Math 824, Fall 2012

Problem Set \#1

Instructions: Type up your solutions using LaTeX. There is a header file at http://www.math.ku.edu/ jmartin/math824/header.tex with macros that may be useful. E-mail me (jmartin@math.ku.edu) the PDF file under the name \{your-name\} 1.pdf.

Deadline: 5:00 PM on Wednesday, September 5.

Problem \#1 A directed acyclic graph or DAG, is a pair $G=(V, E)$, where V is a finite set of vertices; E is a finite set of edges, each of which is an ordered pair of distinct vertices; and E contains no directed cycles, i.e., no subsets of the form

$$
\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}
$$

for any $v_{1}, \ldots, v_{n} \in V$.
(\#1a) Let P be a poset with order relation $<$. Let $E=\{(v, w) \mid v, w \in P, v<w\}$. Prove that the pair (P, E) is a DAG.
(\#1b) Let $G=(V, E)$ be a DAG. Define a relation $<$ on V by setting $v<w$ iff there is some directed path from v to w in G, i.e., iff E has a subset of the form $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)\right\}$ with $v=v_{1}$ and $w=v_{n}$. Prove that this relation makes V into a poset.
(This problem is purely a technical exercise, but it does show that posets and DAGs are essentially the same thing.)

Problem \#2 Let n be a positive integer. Let D_{n} be the set of all positive-integer divisors of n (including n itself), partially ordered by divisibility.
(\#2a) Prove that D_{n} is a ranked poset, and describe the rank function.
(\#2b) For which values of n is D_{n} (i) a chain; (ii) a Boolean algebra? For which values of n, m is it the case that $D_{n} \cong D_{m}$?
(\#2c) Prove that D_{n} is a distributive lattice. Describe its meet and join operations and its join-irreducible elements.
(\#2d) Prove that D_{n} is self-dual, i.e., there is a bijection $f: D_{n} \rightarrow D_{n}$ such that $f(x) \leq f(y)$ if and only if $x \geq y$.

Problem \#3 Prove that if L is a lattice, then

$$
x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \quad \forall x, y, z \in L
$$

if and only if

$$
x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \quad \forall x, y, z \in L
$$

(A consequence is that L is distributive if and only if L^{*} is; that is, distributivity is a self-dual condition.)

Problem \#4 (\#4a) Describe the join-irreducible elements of Young's lattice Y.
(\#4b) Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ be a partition, and let $\lambda=\mu_{1} \vee \mu_{2} \vee \cdots \vee \mu_{k}$ be the unique minimal decomposition of λ into join-irreducibles. Explain how to find k from the Ferrers diagram of λ.

Problem \#5 (\#5a) Count the maximal chains in $L_{n}(q)$. (Recall that this is the lattice of vector subspaces of $V=\left(\mathbb{F}_{q}\right)^{n}$, where \mathbb{F}_{q} is the finite field with q elements).
(\#5b) Count the maximal chains in the interval $[\emptyset, \lambda] \subset Y$ if the Ferrers diagram of λ is a $2 \times n$ rectangle.
(\#5c) Ditto if λ is a hook shape (i.e., $\lambda=(n+1,1,1, \ldots, 1)$, with a total of m copies of 1$)$.

Problem \#6 Prove that the rank-generating function of Bruhat order on \mathfrak{S}_{n} is

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{r(\sigma)}=\prod_{i=1}^{n} \frac{1-q^{i}}{1-q}
$$

where $r(\sigma)=\#\left\{\{i, j\} \mid i<j\right.$ and $\left.\sigma_{i}>\sigma_{j}\right\}$. (Hint: Induct on n, and use one-line notation for permutations, not cycle notation,.)

Problem \#7 Fill in the details in the proof of Birkhoff's theorem by showing the following facts.
(\#7a) For a finite distributive lattice L, show that the map $\phi: L \rightarrow J(\operatorname{Irr}(L))$ given by

$$
\phi(x)=\langle p \mid p \in \operatorname{Irr}(L), p \leq x\rangle
$$

is indeed a lattice isomorphism.
(\#7b) For a finite poset P, show that an order ideal in P is join-irreducible in $J(P)$ if and only if it is principal (i.e., generated by a single element).

