Math 824, Fall 2012 Problem Set #4

Instructions: Type up your solutions using LaTeX; there is a header file on the course website with macros that may be useful. E-mail me (jmartin@math.ku.edu) the PDF file under the name {your-name}4.pdf. Deadline: 3:00 PM on Friday, October 26.

Problem #1 (Stanley, EC1, 2nd ed., 3.119) Prove the *q*-binomial theorem:

$$\prod_{k=0}^{n-1} (x-q^k) = \sum_{k=0}^n \binom{\mathbf{n}}{\mathbf{k}} (-1)^k q^{\binom{k}{2}} x^{n-k}$$

Here $\binom{\mathbf{n}}{\mathbf{k}}$ denotes the *q*-binomial coefficient:

$$\begin{pmatrix} \mathbf{n} \\ \mathbf{k} \end{pmatrix} = \frac{(q^n - 1)(q^n - q) \cdots (q^n - q^{k-1})}{(q^k - 1)(q^k - q) \cdots (q^k - q^{k-1})}.$$

You may, with appropriate citation, use identities such as those on p. 55 of Stanley's EC1. (Hint: Let $V = \mathbb{F}_q^n$ and let X be a vector space over \mathbb{F}_q with x elements. Count the number of one-to-one linear transformations $V \to X$ in two ways.) Derive the ordinary binomial theorem as a corollary.

Problem #2 (Stanley, EC1, 3.129) Here is a cute application of combinatorics to elementary number theory. Let P be a finite poset, and let μ be the Möbius function of $\hat{P} = P \cup \{\hat{0}, \hat{1}\}$. Suppose that P has a fixed-point-free automorphism $\sigma : P \to P$ of prime order p; that is, $\sigma(x) \neq x$ and $\sigma^p(x) = x$ for all $x \in P$. Prove that $\mu_{\hat{P}}(\hat{0}, \hat{1}) \cong -1 \pmod{p}$. What does this say in the case that $\hat{P} = \prod_p$?

Problem #3 (Stanley, HA, 2.5) Let G be a graph on n vertices, let \mathcal{A}_G be its graphic arrangement in \mathbb{R}^n , and let $\mathcal{B}_G = \mathscr{B}_n \cup \mathcal{A}_G$. (That is, \mathcal{B} consists of the coordinate hyperplanes $x_i = 0$ in \mathbb{R}^n together with the hyperplanes $x_i = x_j$ for all edges ij of G.) Calculate $\chi_{\mathcal{B}_G}(q)$ in terms of $\chi_{\mathcal{A}_G}(q)$.

Problem #4 (Stanley, EC2, 3.115(d)] Calculate the characteristic polynomial and the number of regions of the *type-B braid arrangement* $\mathcal{O}_n \subseteq \mathbb{R}^n$, with n(n-1) hyperplanes $x_i = x_j$, $x_i = -x_j$ for $1 \le i < j \le n$.

Problem #5 Recall that each permutation $w = (w_1, \ldots, w_n) \in \mathfrak{S}_n$ corresponds to a region of the braid arrangement Br_n , namely the open cone $C_w = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_{w_1} < x_{w_2} < \cdots < x_{w_n}\}$. Denote its closure by $\overline{C_w}$. For any set $W \subseteq \mathfrak{S}_n$, consider the closed fan

$$F(W) = \bigcup_{w \in W} \overline{C_w} = \{ (x_1, \dots, x_n) \in \mathbb{R}^n \mid x_{w_1} \le \dots \le x_{w_n} \text{ for some } w \in W \}.$$

Prove that F(W) is a convex set if and only if W is the set of linear extensions of some poset P on [n]. (A *linear extension* of P is a total ordering \prec consistent with the ordering of P, i.e., if $x <_P y$ then $x \prec y$.)

Problem #6 The runners in a race are seeded $1, \ldots, n$ (stronger runners are assigned higher numbers). To even the playing field, the rules specify that you earn one point for each higher-ranked opponent you beat, and one point for each lower-ranked opponent you beat by at least one second. (If a higher-ranked runner beats a lower-ranked runner by less than 1 second, no one gets a the point for that matchup.) Let s_i be the number of points scored by the i^{th} player and let $s = (s_1, \ldots, s_n)$ be the score vector.

(#6a) Show that the possible score vectors are in bijection with the regions of the Shi arrangement.

(#6b) Work out all possible score vectors in the cases of 2 and 3 players. Conjecture a necessary and sufficient condition for (s_1, \ldots, s_n) to be a possible score vector for n players. Prove it if you can.