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7. Monday 2/24: Van Kampen’s Theorem — The Proof

Recall the statement of Van Kampen’s Theorem.

Let p ∈ X, and let {Aα : α ∈ A } be a cover of X by path-connected open
sets such that p ∈ Aα for every α. We have a commutative diagram of
groups, which looks in part like this (where the i’s and j’s are the group
homomorphisms induced by inclusions of spaces).

(7.1) π1(Aα ∩ Aβ)
iαβ

ww

iβα

''

π1(Aα)
⊆

''

jα

��

π1(Aβ)
⊆

ww

jβ

��

F = ∗απ1(Aα)

Φ

��

π1(X) π1(−) = π1(−, p)

Van Kampen’s Theorem:

(1) If every pairwise intersection Aα ∩ Aβ is path-connected, then the
map Φ is surjective.

(2) If in addition every triple intersection Aα∩Aβ ∩Aγ is path-connected,
then

ker Φ = N :=
〈〈
iαβ[f ] ∗ iβα[f̄ ] : α, β ∈ A

〉〉
and so

π1(X) = F/N.
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Proof of (1). Let f : I → X be a loop based at p. Every s ∈ I has a
neighborhood mapped by f into some Uα. By compactness of I, there exist
numbers 0 = s0 < s1 < · · · < sm = 1 and indices α1, . . . , αm such that

f([si−1, si]) ⊆ Aαi ∀i ∈ [m].

Let fi = f |[si−1,si], so that f = f1 ·f2 · · · fm. For each i ∈ [m], the set Ai∩Ai+1

is path-connected, hence contains a path gi from p to f(si). Therefore

f = f1 · f2 · · · fm
= (f1 · g1) · (g1 · f2 · g2) · · · (gm−2 · fm−1 · gm−1) · (gm · fm)

∈ π1(A1, p) ∗ π1(A2, p) ∗ · · · ∗ π1(Am, p)

∈ im Φ.
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Proof of (2). Let [f ] ∈ π1(X). Say that a factorization of [f ] is an ex-
pression [f1] ∗ [f2] ∗ · · · ∗ [fn] that maps to [f ] via Φ. Here I am using ∗ to
denote concatenation of letters to make a word in ∗απ1(Aα). That is, each
[fi] belongs to some π1(Aα), and f ' f1 · f2 · · · fn.

We want to show that any two factorizations of [f ] are related by operations
of the following forms:

• “Type A”: If fi : I → Aα ∩ Aβ, then we can regard the letter [fi] as
coming either from π1(Aα) or from π1(Aβ). This amounts to inserting
an element of N into f , namely

iαβ[fi] ∗ iβα[fi].

• “Type B”: If two consecutive letters in the factorization come from the
same Aα, we can multiply them. This, of course, doesn’t change the
element of F we’re talking about.

So, suppose we have two factorizations

[f ] = Φ ([f1] ∗ · · · ∗ [fk]) = Φ ([f ′1] ∗ · · · ∗ [f ′`]) .

In particular, there is a path-homotopy of p-loops H : I × I → X, ht(s) =
H(s, t), such that

h0 = f1 · · · fk and h1 = f ′1 · · · f ′`.
Schematically, here’s what this looks like:

f’2 f’

t

1

f ......

......f’

f fk21

I  x  I

The dots on the top and bottom lines are the breakpoints between successive
fi’s or f ′i ’s.
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Now, we do something clever. Partition I × I into a finite grid of finitely
many little rectangles Ri such that

(7.2) ∀Ri : ∃i ∈ A : H(Ri) ⊂ Ai.

(By continuity of H, we can put such a rectangle around each point in I × I,
then choose a finite subcover, then subdivide if necessary.) Subdivide more
by adding vertical lines at all the breakpoints, and at least two horizontal
lines.

......f’ f’1 2 f’

t

......f f fk21

Now, we do something exceedingly clever. For all of the vertical lines not
in the first or last row, give them a little nudge to one side so they don’t
match up. We can do this while still retaining the condition (7.2). Number
the rectangles R1, . . . , Rmn as shown, where m is the number of columns and
n is the number of rows.

......f’ f’1 2 f’

1 2 kfff ......

......

......

1 2

m+1

m

2m

nm
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Let γk be the path from (0, 0) to (1, 1) along the cell walls that separates
rectangles R1, . . . , Rk from Rk+1, . . . , Rmn. (For example, the thick red path
shown in the figure above is Rm+1.) Thus H ◦ γk is a closed path in X with
basepoint p, and all the paths H ◦ γk are path-homotopic.

Each γk can be written as

γk = e1 · e2 · · · eN
where each ei is the path in X given by part of a side of one rectangle, say
from vi−1 to vi.

For each vi, choose some path gi in X from p to F (vi). Each vi belongs to at
most three rectangles, so we can require gi to stay in the intersection of the
corresponding three A’s. (Wasn’t that clever of us?)

Then each γk can be factored as

γk = e1 · · · eN
= Φ(e1 ∗ · · · ∗ eN)

= Φ
(

[e1 · g1] ∗ [g1 · e2 · g2] ∗ · · · ∗ [gN−2 · eN−1 · gN−1] ∗ [gN−1 · eN ]
)

Recall that ∗ means concatenation of letters in the free product F , while ·
means concatenation within one of its free factors.

To pass from the factorization for γk to that of γk+1, we have to trade the
south and west sides of Rk+1 for the north and east sides. We can do this by

• regarding the letters in the south and west sides as now coming from
π1(Ak+1) instead of wherever they came from in the factorization of γk
(this is a type-A move);
• using the group structure of π1(Ak+1) to trade the letters in the south

and west sides for the north and east ones (this is a type-B move).
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k+1
R

Now let’s look at the path γ0, which consists of the bottom and right edges
of I × I. The right edge is a stationary path, so forget about it. For each
vertex vi on the bottom edge of I× I, we have so far only required gi to lie in
two of the A’s. Let’s also require it to lie in the same one whose fundamental
group contains the letter fi (which came from the factorization of f given in
advance). That says that

For example, if f3 = e1 · e2 · e3, then the factorization begins

[e1 · g1] ∗ [g1 · e2 · g2] ∗ [g2 · e3 · g3] ∗ · · ·

where g1 is a path in A1 ∩ A2 and g2 is a path in A2 ∩ A3. But in fact we
can require g1 and g2 to be paths in A1 ∩ A2 ∩ Aα and A2 ∩ A3 ∩ Aα, where
π1(Aα) is the group containing the letter f3. We also may as well assume
that g3 is the stationary path. So the partial factorization shown above can
be replaced (with type-A moves) with one in π1(Aα), and then simplified to
the single letter [e1 · e2 · e3] = [f1] ∈ π1(Aα).

More generally, if vi is a breakpoint then we take gi to be the constant path,
and if vi is not a breakpoint then we require gi to lie in Aα for whichever
π1(Aα) contains the letter fj to which the edges at vi contribute. Then paren-
thesizing the factorization of f at the breakpoints shows that it is equivalent
to [f1] ∗ · · · ∗ [fk].

Playing the same game at the top of the square shows that the factorization
of γnm is equivalent to [f ′1] ∗ · · · ∗ [f ′`]. �
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