
Math 824, Fall 2012
Problem Set #3

Instructions: Type up your solutions using LaTeX. There is a header file at
http://www.math.ku.edu/∼jmartin/math824/header.tex with macros that may be useful. E-mail me
(jmartin@math.ku.edu) the PDF file under the name {your-name}3.pdf.

Deadline: 3:00 PM on Friday, October 5.

Problem #1 Determine, with proof, all pairs of integers k ≤ n such that there exists a graph G with
M(G) ∼= Uk(n). (Recall that Uk(n) is the matroid on E = [n] such that every subset of E of cardinality k
is a basis.)

Problem #2 Let X and Y be disjoint sets of vertices, and let B be an X,Y -bipartite graph: that is,
every edge of B has one endpoint in each of X and Y . For V = {x1, . . . , xn} ⊂ X, a transversal of V is a set
W = {y1, . . . , yn} ⊂ Y such that xiyi is an edge of B. (The set of all edges xiyi is called a matching.) Let
I be the family of all subsets of X that have a transversal; it is immediate that I is a simplicial complex.

Prove that I is in fact a matroid independence system by verifying that the donation condition holds.
(Suggestion: Write down an example or two of a pair of independent sets I, J with |I| < |J |, and use the
corresponding matchings to find a systematic way of choosing a vertex that J can donate to I.) These ma-
troids are called transversal matroids; along with linear and graphic matroids, they are the other “classical”
examples of matroids in combinatorics.)

Problem #3 Let G = (V,E) be a graph with n vertices and c components. For a vertex coloring
f : V → N, let i(f) denote the number of “improper” edges, i.e., whose endpoints are assigned the same
color. Crapo’s coboundary polynomial of G is

χ̄G(q; t) = q−c
∑

f :V→[q]

ti(f).

This is evidently a stronger invariant than the chromatic polynomial of G, which can be obtained as qχ̄G(q, 0).
In fact, the coboundary polynomial provides the same information as the Tutte polynomial.

Prove that

χ̄G(q; t) = (t− 1)n−cTG

(
q + t− 1
t− 1

, t

)
by finding a deletion/contraction recurrence for the coboundary polynomial.

Problem #4 Let P be a chain-finite poset. The kappa function of P is the element of the incidence
algebra I(P ) defined by κ(x, y) = 1 if xl y, κ(x, y) = 0 otherwise.

(#4a) Give a condition on κ that is equivalent to P being ranked.

(#4b) Give combinatorial interpretations of κ ∗ ζ and ζ ∗ κ.

(See next page for Problem #5.)
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Problem #5 Let Πn be the lattice of set partitions of [n]. Recall that the order relation on Πn is given as
follows: if π, σ ∈ Πn, then π ≤ σ if every block of π is contained in some block of σ (for short, “π refines σ”).
In this problem, you’re going to calculate the number µn := µΠn

(0̂, 1̂).

(#5a) Calculate µn by brute force for n = 1, 2, 3, 4. Make a conjecture about the value of µn in general.

(#5b) Define a function f : Πn → Q[x] as follows: if X is a finite set of cardinality x, then

f(π) = #
{
h : [n]→ X

∣∣ h(s) = h(s′) ⇐⇒ s, s′ belong to the same block of π
}
.

For example, if π = 1̂ = {{1, 2, . . . , n}} is the one-block partition, then f(π) counts the constant functions
from [n] to X, so f(π) = x. Find a formula for f(π) in general.

(#5c) Let g(π) =
∑
σ≥π f(σ). Prove that g(π) = x|π| for all π ∈ Πn. (Hint: What kinds of functions are

counted by the sum?)

(#5d) Apply Möbius inversion and an appropriate substitution for x to calculate µn.


