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The RSK Correspondence

Definition 1. Let λ ⊢ n. A standard [Young] tableau of shape λ is a filling of the Ferrers diagram of λ with
the numbers 1, 2, . . . , n that is increasing left-to-right and top-to-bottom.

We write SY T (λ) for the set of all standard tableaux of shape λ, and set

fλ = |SY T (λ)|.

For example, if λ = (3, 3), then fλ = 5; the members of SY T (λ) are as follows:
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The RSK correspondence (for Robinson-Schensted-Knuth) constructs, for every permutation w ∈ Sn, a pair
RSK(w) = (P, Q) of standard tableaux of the same shape λ ⊢ n. The idea is to “row-insert” the numbers
w1, w2, . . . , wn into P one by one, and to use Q to record the order in which cells are added.

Example 1. Let w = 57214836 ∈ S8. We start with a pair (P, Q) of empty tableaux.

Step 1: Row-insert w1 = 5 into P . We do this in the obvious way. Since it’s the first cell added, we add a
cell containing 1 to Q.

(1a) P = Q =1 1

Step 2: Row-insert w2 = 7 into P . Since 5 < 7, we can do this by appending the new cell to the top row,
and adding a cell labeled 2 to Q to record where we’ve put the new cell in P .

(1b) P = Q = 215 7

Step 3: Row-insert w3 = 2 into P . This is a bit trickier. We can’t just append a 2 to the first row of P ,
because the result would not be a standard tableau. The 2 has to go in the top left cell, but that already
contains a 5. Therefore, the 2 “bumps” the 5 out of the first row into a new second row. Again, we record
the location of the new cell by adding a cell labeled 3 to Q.

(1c)

217

5

2

3

Step 4: Row-insert w4 = 1 into P . This time, the new 1 bumps the 2 out of the first row. The 2 has to go
into the second row, but again we can’t simply append it to the right. Instead, the 2 bumps the 5 out of the
second row into the (new) third row.
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Step 5: Row-insert w5 = 4 into P . The 4 bumps the 7 out of the first row. The 7, however, can comfortably
fit at the end of the second row, without any more bumping.
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Step 6: Row-insert w6 = 8 into P . The 8 just goes at the end of the first row.
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Step 7: Row-insert w7 = 3 into P . 3 bumps 4, and then 4 bumps 7.
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Step 8: Row-insert w8 = 6 into P . 6 bumps 8 into the second row.
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A crucial feature of the RSK correspondence is that it can be reversed. That is, given a pair (P, Q), we can
recover the permutation that gave rise to it.

Example 2. Suppose that we were given the pair of tableaux in (1h). What was the previous step? To get
the previous Q, we just delete the 8. As for P , the last cell added must be the one containing 8. This is in
the second row, so somebody must have bumped 8 out of the first row. That somebody must be the largest
number less than 8, namely 6. So 6 must have been the number inserted at this stage, and the previous pair
of tableaux must have been those in (1g).

Example 3. Suppose P is the standard tableau with 18 boxes shown on the left.
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Suppose in addition that we know that the cell labeled 16 was the last one added (because the corresponding
cell in Q contains an 18). Then the “bumping path” must be as shown on the right. (That is, the 16 was
bumped by the 15, which was bumped by the 13, and so on.) To find the previous tableau in the algorithm,
we push every number in the bumping path up and toss out the top one.

181285

11 13

15

1716

7

4

21

3

6

9

14

That is, we must have gotten the original tableau by row-inserting 10 into the tableau just shown.

Since the correspondence is reversible, we have the following fact:

Theorem 1. The RSK correspondence is a bijection

Sn
RSK

−−−−→
⋃

λ⊢n

SY T (λ) × SY T (λ).

Some Nice Properties of RSK

Here is an immediate consequence of Theorem 1:

Corollary 2.
∑

λ⊢n(fλ)2 = n!.

To confirm this for n = 3, here are all the SYT’s with 3 boxes:
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Note that f (3) = f (1,1,1) = 1 and f (2,1) = 2, and 12 + 12 + 22 = 6 = 3!. This calculation ought to look
familiar!

Another neat fact about the RSK correspondence is this:

Proposition 3. Let w ∈ Sn. If RSK(w) = (P, Q), then RSK(w−1) = (Q, P ).

In particular, the number of involutions in Sn is
∑

λ⊢n

fλ.



Generalized RSK and Schur Functions

The RSK correspondence can be extended to obtain more general tableaux than just SYT’s. We can think
of a permutation in two-line notation, i.e.,

57214836 =

(

1 2 3 4 5 6 7 8
5 7 2 1 4 8 3 6

)

.

What if we allowed “generalized permutations”, i.e., things of the form

(2) w =

(

a

b

)

=

(

a1 a2 · · · an

b1 b2 · · · bn

)

where ai, bi ∈ [n], and the ordered pairs (a1, b1), . . . , (an, bn) are in lexicographic order, but repeats are
allowed?

Example 4. Consider the generalized permutation

w =

(

1 1 2 4 4 4 5 5 5
2 4 1 1 3 3 2 2 4

)

.

We can row-insert the elements of the bottom row into a tableau P while recording the elements of the top
row in a tableau Q:

P = Q =1 1
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The tableaux P, Q we get in this way will always be weakly increasing eastward and strictly increasing
southward—that is, they will be column-strict tableaux. Moreover, their weights will be

xP = xa1
· · ·xan

, xQ = xb1 · · ·xbn
.

Meanwhile, a generalized permutation w as in (2) can be encoded by an n × n matrix M = [mij ] ∈ N
n×n

with
mij = #{h | ah = i, bh = i}.

For example, the generalized permutation w of Example 4 corresponds to the integer matrix












0 1 0 1 0
1 0 0 0 0
0 0 0 0 0
1 0 2 0 0
0 2 0 1 0
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Therefore,
∏

i,j≥1
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=
∑
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∏
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=
∑

n∈N
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b)

xa1
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=
∑
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P,Q ∈ SY T (λ)
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∑

Q∈SY T (λ)

yQ



 =
∑

λ

sλ(x)sλ(y).

Corollary 4. The Schur functions form an orthonormal Z-basis for Λ under the Hall inner product.


