Math 821 Problem Set \#1
Posted: Friday 1/28/11
Due date: Monday 2/7/11
(Note: Some of these problems are proven as theorems in Munkres, but try to do them yourself.)

Problem \#1 Let n and m be nonnegative integers. Let $X=\mathbb{R}^{n}$ and $X^{\prime}=\mathbb{R}^{m}$, both equipped with the standard topology. Prove that the product topology on $X \times X^{\prime}$ is exactly the standard topology on \mathbb{R}^{n+m}.

Problem \#2 Let (X, \mathscr{T}) and $\left(X^{\prime}, \mathscr{T}^{\prime}\right)$ be topological spaces, let \mathscr{B}^{\prime} be a basis for the topology \mathscr{T}^{\prime}, and let $f: X \rightarrow X^{\prime}$ be a function. Prove that f is continuous if and only if $f^{-1}(U)$ is open for all $U \in \mathscr{B}^{\prime}$.

Problem \#3 Let X be a path-connected topological space. Prove that X is connected. (Recall that the converse is not true - the topologists' sine curve is a counterexample.)

Problem \#4 Let Γ be a finite graph. (That is, Γ, consists of finitely many copies of the closed interval I, with some of the endpoints identified. More precisely, $\Gamma=X / \sim$, where X is the disjoint union of finitely many copies $\left[a_{1}, b_{1}\right], \ldots,\left[a_{n}, b_{n}\right]$ of the closed unit interval I, and \sim is an equivalence relation in which every point $p \notin\left\{a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right\}$ induces a singleton equivalence class.)

Prove that if Γ is connected, then it is path-connected. (In fact, this is true not merely for graphs, but for all finite cell complexes.)

Problem \#5 Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function that is onto. Prove that if X is connected, then so is Y.

Problem \#6 Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a continuous function that is onto. Prove that if X is compact, then so is Y.

Problem \#7 Let $n \geq 0$ be an integer, and let X_{n} be the space you get by taking a strip of paper, twisting it n times, and gluing the ends together. (So X_{0} is a cylinder and X_{1} is the Möbius strip.) For which pairs n, m are X_{n} and X_{m} homeomorphic?

