Math 824, Fall 2010
Problem Set \#2
Due date: Friday 9/17/10

Problem \#1 Prove that the partition lattice Π_{n} is a geometric lattice. (Hint: Construct a collection of vectors $S=\left\{s_{i j} \mid 1 \leq i<j \leq n\right\}$ in \mathbb{R}^{n} such that $L(S) \cong \Pi_{n}$.)

Problem \#2 Let \mathbb{F} be a field, let $n \in \mathbb{N}$, and let S be a finite subset of the vector space \mathbb{F}^{n}. Recall the definitions of the posets $L(S)$ and $L^{\text {aff }}(S)$ (see $\S 1.8$ of the lecture notes). For $s=\left(s_{1}, \ldots, s_{n}\right) \in S$, let $\hat{s}=\left(1, s_{1}, \ldots, s_{n}\right) \in \mathbb{F}^{n+1}$, and let $\hat{S}=\{\hat{s} \mid s \in S\}$. Prove that $L(\hat{S})=L^{\text {aff }}(S)$.

Problem \#3 Determine, with proof, all pairs of integers $k \leq n$ such that there exists a graph G with $M(G) \cong U_{k}(n)$. (Recall that $U_{k}(n)$ is the matroid on $E=[n]$ such that every subset of E of cardinality k is a basis.)

Problem \#4 Prove that the two forms of the basis exchange condition are equivalent. That is, if \mathscr{B} is a family of subsets of a finite set E, all of the same cardinality, then prove that

$$
\text { for every } e \in B \backslash B^{\prime}, \text { there exists } e^{\prime} \in B^{\prime} \backslash B \text { such that } B \backslash\{e\} \cup\left\{e^{\prime}\right\} \in \mathscr{B}
$$

if and only if
for every $f \in B \backslash B^{\prime}$, there exists $f^{\prime} \in B^{\prime} \backslash B$ such that $B^{\prime} \backslash\left\{f^{\prime}\right\} \cup\{f\} \in \mathscr{B}$.
(Hint: Consider $\left|B \backslash B^{\prime}\right|$.)

Problem \#5 Let M be a matroid on ground set E with rank function r. Let M^{*} be the dual matroid to M, and let r^{*} be its rank function. Find a formula for r^{*} in terms of r.

Problem \#6 Let E be a finite set and let \mathscr{I} be a simplicial complex on E (that is, a family of subsets such that if $A \in \mathscr{I}$ and $B \subseteq A$, then $B \in \mathscr{I})$. Let $w: E \rightarrow \mathbb{R}_{\geq 0}$ be any weight function. For $A \subseteq E$, define $w(A)=\sum_{e \in A} w(e)$. Consider the problem of maximizing $w(A)$ over all maximat elements $A \in \mathscr{I}$ (also known as facets of \mathscr{I}). A naive approach to try to produce such a set A, which may or may not work for a given \mathscr{I} and w, is the following greedy algorithm:
(1) Let $A=\emptyset$.
(2) If A is a facet of \mathscr{I}, stop.

Otherwise, find $e \in E \backslash A$ of maximal weight such that $A \cup\{e\} \in \mathscr{I}$, and replace A with $A \cup\{e\}$.
(3) Repeat step 2 until A is a facet of \mathscr{I}.
(\#6a) Construct a simplicial complex and a weight function for which this algorithm does not produce a facet of maximal weight. (Hint: The smallest example has $|E|=3$.)
(\#6b) Prove that the following two conditions are equivalent:

- The algorithm produces a facet of maximal weight for every weight function w.
- \mathscr{I} is a matroid independence system.

[^0]
[^0]: ${ }^{\dagger}$ Recall that "maximal" means "not contained in any other element of \mathscr{I} ", which is a logically weaker condition than "of largest possible cardinality".

