7. Monday 2/24: Van Kampen's Theorem - The Proof

Recall the statement of Van Kampen's Theorem.
Let $p \in X$, and let $\left\{A_{\alpha}: \alpha \in \mathscr{A}\right\}$ be a cover of X by path-connected open sets such that $p \in A_{\alpha}$ for every α. We have a commutative diagram of groups, which looks in part like this (where the i 's and j 's are the group homomorphisms induced by inclusions of spaces).

$$
\pi_{1}(-)=\pi_{1}(-, p)
$$

Van Kampen's Theorem:

(1) If every pairwise intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then the map Φ is surjective.
(2) If in addition every triple intersection $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path-connected, then

$$
\operatorname{ker} \Phi=N:=\left\langle\left\langle i_{\alpha \beta}[f] * i_{\beta \alpha}[\bar{f}]: \alpha, \beta \in \mathscr{A}\right\rangle\right.
$$

and so

$$
\pi_{1}(X)=F / N .
$$

Proof of (1). Let $f: I \rightarrow X$ be a loop based at p. Every $s \in I$ has a neighborhood mapped by f into some U_{α}. By compactness of I, there exist numbers $0=s_{0}<s_{1}<\cdots<s_{m}=1$ and indices $\alpha_{1}, \ldots, \alpha_{m}$ such that

$$
f\left(\left[s_{i-1}, s_{i}\right]\right) \subseteq A_{\alpha_{i}} \quad \forall i \in[m] .
$$

Let $f_{i}=\left.f\right|_{\left[s_{i-1}, s_{i}\right]}$, so that $f=f_{1} \cdot f_{2} \cdots f_{m}$. For each $i \in[m]$, the set $A_{i} \cap A_{i+1}$ is path-connected, hence contains a path g_{i} from p to $f\left(s_{i}\right)$. Therefore

$$
\begin{aligned}
f & =f_{1} \cdot f_{2} \cdots f_{m} \\
& =\left(f_{1} \cdot \overline{g_{1}}\right) \cdot\left(g_{1} \cdot f_{2} \cdot \overline{g_{2}}\right) \cdots\left(g_{m-2} \cdot f_{m-1} \cdot \overline{g_{m-1}}\right) \cdot\left(g_{m} \cdot f_{m}\right) \\
& \in \pi_{1}\left(A_{1}, p\right) * \pi_{1}\left(A_{2}, p\right) * \cdots * \pi_{1}\left(A_{m}, p\right) \\
& \in \operatorname{im} \Phi .
\end{aligned}
$$

Proof of (2). Let $[f] \in \pi_{1}(X)$. Say that a factorization of $[f]$ is an expression $\left[f_{1}\right] *\left[f_{2}\right] * \cdots *\left[f_{n}\right]$ that maps to $[f]$ via Φ. Here I am using $*$ to denote concatenation of letters to make a word in $*_{\alpha} \pi_{1}\left(A_{\alpha}\right)$. That is, each [f_{i}] belongs to some $\pi_{1}\left(A_{\alpha}\right)$, and $f \simeq f_{1} \cdot f_{2} \cdots f_{n}$.

We want to show that any two factorizations of $[f]$ are related by operations of the following forms:

- "Type A": If $f_{i}: I \rightarrow A_{\alpha} \cap A_{\beta}$, then we can regard the letter $\left[f_{i}\right]$ as coming either from $\pi_{1}\left(A_{\alpha}\right)$ or from $\pi_{1}\left(A_{\beta}\right)$. This amounts to inserting an element of N into f, namely

$$
i_{\alpha \beta}\left[f_{i}\right] * i_{\beta \alpha}\left[\overline{f_{i}}\right] .
$$

- "Type B": If two consecutive letters in the factorization come from the same A_{α}, we can multiply them. This, of course, doesn't change the element of F we're talking about.

So, suppose we have two factorizations

$$
[f]=\Phi\left(\left[f_{1}\right] * \cdots *\left[f_{k}\right]\right)=\Phi\left(\left[f_{1}^{\prime}\right] * \cdots *\left[f_{\ell}^{\prime}\right]\right)
$$

In particular, there is a path-homotopy of p-loops $H: I \times I \rightarrow X, h_{t}(s)=$ $H(s, t)$, such that

$$
h_{0}=f_{1} \cdots f_{k} \quad \text { and } \quad h_{1}=f_{1}^{\prime} \cdots f_{\ell}^{\prime}
$$

Schematically, here's what this looks like:

The dots on the top and bottom lines are the breakpoints between successive f_{i} 's or $f_{i}^{\prime \prime}$'s.

Now, we do something clever. Partition $I \times I$ into a finite grid of finitely many little rectangles R_{i} such that

$$
\begin{equation*}
\forall R_{i}: \exists i \in \mathscr{A}: H\left(R_{i}\right) \subset A_{i} \tag{7.2}
\end{equation*}
$$

(By continuity of H, we can put such a rectangle around each point in $I \times I$, then choose a finite subcover, then subdivide if necessary.) Subdivide more by adding vertical lines at all the breakpoints, and at least two horizontal lines.

Now, we do something exceedingly clever. For all of the vertical lines not in the first or last row, give them a little nudge to one side so they don't match up. We can do this while still retaining the condition (7.2). Number the rectangles $R_{1}, \ldots, R_{m n}$ as shown, where m is the number of columns and n is the number of rows.

Let γ_{k} be the path from $(0,0)$ to $(1,1)$ along the cell walls that separates rectangles R_{1}, \ldots, R_{k} from $R_{k+1}, \ldots, R_{m n}$. (For example, the thick red path shown in the figure above is R_{m+1}.) Thus $H \circ \gamma_{k}$ is a closed path in X with basepoint p, and all the paths $H \circ \gamma_{k}$ are path-homotopic.

Each γ_{k} can be written as

$$
\gamma_{k}=e_{1} \cdot e_{2} \cdots e_{N}
$$

where each e_{i} is the path in X given by part of a side of one rectangle, say from v_{i-1} to v_{i}.

For each v_{i}, choose some path g_{i} in X from p to $F\left(v_{i}\right)$. Each v_{i} belongs to at most three rectangles, so we can require g_{i} to stay in the intersection of the corresponding three A 's. (Wasn't that clever of us?)

Then each γ_{k} can be factored as

$$
\begin{aligned}
\gamma_{k} & =e_{1} \cdots e_{N} \\
& =\Phi\left(e_{1} * \cdots * e_{N}\right) \\
& =\Phi\left(\left[e_{1} \cdot g_{1}\right] *\left[\overline{g_{1}} \cdot e_{2} \cdot g_{2}\right] * \cdots *\left[\overline{g_{N-2}} \cdot e_{N-1} \cdot g_{N-1}\right] *\left[\overline{g_{N-1}} \cdot e_{N}\right]\right)
\end{aligned}
$$

Recall that $*$ means concatenation of letters in the free product F, while . means concatenation within one of its free factors.

To pass from the factorization for γ_{k} to that of γ_{k+1}, we have to trade the south and west sides of R_{k+1} for the north and east sides. We can do this by

- regarding the letters in the south and west sides as now coming from $\pi_{1}\left(A_{k+1}\right)$ instead of wherever they came from in the factorization of γ_{k} (this is a type-A move);
- using the group structure of $\pi_{1}\left(A_{k+1}\right)$ to trade the letters in the south and west sides for the north and east ones (this is a type-B move).

Now let's look at the path γ_{0}, which consists of the bottom and right edges of $I \times I$. The right edge is a stationary path, so forget about it. For each vertex v_{i} on the bottom edge of $I \times I$, we have so far only required g_{i} to lie in two of the A 's. Let's also require it to lie in the same one whose fundamental group contains the letter f_{i} (which came from the factorization of f given in advance). That says that

For example, if $f_{3}=e_{1} \cdot e_{2} \cdot e_{3}$, then the factorization begins

$$
\left[e_{1} \cdot g_{1}\right] *\left[\overline{g_{1}} \cdot e_{2} \cdot g_{2}\right] *\left[\overline{g_{2}} \cdot e_{3} \cdot g_{3}\right] * \cdots
$$

where g_{1} is a path in $A_{1} \cap A_{2}$ and g_{2} is a path in $A_{2} \cap A_{3}$. But in fact we can require g_{1} and g_{2} to be paths in $A_{1} \cap A_{2} \cap A_{\alpha}$ and $A_{2} \cap A_{3} \cap A_{\alpha}$, where $\pi_{1}\left(A_{\alpha}\right)$ is the group containing the letter f_{3}. We also may as well assume that g_{3} is the stationary path. So the partial factorization shown above can be replaced (with type-A moves) with one in $\pi_{1}\left(A_{\alpha}\right)$, and then simplified to the single letter $\left[e_{1} \cdot e_{2} \cdot e_{3}\right]=\left[f_{1}\right] \in \pi_{1}\left(A_{\alpha}\right)$.

More generally, if v_{i} is a breakpoint then we take g_{i} to be the constant path, and if v_{i} is not a breakpoint then we require g_{i} to lie in A_{α} for whichever $\pi_{1}\left(A_{\alpha}\right)$ contains the letter f_{j} to which the edges at v_{i} contribute. Then parenthesizing the factorization of f at the breakpoints shows that it is equivalent to $\left[f_{1}\right] * \cdots *\left[f_{k}\right]$.

Playing the same game at the top of the square shows that the factorization of $\gamma_{n m}$ is equivalent to $\left[f_{1}^{\prime}\right] * \cdots *\left[f_{\ell}^{\prime}\right]$.

