Math 824, Fall 2012

Problem Set \#4

Instructions: Type up your solutions using LaTeX; there is a header file on the course website with macros that may be useful. E-mail me (jmartin@math.ku.edu) the PDF file under the name \{your-name\}4.pdf. Deadline: 3:00 PM on Friday, October 26.

Problem \#1 (Stanley, EC1, 2nd ed., 3.119) Prove the q-binomial theorem:

$$
\prod_{k=0}^{n-1}\left(x-q^{k}\right)=\sum_{k=0}^{n}\binom{\mathbf{n}}{\mathbf{k}}(-1)^{k} q^{\binom{k}{2}} x^{n-k}
$$

Here $\binom{\mathbf{n}}{\mathbf{k}}$ denotes the q-binomial coefficient:

$$
\binom{\mathbf{n}}{\mathbf{k}}=\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}
$$

You may, with appropriate citation, use identities such as those on p. 55 of Stanley's EC1. (Hint: Let $V=\mathbb{F}_{q}^{n}$ and let X be a vector space over \mathbb{F}_{q} with x elements. Count the number of one-to-one linear transformations $V \rightarrow X$ in two ways.) Derive the ordinary binomial theorem as a corollary.

Problem \#2 (Stanley, EC1, 3.129) Here is a cute application of combinatorics to elementary number theory. Let P be a finite poset, and let μ be the Möbius function of $\hat{P}=P \cup\{\hat{0}, \hat{1}\}$. Suppose that P has a fixed-point-free automorphism $\sigma: P \rightarrow P$ of prime order p; that is, $\sigma(x) \neq x$ and $\sigma^{p}(x)=x$ for all $x \in P$. Prove that $\mu_{\hat{P}}(\hat{0}, \hat{1}) \cong-1(\bmod p)$. What does this say in the case that $\hat{P}=\Pi_{p}$?

Problem \#3 (Stanley, HA, 2.5) Let G be a graph on n vertices, let \mathcal{A}_{G} be its graphic arrangement in \mathbb{R}^{n}, and let $\mathcal{B}_{G}=\mathscr{B}_{n} \cup \mathcal{A}_{G}$. (That is, \mathcal{B} consists of the coordinate hyperplanes $x_{i}=0$ in \mathbb{R}^{n} together with the hyperplanes $x_{i}=x_{j}$ for all edges $i j$ of G.) Calculate $\chi_{\mathcal{B}_{G}}(q)$ in terms of $\chi_{\mathcal{A}_{G}}(q)$.

Problem \#4 (Stanley, EC2, 3.115(d)] Calculate the characteristic polynomial and the number of regions of the type- B braid arrangement $\mathcal{O}_{n} \subseteq \mathbb{R}^{n}$, with $n(n-1)$ hyperplanes $x_{i}=x_{j}, x_{i}=-x_{j}$ for $1 \leq i<j \leq n$.

Problem \#5 Recall that each permutation $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathfrak{S}_{n}$ corresponds to a region of the braid arrangement $B r_{n}$, namely the open cone $C_{w}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{w_{1}}<x_{w_{2}}<\cdots<x_{w_{n}}\right\}$. Denote its closure by $\overline{C_{w}}$. For any set $W \subseteq \mathfrak{S}_{n}$, consider the closed fan

$$
F(W)=\bigcup_{w \in W} \overline{C_{w}}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{w_{1}} \leq \cdots \leq x_{w_{n}} \text { for some } w \in W\right\}
$$

Prove that $F(W)$ is a convex set if and only if W is the set of linear extensions of some poset P on $[n]$. (A linear extension of P is a total ordering \prec consistent with the ordering of P, i.e., if $x<_{P} y$ then $x \prec y$.)

Problem \#6 The runners in a race are seeded $1, \ldots, n$ (stronger runners are assigned higher numbers). To even the playing field, the rules specify that you earn one point for each higher-ranked opponent you beat, and one point for each lower-ranked opponent you beat by at least one second. (If a higher-ranked runner beats a lower-ranked runner by less than 1 second, no one gets a the point for that matchup.) Let s_{i} be the number of points scored by the $i^{t h}$ player and let $s=\left(s_{1}, \ldots, s_{n}\right)$ be the score vector.
(\#6a) Show that the possible score vectors are in bijection with the regions of the Shi arrangement.
(\#6b) Work out all possible score vectors in the cases of 2 and 3 players. Conjecture a necessary and sufficient condition for $\left(s_{1}, \ldots, s_{n}\right)$ to be a possible score vector for n players. Prove it if you can.

