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Omega

Last time, we saw (broadly) how to use triangularity arguments to show that {eλ}, {sλ}, and {pλ} are bases
for the ring Λ of symmetric functions (the first two Z-bases, the second two Q-bases). Triangularity does
not work for the basis {hλ}, because the complete homogeneous symmetric functions have so many terms.
For example, in degree 3,
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h21

h111



 =





1 1 1
1 2 3
1 3 6
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and it is not obvious that the base-change matrix has determinant 1 (although it does). We need a new tool
to prove that {hλ} is a Z-basis.

Define a ring endomorphism ω : Λ → Λ by ω(ei) = hi for all i, so that ω(eλ) = hλ. This is well-defined since
the elementary symmetric functions are algebraically independent (recall that Λ ∼= R[e1, e2, . . . ]).

Proposition 1. ω(ω(f)) = f for all f ∈ Λ. In particular, the map ω is a ring automorphism.

Proof. Recall the generating functions

E(t) =
∑

k≥0

ektk =
∏

n≥1

(1 + txn),(1)

H(t) =
∑

k≥0

hktk =
∏

n≥1

(1 − txn)−1.(2)

Using the sum formulas in (1) and (2) gives

(3) E(t)H(−t) =
∑

n≥0

n
∑

k=0

ektkhn−k(−t)n−k =
∑

n≥0

tn
n
∑

k=0

(−1)n−kekhn−k.

On the other hand, the product formulas in (1) and (2) say that E(t)H(−t) = 1. Equating coefficients of tn

gives

(4)

n
∑

k=0

(−1)n−kekhn−k = 0 (∀n ≥ 1).

Applying ω, we find that

0 =

n
∑

k=0

(−1)n−kω(ek)ω(hn−k)

=

n
∑

k=0

(−1)n−khkω(hn−k)

=

n
∑

k=0

(−1)khn−kω(hk)

= (−1)n

n
∑

k=0

(−1)n−khn−kω(hk)

and comparing this last expression with (4) gives ω(hk) = ek. �

Corollary 2. {hλ} is a graded Z-basis for Λ. Moreover, ΛR
∼= R[h1, h2, . . . ].



By the way, the equation (4) can be used recursively to express the ek’s as integer polynomials in the hk’s,
and vice versa.

A Bunch of Identities

The Cauchy kernel is the formal power series

Ω =
∏

i,j≥1

(1 − xiyj)
−1.

As we’ll see, the Cauchy kernel can be expanded in many different ways in terms of symmetric functions in
the variable sets {xi} and {yj}.

For a partition λ ⊢ n, let mi be the number of i’s in λ, and define

zλ = 1m1m1! 2
m2m2! · · · , ελ = (−1)m2+m4+···.

For example, if λ = (3, 3, 2, 1, 1, 1) then zλ = 133! 211! 322! == 216. The notation comes from the fact
that this is the size of the centralizer of a permutation σ ∈ Sn with cycle-shape λ (that is, the group of
permutations that commute with σ). Meanwhile, ελ is just the sign of a permutation with cycle-shape λ.

Proposition 3. We have the identities

∏

i,j≥1

(1 − xiyj)
−1 =

∑

λ

hλ(x)mλ(y) =
∑

λ

pλ(x)pλ(y)

zλ

,(5)

∏

i,j≥1

(1 + xiyj) =
∑

λ

eλ(x)mλ(y) =
∑

λ

ελ

pλ(x)pλ(y)

zλ

,(6)

where the sums run over all partitions λ.

Proof. For the first identity in (5),

∏

i,j≥1

(1 − xiyj)
−1 =

∏

j≥1





∏

i≥1

(1 − xit)
−1
∣

∣

∣

t=yj





=
∏

j≥1





∑

k≥0

hk(x)tk
∣

∣

∣

t=yj





=
∏

j≥1

∑

k≥0

hk(x) yk
j(7)

=
∑

λ

hk(x)mk(y)

(since the coefficient on the monomial yk1

1 yk2

2 · · · in (7) is hk1
hk2

· · · ).

For the second identity in (5), we need some more trickery. Recall that

log(1 + q) =
∑

n≥1

(−1)n+1 qn

n
= q − q2

2
+

q3

3
− · · ·



Therefore,

log
∏

i,j≥1

(1 − xiyj)
−1 = − log

∏

i,j≥1

(1 − xiyj) = −
∑

i,j≥1

log(1 − xiyj)

=
∑

i,j≥1

∑

n≥1

xn
i yn

j

n
=
∑

n≥1

1

n

∑

i,j≥1

xn
i yn

j

=
∑

n≥1

pn(x)pn(y)

n

and

Ω = exp





∑

n≥1

pn(x)pn(y)

n





=
∑

k≥0

1

k!





∑

n≥1

pn(x)pn(y)

n





n

=
∑

k≥0

1

k!

[

∑

λ⊢k

(

k

λ

)(

p1(x)p1(y)

1

)m1
(

p2(x)p2(y)

2

)m2

· · ·
]

=
∑

λ

pλ(x)pλ(y)

zλ

. �

The proofs of the identities in (6) are analogous, and left to the reader.

Corollary 4. We have

hn =
∑

λ⊢n

pλ

zλ

;(8)

en =
∑

λ⊢n

ελ

pλ

zλ

; and(9)

ω(pλ) = ελpλ.(10)

Proof. For (8), we start with the identity of (5):
∑

λ

hλ(x)mλ(y) =
∑

λ

pλ(x)pλ(y)

zλ

.

Set y1 = t, and yk = 0 for all k > 1. This kills all terms on the left side for which λ has more than one part,
so we get

∑

λ=(n)

hn(x)tn =
∑

λ

pλ(x)t|λ|

zλ

and extracting the coefficient of tn gives (8).

Starting with (6) and doing the same thing yields (9).

As Brian pointed out, you can’t obtain (10) just by applying ω to (8) and comparing with (9), as I had
mistakenly claimed in class. Here is a better reason. In what follows, ω is going to act on the xi’s while



leaving the yj ’s alone. Using (5) and (6), we obtain

∑

λ

pλ(x) pλ(y)

zλ

=
∑

λ

hλ(x)mλ(y) = ω

(

∑

λ

eλ(x)mλ(y)

)

= ω

(

∑

λ

ελ

pλ(x)pλ(y)

zλ

)

=
∑

λ

ελω(pλ(x)) pλ(y)

zλ

and equating coefficients of pλ(y)/zλ, as shown, yields the desired result. �

The Hall Inner Product

Definition 1. The Hall inner product 〈·, ·〉 on ΛQ is defined by declaring {hλ} and {mµ} to be dual
bases:

〈hλ, mµ〉 = δλµ

• Two bases {uλ}, {vλ} are dual under the Hall inner product if and only if
∏

i,j≥1

1

1 − xiyj

=
∑

λ

uλvλ.

• In particular,

{

pλ√
zλ

| λ ⊢ n

}

is an orthonormal basis for ΛR,n, so 〈·, ·〉 is an inner product — that is, a

nondegenerate bilinear form.

• The involution ω is an isometry, i.e., 〈a, b〉 = 〈ω(a), ω(b)〉.

It sure would be nice to have an orthonormal basis for ΛZ. In fact, the Schur functions are such a thing.
The proof of this statement requires a marvelous combinatorial tool called the RSK correspondence (for
Robinson, Schensted and Knuth).


