Friday 5/2

The Frobenius Characteristic

Let R be a ring. Denote by $C \ell_{R}\left(\mathfrak{S}_{n}\right)$ the vector space of R-valued class functions on the symmetric group \mathfrak{S}_{n}. If no R is specified, we assume $R=\mathbb{C}$. Define

$$
C \ell(\mathfrak{S})=\bigoplus_{n \geq 0} C \ell\left(\mathfrak{S}_{n}\right)
$$

We make $C \ell(\mathfrak{S})$ into a graded ring as follows. For $f_{1} \in C \ell\left(\mathfrak{S}_{n_{1}}\right)$ and $f_{2} \in C \ell\left(\mathfrak{S}_{n_{2}}\right)$, we can define a function

$$
f_{1} \otimes f_{2} \in C \ell\left(\mathfrak{S}_{n_{1}} \times \mathfrak{S}_{n_{2}}\right)
$$

by

$$
f_{1} \otimes f_{2}\left(w_{1}, w_{2}\right)=f_{1}\left(w_{1}\right) f_{2}\left(w_{2}\right)
$$

There is a natural inclusion of groups $\left.\mathfrak{S}_{n_{1}} \times \mathfrak{S}_{n_{2}}\right) \hookrightarrow \mathfrak{S}_{n_{1}+n_{2}}$, so we can define $f_{1} \cdot f_{2} \in C \ell\left(\mathfrak{S}_{n_{1}+n_{2}}\right)$ by means of the induced "character":

$$
f_{1} \cdot f_{2}=\operatorname{Ind}_{\mathfrak{S}_{n_{1}} \times \mathfrak{S}_{n_{2}}}^{\mathfrak{S}_{n_{1}+n_{2}}}\left(f_{1} \otimes f_{2}\right)
$$

(since the formula for induced characters can be applied to arbitrary class functions).
This product makes $C \ell(\mathfrak{S})$ into a graded \mathbb{C}-algebra. (We won't prove this.)
For a partition $\lambda \vdash n$, let 1_{λ} be the indicator function on the conjugacy class $C_{\lambda} \subset \mathfrak{S}_{n}$, and let

$$
\mathfrak{S}_{\lambda}=\mathfrak{S}_{\left\{1, \ldots, \lambda_{1}\right\}} \times \mathfrak{S}_{\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}} \times \cdots \times \mathfrak{S}_{\left\{n-\lambda_{\ell}+1, \ldots, n\right\}} \subset \mathfrak{S}_{n}
$$

For $w \in \mathfrak{S}_{n}$, denote by $\lambda(w)$ the cycle-shape of w, expressed as a partition.
Definition 1. The Frobenius characteristic is the map

$$
\operatorname{ch}: C \ell_{\mathbb{C}}(\mathfrak{S}) \rightarrow \Lambda_{\mathbb{C}}
$$

defined on $f \in C \ell\left(\mathfrak{S}_{n}\right)$ by

$$
\operatorname{ch}(f)=\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \overline{f(w)} p_{\lambda(w)}
$$

Equivalently,

$$
\boldsymbol{\operatorname { c h }}(f)=\langle f, \psi\rangle_{\mathfrak{S}_{n}}
$$

where ψ is the class function $\mathfrak{S}_{n} \rightarrow \Lambda^{n}$ defined by

$$
\begin{equation*}
\psi(w)=p_{\lambda(w)} \tag{1}
\end{equation*}
$$

Theorem 1. (1) ch is a ring isomorphism.
(2) ch is an isometry, i.e., it preserves inner products:

$$
\langle f, g\rangle_{\mathfrak{S}_{n}}=\langle\operatorname{ch}(f), \operatorname{ch}(g)\rangle_{\Lambda} .
$$

(3) ch restricts to an isomorphism $C \ell_{\mathbb{Z}}(\mathfrak{S}) \rightarrow \Lambda_{\mathbb{Z}}$.
(4) $1_{\lambda} \mapsto p_{\lambda} / z_{\lambda}$.
(5) $\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}} \chi_{\text {triv }} \mapsto h_{\lambda}$.
(6) $\operatorname{Ind}_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}} \chi_{\text {sign }} \mapsto e_{\lambda}$.
(7) The irreducible characters of \mathfrak{S}_{n} are the $\boldsymbol{c h}^{-1}\left(s_{\lambda}\right)$.
(8) For all characters χ, we have $\boldsymbol{c h}\left(\chi \otimes \chi_{\text {triv }}\right)=\omega(\boldsymbol{c h}(\chi))$.

I'll prove a few of these assertions. Recall that

$$
\begin{equation*}
\left|C_{\lambda}\right|=n!/ z_{\lambda} \tag{2}
\end{equation*}
$$

Therefore

$$
\operatorname{ch}\left(1_{\lambda}\right)=\frac{1}{n!} \sum_{w \in C_{\lambda}} p_{\lambda}=p_{\lambda} / z_{\lambda}
$$

which proves assertion (4). It follows that ch is (at least) a graded \mathbb{C}-vector space isomorphism (since $\left\{1_{\lambda}\right\}$ and $\left\{p_{\lambda} / z_{\lambda}\right\}$ are graded \mathbb{C}-bases for $C \ell(\mathfrak{S})$ and Λ respectively).

To show assertion (2), it suffices to check it on these bases. Let $\lambda, \mu \vdash n$; then

$$
\begin{aligned}
\left\langle 1_{\lambda}, 1_{\mu}\right\rangle_{\mathfrak{S}_{n}} & =\frac{1}{n!} \sum_{w \in \mathfrak{S}_{n}} \overline{1_{\lambda}(w)} 1_{\mu}(w)=\frac{1}{n!}\left|C_{\lambda}\right| \delta_{\lambda \mu}=\delta_{\lambda \mu} / z_{\lambda} \\
\left\langle\frac{p_{\lambda}}{z_{\lambda}}, \frac{p_{\mu}}{z_{\mu}}\right\rangle_{\Lambda} & =\frac{1}{\sqrt{z_{\lambda} z_{\mu}}}\left\langle\frac{p_{\lambda}}{\sqrt{z_{\lambda}}}, \frac{p_{\mu}}{\sqrt{z_{\mu}}}\right\rangle_{\Lambda}=\frac{1}{\sqrt{z_{\lambda} z_{\mu}}} \delta_{\lambda \mu}=\delta_{\lambda \mu} / z_{\lambda}
\end{aligned}
$$

Next we check that ch is a ring homomorphism (hence an isomorphism). Let $f \in \mathfrak{S}_{j}, g \in \mathfrak{S}_{k}$, and $n=j+k$. Then

$$
\operatorname{ch}(f \cdot g)=\left\langle\operatorname{Ind}_{\mathfrak{S}_{j} \times \mathfrak{S}_{k}}^{\mathfrak{S}_{n}}(f \otimes g), \psi\right\rangle_{\mathfrak{S}_{n}}
$$

(where ψ is as in (11)

$$
=\left\langle f \otimes g, \operatorname{Res}_{\mathfrak{S}_{j} \times \mathfrak{S}_{k}}^{\mathfrak{S}_{n}} \psi\right\rangle_{\mathfrak{S}_{j} \times \mathfrak{S}_{k}}
$$

(by Frobenius reciprocity)

$$
\begin{aligned}
& =\frac{1}{j!k!} \sum_{(w, x) \in \mathfrak{S}_{j} \times \mathfrak{S}_{k}} \overline{f \otimes g(w, x)} p_{\lambda(w, x)} \\
& =\left(\frac{1}{j!} \sum_{w \in \mathfrak{S}_{j}} \overline{f(w)} p_{\lambda(w)}\right)\left(\frac{1}{k!} \sum_{x \in \mathfrak{S}_{k}} \overline{g(x)} p_{\lambda(x)}\right) \\
& =\operatorname{ch}(f) \operatorname{ch}(g)
\end{aligned}
$$

More Fundamental Results

1. The Murnaghan-Nakayama Rule.

We now know that the irreducible characters of \mathfrak{S}_{n} are $\chi^{\lambda}=\mathbf{c h}^{-1}\left(s_{\lambda}\right)$ for $\lambda \vdash n$. The Murnaghan-Nakayama Rule gives a formula for the value of the character χ^{λ} on the conjugacy class C_{μ} in terms of rim-hook tableaux. Here is an example of a rim-hook tableau of shape $\lambda=(5,4,3,3,1)$ and content $\mu=(6,3,3,2,1,1)$:

Note that the columns and row are weakly increasing, and for each i, the set $H_{i}(T)$ of cells containing an i is contiguous.

Theorem 2 (Murnaghan-Nakayama Rule (1937)).

$$
\chi^{\lambda}\left(C_{\mu}\right)=\sum_{\substack{\text { rim-hook tableaux } T \\ \text { of shape } \lambda \text { and content } \mu}} \prod_{i=1}^{n}(-1)^{1+\mathrm{ht}\left(\mathrm{H}_{\mathrm{i}}(\mathrm{~T})\right)} .
$$

For example, the heights of H_{1}, \ldots, H_{6} in the rim-hook tableau above are $4,3,2,1,1,1$. There are an even number of even heights, so this rim-hook tableau contributes 1 to $\chi \lambda\left(C_{\mu}\right)$.

An important special case is when $\mu=(1,1, \ldots, 1)$, i.e., since then $\chi^{\lambda}\left(C_{\mu}\right)=\chi^{\lambda}\left(1_{\mathfrak{S}_{n}}\right)$ i.e., the dimension of the irreducible representation S^{λ} of \mathfrak{S}_{n} indexed by λ. On the other hand, a rim-hook tableau of content μ is just a standard tableau. So the Murnaghan-Nakayama Rule implies the following:
Corollary 3. $\operatorname{dim} S^{\lambda}=f^{\lambda}$.

This begs the question of how to calculate f^{λ} (which you may have been wondering anyway). There is a beautiful formula in terms of hooks.

For each cell x in the Ferrers diagram of λ, let $h(x)$ denote its hook length: the number of cells due east of, due south of, or equal to x. In the following example, $h(x)=6$.

Theorem 4 (Hook Formula of Frame, Robinson, and Thrall (1954)). Let $\lambda \vdash n$. Then

$$
f^{\lambda}=\frac{n!}{\prod_{x \in \lambda} h(x)}
$$

Example 1. For $\lambda=(5,4,3,3,1) \vdash 16$ as above, here are the hook lengths:

9	7	6	3	1
7	5	4	1	
5	3	2		
4	2	1		
1				

Therefore

$$
f^{\lambda}=\frac{14!}{9 \cdot 7^{2} \cdot 6 \cdot 5^{2} \cdot 4^{2} \cdot 3^{2} \cdot 2^{2} \cdot 1^{4}}=2288
$$

Example 2. For $\lambda=(n, n) \vdash 2 n$, the hook lengths are
$n+1, n, n-1, \ldots, 2$ (top row),
$n, n-1, n-2, \ldots, 1$ (bottom row).
Therefore

$$
f^{\lambda}=\frac{(2 n)!}{(n+1)!n!}=\frac{1}{n+1}\binom{2 n}{n}
$$

which is the $n^{\text {th }}$ Catalan number (as we already know).

