Simplicial Homology Computations Using Macaulay2

Macaulay2 is a free software system for computations in commutative algebra. To use it, do one of the following:
(1) Download and install it from the website:
http://www.math.uiuc.edu/Macaulay2/
(2) Use the online interface:
http://habanero.math.cornell.edu:3690
(3) Log into your math account, open a terminal window, and type "M2".

When you start Macaulay2, you'll see something like this:

```
Macaulay2, version 1.6
with packages: ConwayPolynomials, Elimination, IntegralClosure, LLLBases,
    PrimaryDecomposition, ReesAlgebra, TangentCone
i1 :
```

You can compute the kernel of a matrix directly:

```
i1 : A=matrix{{1,2,3},{4,5,6}}
o1 = | 1 2 3 |
    | 456 |
```

```
            2 3
```

 2 3
 o1 : Matrix ZZ <--- ZZ
i2 : ker A
o2 = image | -1 |
| 2 |
| -1 |

```
o2 : ZZ-module, submodule of ZZ

By default, M2 works over \(\mathbb{Z}\) (that's what ZZ means). Here I have typed in a \(2 \times 3\) matrix \(A\) corresponding to a linear transformation \(\mathbb{Z}^{3} \rightarrow \mathbb{Z}^{2}\) (for various reasons, Macaulay writes the arrows right to left) and computed its kernel, which Macaulay has described as the image (i.e., column space) of the matrix \(B=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]\).

If you have a \(\mathbb{Z}\)-module and you just want to know what it is up to isomorphism, you can use the prune command:
```

i3 : prune ker A
1
o3 = ZZ
o3 : ZZ-module, free
i4 : M = matrix{{4,2,6},{2,6,4},{6,2,4}}; prune coker M
3 3
o4 : Matrix ZZ <--- ZZ
o5 = cokernel | 24 0 0 |
1 0 2 0 1
| 0 0 | |
3
o5 : ZZ-module, quotient of ZZ
i6 : N = matrix{{4,-4},{-4,4}}; prune coker N
06 : Matrix ZZ < <--- ZZ }\mp@subsup{}{}{2

```
\(\mathbb{Z}_{24} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\) and coker \(N \cong \mathbb{Z} \oplus \mathbb{Z}_{4}\). (The zero row corresponds to the \(\mathbb{Z}\) summand.)

Macaulay also has a package to work with simplicial complexes (although not \(\Delta\)-complexes, so far as I know). First you have to define a polynomial ring in variables corresponding to vertices; then you can specify the complex by its facets. Macaulay has built-in commands to compute the simplicial chain complex and homology groups.
```

i7: load "SimplicialComplexes.m2";
i8 : R = ZZ[a..d]; -- make a polynomial ring with variables a,b,c,d
i9 : X1 = simplicialComplex{a*b, a*c, b*c}; -- the 1-skeleton of the 2-simplex
i10 : X2 = simplicialComplex{a*b*c}; -- the full 2-simplex
i11 : X3 = simplicialComplex{a*b*c, a*b*d}; -- two 2-simplices joined at an edge
i12 : X4 = simplicialComplex{a*b*c, a*b*d, a*c*d, b*c*d}; -- a hollow tetrahedron
i13 : C = chainComplex X3 -- compute the simplicial chain complex

```
```

o13 = ZZ <-- ZZ <-- ZZ <-- ZZ
-1 0
o13 : ChainComplex

```

The numbers on the bottom are dimensions. So \(X_{3}\) has one ( -1 )-simplex (of course), four 0-simplices, five 1 -simplices and two 2-simplices. Notice that the arrows point to the left. Why this is a good idea is beyond the scope of Math 821 ; just be aware that Macaulay2 does use this convention.
```

i14 : C.dd_2 -- extract the boundary map d2 (from 2-chains to 1-chains)
o14 = | -1 -1 |
| 1 0 |
| 0 1 |
| -1 0 |
| 0 -1 |
5 2
o14 : Matrix ZZ <--- ZZ
i15 : prune HH_2 X4 -- compute just one homology group
1
o15 = ZZ
o15 : ZZ-module, free
i16 : prune HH X4 -- compute all the homology groups
o16 = -1 : 0
0 : 0
1 : 0
1
2 : ZZ
o16 : GradedModule
i17 : C.dd_1 * C.dd_2 -- verify that boundary-squared = 0
o17 = 0
4 2
o17 : Matrix ZZ <--- ZZ

```
```

