Math 821 Problem Set #1 Posted: Friday 1/28/11Due date: Monday 2/7/11

(Note: Some of these problems are proven as theorems in Munkres, but try to do them yourself.)

Problem #1 Let *n* and *m* be nonnegative integers. Let $X = \mathbb{R}^n$ and $X' = \mathbb{R}^m$, both equipped with the standard topology. Prove that the product topology on $X \times X'$ is exactly the standard topology on \mathbb{R}^{n+m} .

Problem #2 Let (X, \mathscr{T}) and (X', \mathscr{T}') be topological spaces, let \mathscr{B}' be a basis for the topology \mathscr{T}' , and let $f: X \to X'$ be a function. Prove that f is continuous if and only if $f^{-1}(U)$ is open for all $U \in \mathscr{B}'$.

Problem #3 Let X be a path-connected topological space. Prove that X is connected. (Recall that the converse is not true — the topologists' sine curve is a counterexample.)

Problem #4 Let Γ be a finite graph. (That is, Γ , consists of finitely many copies of the closed interval I, with some of the endpoints identified. More precisely, $\Gamma = X/\sim$, where X is the disjoint union of finitely many copies $[a_1, b_1], \ldots, [a_n, b_n]$ of the closed unit interval I, and \sim is an equivalence relation in which every point $p \notin \{a_1, b_1, \ldots, a_n, b_n\}$ induces a singleton equivalence class.)

Prove that if Γ is connected, then it is path-connected. (In fact, this is true not merely for graphs, but for all finite cell complexes.)

Problem #5 Let X and Y be topological spaces and let $f : X \rightarrow Y$ be a continuous function that is onto. Prove that if X is connected, then so is Y.

Problem #6 Let X and Y be topological spaces and let $f : X \rightarrow Y$ be a continuous function that is onto. Prove that if X is compact, then so is Y.

Problem #7 Let $n \ge 0$ be an integer, and let X_n be the space you get by taking a strip of paper, twisting it *n* times, and gluing the ends together. (So X_0 is a cylinder and X_1 is the Möbius strip.) For which pairs n, m are X_n and X_m homeomorphic?