Monday 4/28

Omega

Last time, we saw (broadly) how to use triangularity arguments to show that $\{e_{\lambda}\}$, $\{s_{\lambda}\}$, and $\{p_{\lambda}\}$ are bases for the ring Λ of symmetric functions (the first two \mathbb{Z} -bases, the second two \mathbb{Q} -bases). Triangularity does not work for the basis $\{h_{\lambda}\}$, because the complete homogeneous symmetric functions have so many terms. For example, in degree 3,

$$\begin{bmatrix} h_3 \\ h_{21} \\ h_{111} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix} \begin{bmatrix} m_3 \\ m_{21} \\ m_{111} \end{bmatrix}$$

and it is not obvious that the base-change matrix has determinant 1 (although it does). We need a new tool to prove that $\{h_{\lambda}\}$ is a \mathbb{Z} -basis.

Define a ring endomorphism $\omega : \Lambda \to \Lambda$ by $\omega(e_i) = h_i$ for all *i*, so that $\omega(e_\lambda) = h_\lambda$. This is well-defined since the elementary symmetric functions are algebraically independent (recall that $\Lambda \cong R[e_1, e_2, \ldots]$).

Proposition 1. $\omega(\omega(f)) = f$ for all $f \in \Lambda$. In particular, the map ω is a ring automorphism.

Proof. Recall the generating functions

(1)
$$E(t) = \sum_{k \ge 0} e_k t^k = \prod_{n \ge 1} (1 + tx_n),$$

(2)
$$H(t) = \sum_{k \ge 0} h_k t^k = \prod_{n \ge 1} (1 - tx_n)^{-1}$$

Using the sum formulas in (1) and (2) gives

(3)
$$E(t)H(-t) = \sum_{n\geq 0} \sum_{k=0}^{n} e_k t^k h_{n-k} (-t)^{n-k} = \sum_{n\geq 0} t^n \sum_{k=0}^{n} (-1)^{n-k} e_k h_{n-k} (-t)^{n-k} e_k h_{n-k$$

On the other hand, the product formulas in (1) and (2) say that E(t)H(-t) = 1. Equating coefficients of t^n gives

(4)
$$\sum_{k=0}^{n} (-1)^{n-k} e_k h_{n-k} = 0 \qquad (\forall n \ge 1).$$

Applying ω , we find that

$$0 = \sum_{k=0}^{n} (-1)^{n-k} \omega(e_k) \omega(h_{n-k})$$

= $\sum_{k=0}^{n} (-1)^{n-k} h_k \omega(h_{n-k})$
= $\sum_{k=0}^{n} (-1)^k h_{n-k} \omega(h_k)$
= $(-1)^n \sum_{k=0}^{n} (-1)^{n-k} h_{n-k} \omega(h_k)$

and comparing this last expression with (4) gives $\omega(h_k) = e_k$. Corollary 2. $\{h_\lambda\}$ is a graded \mathbb{Z} -basis for Λ . Moreover, $\Lambda_R \cong R[h_1, h_2, \ldots]$. By the way, the equation (4) can be used recursively to express the e_k 's as integer polynomials in the h_k 's, and vice versa.

A Bunch of Identities

The Cauchy kernel is the formal power series

$$\Omega = \prod_{i,j\geq 1} (1 - x_i y_j)^{-1}.$$

As we'll see, the Cauchy kernel can be expanded in many different ways in terms of symmetric functions in the variable sets $\{x_i\}$ and $\{y_j\}$.

For a partition $\lambda \vdash n$, let m_i be the number of *i*'s in λ , and define

$$z_{\lambda} = 1^{m_1} m_1! 2^{m_2} m_2! \cdots, \qquad \varepsilon_{\lambda} = (-1)^{m_2 + m_4 + \cdots}.$$

For example, if $\lambda = (3, 3, 2, 1, 1, 1)$ then $z_{\lambda} = 1^3 3! 2^1 1! 3^2 2! = 216$. The notation comes from the fact that this is the size of the centralizer of a permutation $\sigma \in \mathfrak{S}_n$ with cycle-shape λ (that is, the group of permutations that commute with σ). Meanwhile, ε_{λ} is just the sign of a permutation with cycle-shape λ .

Proposition 3. We have the identities

(5)
$$\prod_{i,j\geq 1} (1-x_i y_j)^{-1} = \sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y) = \sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}$$

(6)
$$\prod_{i,j\geq 1} (1+x_i y_j) = \sum_{\lambda} e_{\lambda}(x) m_{\lambda}(y) = \sum_{\lambda} \varepsilon_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}$$

where the sums run over all partitions λ .

Proof. For the first identity in (5),

(7)

$$\prod_{i,j\geq 1} (1-x_iy_j)^{-1} = \prod_{j\geq 1} \left(\prod_{i\geq 1} (1-x_it)^{-1} \Big|_{t=y_j} \right)$$

$$= \prod_{j\geq 1} \left(\sum_{k\geq 0} h_k(x)t^k \Big|_{t=y_j} \right)$$

$$= \prod_{j\geq 1} \sum_{k\geq 0} h_k(x) y_j^k$$

$$= \sum_{\lambda} h_k(x)m_k(y)$$

(since the coefficient on the monomial $y_1^{k_1}y_2^{k_2}\cdots$ in (7) is $h_{k_1}h_{k_2}\cdots$). For the second identity in (5), we need some more trickery. Recall that

$$\log(1+q) = \sum_{n \ge 1} (-1)^{n+1} \frac{q^n}{n} = q - \frac{q^2}{2} + \frac{q^3}{3} - \cdots$$

Therefore,

$$\log \prod_{i,j\geq 1} (1-x_i y_j)^{-1} = -\log \prod_{i,j\geq 1} (1-x_i y_j) = -\sum_{i,j\geq 1} \log(1-x_i y_j)$$
$$= \sum_{i,j\geq 1} \sum_{n\geq 1} \frac{x_i^n y_j^n}{n} = \sum_{n\geq 1} \frac{1}{n} \sum_{i,j\geq 1} x_i^n y_j^n$$
$$= \sum_{n\geq 1} \frac{p_n(x) p_n(y)}{n}$$

and

$$\Omega = \exp\left(\sum_{n\geq 1} \frac{p_n(x)p_n(y)}{n}\right)$$
$$= \sum_{k\geq 0} \frac{1}{k!} \left(\sum_{n\geq 1} \frac{p_n(x)p_n(y)}{n}\right)^n$$
$$= \sum_{k\geq 0} \frac{1}{k!} \left[\sum_{\lambda\vdash k} \binom{k}{\lambda} \left(\frac{p_1(x)p_1(y)}{1}\right)^{m_1} \left(\frac{p_2(x)p_2(y)}{2}\right)^{m_2} \cdots\right]$$
$$= \sum_{\lambda} \frac{p_\lambda(x)p_\lambda(y)}{z_\lambda}.$$

The proofs of the identities in (6) are analogous, and left to the reader.

Corollary 4. We have

(8)
$$h_n = \sum_{\lambda \vdash n} \frac{p_\lambda}{z_\lambda} ;$$

(9)
$$e_n = \sum_{\lambda \vdash n} \varepsilon_\lambda \frac{p_\lambda}{z_\lambda}; \quad and$$

(10)
$$\omega(p_{\lambda}) = \varepsilon_{\lambda} p_{\lambda}.$$

Proof. For (8), we start with the identity of (5):

$$\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y) = \sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}.$$

Set $y_1 = t$, and $y_k = 0$ for all k > 1. This kills all terms on the left side for which λ has more than one part, so we get

$$\sum_{\lambda=(n)} h_n(x) t^n = \sum_{\lambda} \frac{p_{\lambda}(x) t^{|\lambda|}}{z_{\lambda}}$$

and extracting the coefficient of t^n gives (8).

Starting with (6) and doing the same thing yields (9).

As Brian pointed out, you can't obtain (10) just by applying ω to (8) and comparing with (9), as I had mistakenly claimed in class. Here is a better reason. In what follows, ω is going to act on the x_i 's while

leaving the y_j 's alone. Using (5) and (6), we obtain

$$\sum_{\lambda} \frac{p_{\lambda}(x)}{z_{\lambda}} p_{\lambda}(y) = \sum_{\lambda} h_{\lambda}(x)m_{\lambda}(y) = \omega \left(\sum_{\lambda} e_{\lambda}(x)m_{\lambda}(y)\right) = \omega \left(\sum_{\lambda} \varepsilon_{\lambda} \frac{p_{\lambda}(x)p_{\lambda}(y)}{z_{\lambda}}\right)$$
$$= \sum_{\lambda} \frac{\varepsilon_{\lambda}\omega(p_{\lambda}(x))}{z_{\lambda}} p_{\lambda}(y)$$

and equating coefficients of $p_{\lambda}(y)/z_{\lambda}$, as shown, yields the desired result.

The Hall Inner Product

Definition 1. The Hall inner product $\langle \cdot, \cdot \rangle$ on $\Lambda_{\mathbb{Q}}$ is defined by declaring $\{h_{\lambda}\}$ and $\{m_{\mu}\}$ to be dual bases:

$$\langle h_{\lambda}, m_{\mu} \rangle = \delta_{\lambda\mu}$$

• Two bases $\{u_{\lambda}\}, \{v_{\lambda}\}$ are dual under the Hall inner product if and only if

$$\prod_{i,j\geq 1} \frac{1}{1-x_i y_j} = \sum_{\lambda} u_{\lambda} v_{\lambda}.$$

- In particular, $\left\{\frac{p_{\lambda}}{\sqrt{z_{\lambda}}} \mid \lambda \vdash n\right\}$ is an orthonormal basis for $\Lambda_{\mathbb{R},n}$, so $\langle \cdot, \cdot \rangle$ is an inner product that is, a nondegenerate bilinear form.
- The involution ω is an isometry, i.e., $\langle a, b \rangle = \langle \omega(a), \omega(b) \rangle$.

It sure would be nice to have an orthonormal basis for $\Lambda_{\mathbb{Z}}$. In fact, the Schur functions are such a thing. The proof of this statement requires a marvelous combinatorial tool called the **RSK correspondence** (for Robinson, Schensted and Knuth).