Friday 5/2

The Frobenius Characteristic

Let R be a ring. Denote by $C\ell_R(\mathfrak{S}_n)$ the vector space of R-valued class functions on the symmetric group \mathfrak{S}_n . If no R is specified, we assume $R = \mathbb{C}$. Define

$$C\ell(\mathfrak{S}) = \bigoplus_{n\geq 0} C\ell(\mathfrak{S}_n).$$

We make $C\ell(\mathfrak{S})$ into a graded ring as follows. For $f_1 \in C\ell(\mathfrak{S}_{n_1})$ and $f_2 \in C\ell(\mathfrak{S}_{n_2})$, we can define a function $f_1 \otimes f_2 \in C\ell(\mathfrak{S}_{n_1} \times \mathfrak{S}_{n_2})$

by

$$f_1 \otimes f_2(w_1, w_2) = f_1(w_1) f_2(w_2).$$

There is a natural inclusion of groups $\mathfrak{S}_{n_1} \times \mathfrak{S}_{n_2} \hookrightarrow \mathfrak{S}_{n_1+n_2}$, so we can define $f_1 \cdot f_2 \in C\ell(\mathfrak{S}_{n_1+n_2})$ by means of the induced "character":

$$f_1 \cdot f_2 = \operatorname{Ind}_{\mathfrak{S}_{n_1} \times \mathfrak{S}_{n_2}}^{\mathfrak{S}_{n_1+n_2}} (f_1 \otimes f_2)$$

(since the formula for induced characters can be applied to arbitrary class functions).

This product makes $C\ell(\mathfrak{S})$ into a graded \mathbb{C} -algebra. (We won't prove this.)

For a partition $\lambda \vdash n$, let 1_{λ} be the indicator function on the conjugacy class $C_{\lambda} \subset \mathfrak{S}_n$, and let

$$\mathfrak{S}_{\lambda} = \mathfrak{S}_{\{1,...,\lambda_1\}} \times \mathfrak{S}_{\{\lambda_1+1,...,\lambda_1+\lambda_2\}} \times \cdots \times \mathfrak{S}_{\{n-\lambda_\ell+1,...,n\}} \subset \mathfrak{S}_n.$$

For $w \in \mathfrak{S}_n$, denote by $\lambda(w)$ the cycle-shape of w, expressed as a partition.

Definition 1. The **Frobenius characteristic** is the map

$$\mathbf{ch}: C\ell_{\mathbb{C}}(\mathfrak{S}) \to \Lambda_{\mathbb{C}}$$

defined on $f \in C\ell(\mathfrak{S}_n)$ by

$$\mathbf{ch}(f) = \frac{1}{n!} \sum_{w \in \mathfrak{S}_n} \overline{f(w)} p_{\lambda(w)}.$$

Equivalently,

$$\mathbf{ch}(f) = \langle f, \psi \rangle_{\mathfrak{S}_n}$$

where ψ is the class function $\mathfrak{S}_n \to \Lambda^n$ defined by (1)

$$\psi(w) = p_{\lambda(w)}.$$

(1) **ch** is a ring isomorphism. Theorem 1. (2) *ch*

$$(f,g)_{\mathfrak{S}_n} = \langle \boldsymbol{ch}(f), \boldsymbol{ch}(g) \rangle_{\Lambda}.$$

- (3) **ch** restricts to an isomorphism $C\ell_{\mathbb{Z}}(\mathfrak{S}) \to \Lambda_{\mathbb{Z}}$.
- (4) $1_{\lambda} \mapsto p_{\lambda}/z_{\lambda}$.
- (5) $\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}} \chi_{\operatorname{triv}} \mapsto h_{\lambda}.$
- (6) $\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_n} \chi_{\operatorname{sign}} \mapsto e_{\lambda}.$
- (7) The irreducible characters of \mathfrak{S}_n are the $ch^{-1}(s_{\lambda})$.
- (8) For all characters χ , we have $ch(\chi \otimes \chi_{triv}) = \omega(ch(\chi))$.

I'll prove a few of these assertions. Recall that

$$|C_{\lambda}| = n!/z_{\lambda}.$$

Therefore

$$\mathbf{ch}(1_{\lambda}) = rac{1}{n!} \sum_{w \in C_{\lambda}} p_{\lambda} = p_{\lambda}/z_{\lambda}$$

which proves assertion (4). It follows that **ch** is (at least) a graded \mathbb{C} -vector space isomorphism (since $\{1_{\lambda}\}$ and $\{p_{\lambda}/z_{\lambda}\}$ are graded \mathbb{C} -bases for $C\ell(\mathfrak{S})$ and Λ respectively).

To show assertion (2), it suffices to check it on these bases. Let $\lambda, \mu \vdash n$; then

$$\langle 1_{\lambda}, 1_{\mu} \rangle_{\mathfrak{S}_{n}} = \frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \overline{1_{\lambda}(w)} 1_{\mu}(w) = \frac{1}{n!} |C_{\lambda}| \delta_{\lambda\mu} = \delta_{\lambda\mu}/z_{\lambda},$$
$$\left\langle \frac{p_{\lambda}}{z_{\lambda}}, \frac{p_{\mu}}{z_{\mu}} \right\rangle_{\Lambda} = \frac{1}{\sqrt{z_{\lambda} z_{\mu}}} \left\langle \frac{p_{\lambda}}{\sqrt{z_{\lambda}}}, \frac{p_{\mu}}{\sqrt{z_{\mu}}} \right\rangle_{\Lambda} = \frac{1}{\sqrt{z_{\lambda} z_{\mu}}} \delta_{\lambda\mu} = \delta_{\lambda\mu}/z_{\lambda}.$$

Next we check that **ch** is a ring homomorphism (hence an isomorphism). Let $f \in \mathfrak{S}_j$, $g \in \mathfrak{S}_k$, and n = j + k. Then

$$\mathbf{ch}(f \cdot g) = \left\langle \mathrm{Ind}_{\mathfrak{S}_j \times \mathfrak{S}_k}^{\mathfrak{S}_n}(f \otimes g), \psi \right\rangle_{\mathfrak{S}_n}$$

(where ψ is as in (1))

$$= \left\langle f \otimes g, \operatorname{Res}_{\mathfrak{S}_j \times \mathfrak{S}_k}^{\mathfrak{S}_n} \psi \right\rangle_{\mathfrak{S}_j \times \mathfrak{S}_k}$$

(by Frobenius reciprocity)

$$= \frac{1}{j! \, k!} \sum_{(w,x) \in \mathfrak{S}_j \times \mathfrak{S}_k} \overline{f \otimes g(w,x)} \, p_{\lambda(w,x)}$$
$$= \left(\frac{1}{j!} \sum_{w \in \mathfrak{S}_j} \overline{f(w)} \, p_{\lambda(w)}\right) \left(\frac{1}{k!} \sum_{x \in \mathfrak{S}_k} \overline{g(x)} \, p_{\lambda(x)}\right)$$
$$= \mathbf{ch}(f) \, \mathbf{ch}(g).$$

More Fundamental Results

1. The Murnaghan-Nakayama Rule.

We now know that the irreducible characters of \mathfrak{S}_n are $\chi^{\lambda} = \mathbf{ch}^{-1}(s_{\lambda})$ for $\lambda \vdash n$. The Murnaghan-Nakayama Rule gives a formula for the value of the character χ^{λ} on the conjugacy class C_{μ} in terms of *rim-hook tableaux*. Here is an example of a rim-hook tableau of shape $\lambda = (5, 4, 3, 3, 1)$ and content $\mu = (6, 3, 3, 2, 1, 1)$:

Note that the columns and row are weakly increasing, and for each i, the set $H_i(T)$ of cells containing an i is contiguous.

Theorem 2 (Murnaghan-Nakayama Rule (1937)).

$$\chi^{\lambda}(C_{\mu}) = \sum_{\substack{\text{rim-hook tableaux } T \\ \text{of shape } \lambda \text{ and content } \mu}} \prod_{i=1}^{n} (-1)^{1+\operatorname{ht}(\operatorname{H}_{i}(\operatorname{T}))}.$$

For example, the heights of H_1, \ldots, H_6 in the rim-hook tableau above are 4, 3, 2, 1, 1, 1. There are an even number of even heights, so this rim-hook tableau contributes 1 to $\chi\lambda(C_{\mu})$.

An important special case is when $\mu = (1, 1, ..., 1)$, i.e., since then $\chi^{\lambda}(C_{\mu}) = \chi^{\lambda}(1_{\mathfrak{S}_n})$ i.e., the dimension of the irreducible representation S^{λ} of \mathfrak{S}_n indexed by λ . On the other hand, a rim-hook tableau of content μ is just a standard tableau. So the Murnaghan-Nakayama Rule implies the following:

Corollary 3. dim
$$S^{\lambda} = f^{\lambda}$$
.

This begs the question of how to calculate f^{λ} (which you may have been wondering anyway). There is a beautiful formula in terms of *hooks*.

For each cell x in the Ferrers diagram of λ , let h(x) denote its hook length: the number of cells due east of, due south of, or equal to x. In the following example, h(x) = 6.

Theorem 4 (Hook Formula of Frame, Robinson, and Thrall (1954)). Let $\lambda \vdash n$. Then

$$f^{\lambda} = \frac{n!}{\prod_{x \in \lambda} h(x)}.$$

Example 1. For $\lambda = (5, 4, 3, 3, 1) \vdash 16$ as above, here are the hook lengths:

9	7	6	3	1
7	5	4	1	
5	3	2		
4	2	1		
1			•	

Therefore

$$f^{\lambda} = \frac{14!}{9 \cdot 7^2 \cdot 6 \cdot 5^2 \cdot 4^2 \cdot 3^2 \cdot 2^2 \cdot 1^4} = 2288.$$

Example 2. For $\lambda = (n, n) \vdash 2n$, the hook lengths are

 $n+1, n, n-1, \ldots, 2$ (top row),

n, n-1, n-2, ..., 1 (bottom row).

Therefore

$$f^{\lambda} = \frac{(2n)!}{(n+1)! n!} = \frac{1}{n+1} \binom{2n}{n}$$

which is the n^{th} Catalan number (as we already know).