Math 824, Fall 2012
Problem Set \#3
Instructions: Type up your solutions using LaTeX. There is a header file at
http://www.math.ku.edu/~jmartin/math824/header.tex with macros that may be useful. E-mail me (jmartin@math.ku.edu) the PDF file under the name \{your-name\} 3.pdf.

Deadline: 3:00 PM on Friday, October 5.

Problem \#1 Determine, with proof, all pairs of integers $k \leq n$ such that there exists a graph G with $M(G) \cong U_{k}(n)$. (Recall that $U_{k}(n)$ is the matroid on $E=[n]$ such that every subset of E of cardinality k is a basis.)

Problem \#2 Let X and Y be disjoint sets of vertices, and let B be an X, Y-bipartite graph: that is, every edge of B has one endpoint in each of X and Y. For $V=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$, a transversal of V is a set $W=\left\{y_{1}, \ldots, y_{n}\right\} \subset Y$ such that $x_{i} y_{i}$ is an edge of B. (The set of all edges $x_{i} y_{i}$ is called a matching.) Let \mathscr{I} be the family of all subsets of X that have a transversal; it is immediate that \mathscr{I} is a simplicial complex.

Prove that \mathscr{I} is in fact a matroid independence system by verifying that the donation condition holds. (Suggestion: Write down an example or two of a pair of independent sets I, J with $|I|<|J|$, and use the corresponding matchings to find a systematic way of choosing a vertex that J can donate to I.) These matroids are called transversal matroids; along with linear and graphic matroids, they are the other "classical" examples of matroids in combinatorics.)

Problem \#3 Let $G=(V, E)$ be a graph with n vertices and components. For a vertex coloring $f: V \rightarrow \mathbb{N}$, let $i(f)$ denote the number of "improper" edges, i.e., whose endpoints are assigned the same color. Crapo's coboundary polynomial of G is

$$
\bar{\chi}_{G}(q ; t)=q^{-c} \sum_{f: V \rightarrow[q]} t^{i(f)} .
$$

This is evidently a stronger invariant than the chromatic polynomial of G, which can be obtained as $q \bar{\chi}_{G}(q, 0)$. In fact, the coboundary polynomial provides the same information as the Tutte polynomial.

Prove that

$$
\bar{\chi}_{G}(q ; t)=(t-1)^{n-c} T_{G}\left(\frac{q+t-1}{t-1}, t\right)
$$

by finding a deletion/contraction recurrence for the coboundary polynomial.

Problem \#4 Let P be a chain-finite poset. The kappa function of P is the element of the incidence algebra $I(P)$ defined by $\kappa(x, y)=1$ if $x \lessdot y, \kappa(x, y)=0$ otherwise.
(\#4a) Give a condition on κ that is equivalent to P being ranked.
(\#4b) Give combinatorial interpretations of $\kappa * \zeta$ and $\zeta * \kappa$.
(See next page for Problem \#5.)

Problem \#5 Let Π_{n} be the lattice of set partitions of $[n]$. Recall that the order relation on Π_{n} is given as follows: if $\pi, \sigma \in \Pi_{n}$, then $\pi \leq \sigma$ if every block of π is contained in some block of σ (for short, " π refines σ "). In this problem, you're going to calculate the number $\mu_{n}:=\mu_{\Pi_{n}}(\hat{0}, \hat{1})$.
(\#5a) Calculate μ_{n} by brute force for $n=1,2,3,4$. Make a conjecture about the value of μ_{n} in general.
(\#5b) Define a function $f: \Pi_{n} \rightarrow \mathbb{Q}[x]$ as follows: if X is a finite set of cardinality x, then

$$
f(\pi)=\#\left\{h:[n] \rightarrow X \quad \mid \quad h(s)=h\left(s^{\prime}\right) \Longleftrightarrow s, s^{\prime} \text { belong to the same block of } \pi\right\}
$$

For example, if $\pi=\hat{1}=\{\{1,2, \ldots, n\}\}$ is the one-block partition, then $f(\pi)$ counts the constant functions from $[n]$ to X, so $f(\pi)=x$. Find a formula for $f(\pi)$ in general.
(\#5c) Let $g(\pi)=\sum_{\sigma \geq \pi} f(\sigma)$. Prove that $g(\pi)=x^{|\pi|}$ for all $\pi \in \Pi_{n}$. (Hint: What kinds of functions are counted by the sum?)
(\#5d) Apply Möbius inversion and an appropriate substitution for x to calculate μ_{n}.

