Math 824, Fall 2010
Problem Set \#3
Due date: Friday 10/8/10

Problem \#1 Let X and Y be disjoint sets of vertices, and let B be an X, Y-bipartite graph: that is, every edge of B has one endpoint in each of X and Y. For $V=\left\{x_{1}, \ldots, x_{n}\right\} \subset X$, a transversal of V is a set $W=\left\{y_{1}, \ldots, y_{n}\right\} \subset Y$ such that $x_{i} y_{i}$ is an edge of B. Let \mathscr{I} be the family of all subsets of X that have a transversal. Prove that \mathscr{I} is a matroid independence system. (A matroid that arises in this way is called a transversal matroid.)

Problem \#2 Let M be a matroid on ground set E with rank function r.
(\#2a) Let M^{*} be the dual matroid to M, and let r^{*} be its rank function. Find a formula for r^{*} in terms of r.
(\#2b) Use the formula from part (a), together with the corank-nullity form of the Tutte polynomial, to prove that $T(M, x, y)=T\left(M^{*}, y, x\right)$ for every matroid M.

Problem \#3 Let $G=(V, E)$ be a graph with n vertices and components. For a vertex coloring $f: V \rightarrow \mathbb{N}$, let $i(f)$ denote the number of "improper" edges, i.e., whose endpoints are assigned the same color. The (Crapo) coboundary polynomial of G is

$$
\bar{\chi}_{G}(q ; t)=q^{-1} \sum_{f: V \rightarrow[q]} t^{i(f)} .
$$

This is evidently a stronger invariant than the chromatic polynomial of G, which can be obtained as $q \bar{\chi}_{G}(q, 0)$. In fact, the coboundary polynomial provides the same information as the Tutte polynomial.
(\#3a) Prove that

$$
\bar{\chi}_{G}(q ; t)=(t-1)^{n-c} T_{G}\left(\frac{q+t-1}{t-1}, t\right) .
$$

(\#3b) Express the Tutte polynomial in terms of the coboundary polynomial.

Problem \#4 Let P be a chain-finite poset. The kappa function of P is the element of the incidence algebra $I(P)$ defined by $\kappa(x, y)=1$ if $x \lessdot y, \kappa(x, y)=0$ otherwise.
(\#4a) Give a condition on κ that is equivalent to P being ranked.
(\#4b) Give combinatorial interpretations of $\kappa * \zeta$ and $\zeta * \kappa$.

Problem \#5 Let Π_{n} be the lattice of set partitions of $[n]$. Recall that the order relation on Π_{n} is given as follows: if $\pi, \sigma \in \Pi_{n}$, then $\pi \leq \sigma$ if every block of π is contained in some block of σ (for short, " π refines σ "). In this problem, you're going to calculate the number $\mu_{n}:=\mu_{\Pi_{n}}(\hat{0}, \hat{1})$.
(\#5a) Calculate μ_{n} by brute force for $n=1,2,3,4$. Make a conjecture about the value of μ_{n} in general.
(\#5b) Define a function $f: \Pi_{n} \rightarrow \mathbb{Q}[x]$ as follows: if X is a finite set of cardinality x, then

$$
f(\pi)=\#\left\{h:[n] \rightarrow X \quad \mid \quad h(s)=h\left(s^{\prime}\right) \Longleftrightarrow s, s^{\prime} \text { belong to the same block of } \pi\right\} .
$$

For example, if $\pi=\hat{1}=\{\{1,2, \ldots, n\}\}$ is the one-block partition, then $f(\pi)$ counts the constant functions from $[n]$ to X, so $f(\pi)=x$. Find a formula for $f(\pi)$ in general. $_{1}$
(\#5c) Let $g(\pi)=\sum_{\sigma \geq \pi} f(\sigma)$. Prove that $g(\pi)=x^{|\pi|}$ for all $\pi \in \Pi_{n}$. (Hint: What kinds of functions are counted by the sum?)
(\#5d) Apply Möbius inversion and an appropriate substitution for x to calculate μ_{n}.

Problem \#6 [Optional; requires a bit of abstract algebra.] Let n be a positive integer, and let ζ be a primitive $n^{\text {th }}$ root of unity. The cyclotomic matroid Y_{n} is represented over \mathbb{Q} by the numbers $1, \zeta, \zeta^{2}, \ldots, \zeta^{n-1}$, regarded as elements of the cyclotomic field extension $\mathbb{Q}(\zeta)$. Thus, the rank of Y_{n} is the dimension of $\mathbb{Q}(\zeta)$ as a \mathbb{Q}-vector space, which is given by the Euler phi function.

Prove as many of the following facts as you want:
(1) if n is prime, then $Y_{n} \cong U_{n-1}(n)$;
(2) if m is the square-free part of m (i.e., the product of all the primes dividing $n-$ e.g., the square-free part of 56 is 14) then Y_{n} is the direct sum of n / m copies of Y_{m};
(3) if $n=p q$, where p, q are distinct primes, then $Y_{n} \cong M\left(K_{p, q}\right)^{*}$ - that is, the dual of the graphic matroid of the complete bipartite graph $K_{p, q}$.

