i} \operatorname{deg}_{T}\left(u_{i}\right) \prod_{j=1}^{n} y_{j} \operatorname{deg}_{T}\left(v_{j}\right)
$$

Application: Ferrers Graphs

Theorem (Ehrenborg and van Willigenburg, 2004):

$$
\hat{\tau}\left(G_{\lambda}\right)=x_{1} \cdots x_{m} y_{1} \cdots y_{n} \prod_{i=2}^{n}\left(y_{1}+\cdots+y_{\lambda_{i}}\right) \prod_{j=2}^{n}\left(x_{1}+\cdots+x_{\lambda_{j}^{\prime}}\right)
$$

(Proof sketch: Find effective resistance of a corner of λ; induct.) In the example above,

$$
\begin{aligned}
\hat{\tau}\left(G_{\lambda}\right)= & x_{1} x_{2} x_{3} x_{4} y_{1} y_{2} y_{3} \\
& \times\left(y_{1}+y_{2}+y_{3}\right)\left(y_{1}+y_{2}\right)^{2}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)\left(x_{1}+x_{2}\right)
\end{aligned}
$$

and in particular $\tau\left(G_{\lambda}\right)=3 \cdot 2^{2} \cdot 4 \cdot 2$.

Simplicial Networks

Simplicial network: pure complex Δ^{d} with resistances $\left(r_{\varphi}\right)_{\varphi \in \Phi}$ ($\Phi=$ facets of Δ)

$$
d=1
$$

Currents $\mathbf{i}=\left(i_{\varphi}\right)_{\varphi \in \Phi} \quad$ Voltages $\mathbf{v}=\left(v_{\varphi}\right)_{\varphi \in \Phi}$

Ohm's law
Kirchhoff's current law
Kirchhoff's voltage law

$$
\begin{aligned}
& i_{\varphi} r_{\varphi}=v_{\varphi} \text { for all } \varphi \in \Phi \\
& \mathbf{i} \in \operatorname{ker}\left(\partial_{d}\right) \\
& \mathbf{v} \in \operatorname{ker}\left(\partial_{d}\right)^{\perp}
\end{aligned}
$$

- Dirichlet, Rayleigh, $R^{\text {eff }}$ have natural simplicial analogues.

Counting Simplicial Trees via Effective Resistance

Theorem [Kook-Lee 2018]
Let (Δ, \boldsymbol{r}) be a simplicial network and σ a current generator. Then:

$$
R_{\sigma}^{\mathrm{eff}}=\frac{\hat{\tau}(\Delta / \sigma)}{\hat{\tau}(\Delta)}=\frac{\sum_{T \in \mathscr{T}(\Delta / \sigma)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \prod_{\varphi \in T} r_{\varphi}^{-1}}{\sum_{T \in \mathscr{T}(\Delta)}\left|\tilde{H}_{d-1}(T, \mathbb{Z})\right|^{2} \prod_{\varphi \in T} r_{\varphi}^{-1}}
$$

- Generalizes Thomassen's theorem for $R^{\text {eff }}$ in graphs
- $\Delta / \sigma=$ quotient complex (not simplicial, but close enough)
- Application: count trees by induction on facets (a la Ehrenborg-van Willigenburg)

Shifted Complexes

A (pure) simplicial complex Δ on vertices $\{1, \ldots, n\}$ is shifted if any vertex of a face may be replaced with a smaller vertex. Equivalently, the facets of Δ form an order ideal in Gale order or componentwise order (best explained by a picture)

$\Delta=\langle 135,234\rangle_{\text {Gale }}$

Facets

Nonfaces
Critical pairs

Shifted complexes are nice: shellable, good h-vectors, arise in algebra (Borel-fixed ideals), generalize threshold graphs

Shifted Complexes

Duval-Reiner '02: Let $\lambda_{i}=$ number of max-dim faces containing vertex i. Then eigenvalues of $L(\Delta)=$ column lengths of λ.
(Generalizes Merris's Theorem - one-dimensional shifted complexes are just threshold graphs.)

Duval-Klivans-JLM '09: recursion for $\hat{\tau}(\Delta)$ via the shifted complexes $\langle\varphi \in \Delta \mid 1 \in \varphi\rangle$ and $\langle\varphi \in \Delta \mid 1 \notin \varphi\rangle$.
Here $\hat{\tau}(\Delta)$ is the finely weighted degree enumerator

$$
\hat{\tau}(\Delta)=\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{\substack{\text { facets } \\\left\{v_{0}<\cdots<v_{d}\right\}}} x_{0, v_{0}} \cdots x_{d, v_{d}}
$$

Punchline: Critical pairs P correspond to factors f_{P} of $\hat{\tau}(\Delta)$.

Shifted Complexes

$$
R^{\text {eff }}(\sigma)=\frac{\hat{\tau}(\Delta / \sigma)}{\hat{\tau}(\Delta)}=\frac{\prod_{\text {yellow } P} f_{P}}{\prod_{\text {green } P} f_{P}}
$$

Color-Shifted Complexes

A simplicial complex Δ^{d} is color-shifted [Babson-Novik '06] if:
$-V(\Delta)=V_{1} \cup \cdots \cup V_{d+1}$, where $V_{q}=\left\{v_{q 1}, \ldots, v_{q \ell_{q}}\right\}$

- Each facet contains exactly one vertex of each color
- A vertex may be replaced with a smaller vertex of same color
(Equivalently, facets are an order ideal in $V_{1} \times \cdots \times V_{q}$.)
- A 1-dimensional color-shifted complex is just a Ferrers graph.

Color-Shifted Complexes

Trees in Color-Shifted Complexes

Vertex-weighted spanning tree enumerators:

$$
\begin{aligned}
\hat{\tau}(\Delta) & =\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{\varphi \in \Upsilon} \prod_{v_{q j} \in \varphi} x_{q j} \\
& =\sum_{\Upsilon \in \mathscr{T}(\Delta)}\left|H_{d-1}(\Upsilon ; \mathbb{Z})\right|^{2} \prod_{q, j} x_{q j}^{\operatorname{deg}_{\Upsilon}\left(v_{q j}\right)}
\end{aligned}
$$

Proposition [Duval-Kook-Lee-JLM 2021+]
Let Δ^{d} be color-shifted and $\sigma=v_{1, k_{1}} \ldots v_{d+1, k_{d+1}}$ a minimal nonfacet. Then

$$
R^{\mathrm{eff}}(\sigma)=\frac{\hat{\tau}(\Delta+\sigma)}{\tau(\Delta)}=\prod_{q=1}^{d+1} \frac{x_{q, 1}+\cdots+x_{q, k_{q}}}{x_{q, 1}+\cdots+x_{q, k_{q}-1}} .
$$

Trees in Color-Shifted Complexes

Theorem [Duval-Kook-Lee-JLM 2022 ${ }^{+}$]

$$
\hat{\tau}(\Delta)=\prod_{q, i} x_{q, i}^{e(q, i)} \prod_{\substack{\rho \in \Delta \\ \operatorname{dim} \rho=d-1}}\left(x_{m(\rho), 1}+\cdots+x_{m(\rho), k(\rho)}\right)
$$

where

$$
\begin{aligned}
e(q, i) & =\#\left\{\sigma \in \Delta_{d} \mid v_{q, i} \in \sigma \text { and } v_{q^{\prime}, 1} \in \sigma \text { for some } q^{\prime} \neq q\right\} \\
m(\rho) & =\text { unique color missing from } \rho \\
k(\rho) & =\max \left\{j \mid \rho \cup v_{m(\rho), j} \in \Delta\right\}
\end{aligned}
$$

- Special case $d=1$ is Ehrenborg-van Willigenburg
- Previously conjectured by Aalipour and Duval [unpublished]
- Result seems inaccessible without effective resistance

Thank you!

Selected Bibliography

How it all got started:

- E. Bolker, Simplicial geometry and transportation polytopes, Trans. Amer. Math. Soc. 217 (1976) 121-142
- G. Kalai, Enumeration of Q-acyclic simplicial complexes, Israel J. Math. 45 (1983) 336-351
- R. Adin, Counting colorful multi-dimensional trees, Combinatorica 12 (1992) 247-260

Some notable works:

- W. Kook, V. Reiner, and D. Stanton, Combinatorial Laplacians of matroid complexes, J. Amer. Math. Soc. 13 (2000) 129-148
- A.M. Duval and V. Reiner, Shifted simplicial complexes are Laplacian integral, Trans. Amer. Math. Soc. 354 (2002) 4313-4344
- R. Lyons, Random complexes and ℓ_{2}-Betti numbers, J. Topol. Anal. 1 (2009) 153-175
- M.J. Catanzaro, V.Y. Chernyak and J.R. Klein, Kirchhoff's theorems in higher dimensions and Reidemeister torsion, Homol. Homot. Appl. 17 (2015) 165-189
- W. Kook and K.-J. Lee, Simplicial networks and effective resistance, Adv. Appl. Math. 100 (2018) 71-86

Recent survey:

- A.M. Duval, C.J. Klivans, and J.L. Martin, Simplicial and cellular trees, Recent Trends in Combinatorics, 713-752, IMA Pubs. (Springer) 2016

