Math 821 Problem Set #6Posted: Friday 4/15/11Due date: Wednesday 4/27/11

Problem #1 [Hatcher p.131 #4] Compute the simplicial homology groups of the "triangular parachute" obtained from the standard 2-simplex Δ^2 by identifying its three vertices to a single point.

Problem #2 [Hatcher p.131 #8] Construct a 3-dimensional Δ -complex X from n tetrahedra T_1, \ldots, T_n by the following two steps.

First, arrange the tetrahedra in a cyclic pattern as in the figure (see p. 131) so that each T_i shares a common vertical face with its two neighbors. For consistent notation, call the top and bottom vertices x and y respectively, and call the side vertices v_1, \ldots, v_n , so the tetrahedra are

 $T_1 = [x, v_1, v_2, y], T_2 = [x, v_2, v_3, y], \dots, T_{n-1} = [x, v_{n-1}, v_n, y], T_n = [x, v_n, v_1, y].$

Second, identify the bottom face of T_i with the top face of T_{i+1} for all *i*, that is, $[v_i, v_{i+1}, y] = [v_{i+1}, v_{i+2}, x]$.

Show that the simplicial homology groups of X in dimensions 0, 1, 2, 3 are \mathbb{Z} , \mathbb{Z}_n ($=\mathbb{Z}/n\mathbb{Z}$), 0, \mathbb{Z} respectively. (Start by making a complete census of the oriented simplices, including a record of which ones have been identified — for example, $[x, v_1, v_2] = [y, v_n, v_1]$ is a triangle in X.)

Problem #3 [Hatcher p.131 #11] Show that if A is a retract of X then the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \subset X$ is injective.

Problem #4 A [finite] partially ordered set or poset is a finite set P with an order relation \leq such that for all $x, y, z \in P$: (1) $x \leq x$; (2) if $x \leq y$ and $y \leq x$, then x = y; and (3) if $x \leq y$ and $y \leq z$, then $x \leq z$. Of course, x < z means that $z \leq z$ and $x \neq z$. If $x \leq z$ or $z \leq x$, we say that x, z are comparable. A chain in P (not to be confused with a simplicial or singular chain!) is a subset in which every two elements are comparable.

(#4a) Prove that the set $\Delta(P)$ of chains in P is a simplicial complex. (This is called the *order complex* of P.)

(#4b) Suppose that P has a unique maximal element. Prove that $\Delta(P)$ is contractible.

(#4c) For each $n \ge 1$, construct a poset for which $\Delta(P)$ is homeomorphic to an *n*-sphere.

(#4d) The *Möbius function* μ of *P* is defined as follows.

- (1) Adjoin two new elements $\hat{0}, \hat{1}$ to P to obtain a poset \hat{P} , in which $\hat{0} < x < \hat{1}$ for every $x \in P$.
- (2) Define μ recursively as follows: First, if x is minimal (i.e., there exists no y such that x > y) then $\mu(x) = -1$. Second, if $\mu(y)$ has already been defined for all y < x, then define

$$\mu(x) = -\sum_{y < x} \mu(y)$$

(So you can work out the values of μ on all elements of P by starting at the bottom and working your way up.)

Make a conjecture as to how the Euler characteristic of $\Delta(P)$ can be obtained from the Möbius function of P.

Some LaTeX tips

1. Matrices with borders

The \bordermatrix command can be used for matrices whose columns and rows you want to label. This can be useful for bookkeeping in a simplicial homology calculation. For example, the boundary map ∂_2 of the standard 3-simplex is

	123	124	134	234
12	/ 1	1	0	0
13	-1	0	1	0
14	0	-1	-1	0
23	1	0	0	1
24	0	1	0	-1
34	0	0	1	1 /

which can be produced as follows:

\$\$\bordermatrix{

	&	123	&	124	&	134	&	234 \cr
12	&	1	&	1	&	0	&	0\cr
13	&	-1	&	0	&	1	&	0\cr
14	&	0	&	-1	&	-1	&	0\cr
23	&	1	&	0	&	0	&	1\cr
24	&	0	&	1	&	0	&	-1\cr
34	&	0	&	0	&	1	&	1}\$\$

2. Commutative diagrams

The xypic package provides a way to typeset commutative diagrams in LaTeX. For instance, consider the following diagram, which arises in the proof of Theorem 2.10 in Hatcher:

It can be typeset as follows:

```
$$\xymatrix{
\cdots\ar[r]
& C_{n+1}(X) \ar[r]^{\bd} \ar[d]^{i_\#}
& C_{n}(X) \ar[r]^{\bd} \ar[d]^{i_\#} \ar[d1]^{P}
& C_{n-1}(X) \ar[r] \ar[d]^{i_\#} \ar[d1]^{P}
& \cdots\\
\cdots\ar[r]
& C_{n+1}(Y) \ar[r]_{\bd}
& C_{n+1}(Y) \ar[r]_{\bd}
& C_{n-1}(Y) \ar[r]_{\bd}
& C_{n-1}(Y) \ar[r]
& C_{n-1}(Y) \ar[r]
```

This is like a **tabular** or **array** environment: the & symbols are delimiters between columns. The **ar** commands create arrows emanating from the current cell in the table, with the code in [square brackets] specifying where the arrow should point; e.g., **ar**[d1] makes an arrow pointing towards the cell one row down and one column left of the current cell.