Math 821 Problem Set \#5
Posted: Friday 4/1/11
Due date: Wednesday 4/13/11

Problem \#1 In class on Friday, I asserted that if G is a graph with n vertices and c connected components, and M is the signed vertex-edge incidence matrix of G, then $\operatorname{rank} M=n-c$. Prove this statement (over any ground field).

Problem \#2 Fix a ground field \mathbb{F} and a nonnegative integer n. Let V_{k} be the vector space with basis $\left\{\sigma_{A}\right\}$, where A ranges over all k-element subsets of $\{1,2, \ldots, n\}$. Define a linear transformation $\partial_{k}: V_{k} \rightarrow V_{k-1}$ as follows: if $A=\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$, then

$$
\partial_{k}\left(\sigma_{A}\right)=\sum_{i=1}^{k}(-1)^{i+1} \sigma_{A \backslash\left\{a_{i}\right\}}
$$

(Having defined ∂_{k} on the basis elements, it extends uniquely to all of V_{k} by linearity.)
(\#2a) Prove that $d_{k} \circ d_{k+1}=0$ for all k. (Note: I know this calculation is done explicitly in Hatcher, but it is so important that everyone should do it for themselves at least once!) Conclude that

$$
\operatorname{im} \partial_{k} \subseteq \operatorname{ker} \partial_{k+1}
$$

(\#2b) For $n=3$, write out the maps ∂_{i} as explicit matrices.
(\#2c) Prove that for every k, the set $\left\{\partial_{k}\left(\sigma_{A}\right): 1 \in A\right\}$ is a basis for the vector space im ∂_{k}.
(\#2d) Use (3) to prove that in fact $\operatorname{im} \partial_{k}=\operatorname{ker} \partial_{k+1}$. (Hint: By (1), all you have to show is that these vector spaces have the same dimension.)

Problem \#3 Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Describe coker A (i) if A is regarded as a linear transformation over \mathbb{Q}; (ii) if A is regarded as a linear transformation over \mathbb{Z}; (iii) if A is regarded as a linear transformation over \mathbb{F}_{q} (the finite field with q elements).

Problem \#4 Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials in n variables over a field \mathbb{F}. A squarefree monomial in R is a product of distinct indeterminates (e.g., $x_{1} x_{4} x_{5}$, but not $x_{1} x_{5}^{2}$). Let I be an ideal generated by squarefree monomials of degree ≥ 2.
(\#4a) Show that the set

$$
\Delta=\left\{\sigma \subset[n] \mid \prod_{i \in \sigma} x_{i} \notin I\right\}
$$

is an abstract simplicial complex on n vertices.
(This is called the Stanley-Reisner complex of I - or, alternately, I is the Stanley-Reisner ideal of Δ.)
(\#4b) Describe Δ looks like in the case that I is (i) the zero ideal; (ii) generated by a single monomial of degree d; (iii) generated by all monomials of degree d for some $k \leq n$; (iv) (assuming $n=2 m$ is even) generated by the degree- 2 monomials $x_{1} x_{2}, x_{3} x_{4}, \ldots, x_{2 m-1} x_{2 m}$.

