## Monday 4/28

## Omega

Last time, we saw (broadly) how to use triangularity arguments to show that $\left\{e_{\lambda}\right\},\left\{s_{\lambda}\right\}$, and $\left\{p_{\lambda}\right\}$ are bases for the ring $\Lambda$ of symmetric functions (the first two $\mathbb{Z}$-bases, the second two $\mathbb{Q}$-bases). Triangularity does not work for the basis $\left\{h_{\lambda}\right\}$, because the complete homogeneous symmetric functions have so many terms. For example, in degree 3 ,

$$
\left[\begin{array}{c}
h_{3} \\
h_{21} \\
h_{111}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 6
\end{array}\right]\left[\begin{array}{c}
m_{3} \\
m_{21} \\
m_{111}
\end{array}\right]
$$

and it is not obvious that the base-change matrix has determinant 1 (although it does). We need a new tool to prove that $\left\{h_{\lambda}\right\}$ is a $\mathbb{Z}$-basis.

Define a ring endomorphism $\omega: \Lambda \rightarrow \Lambda$ by $\omega\left(e_{i}\right)=h_{i}$ for all $i$, so that $\omega\left(e_{\lambda}\right)=h_{\lambda}$. This is well-defined since the elementary symmetric functions are algebraically independent (recall that $\Lambda \cong R\left[e_{1}, e_{2}, \ldots\right]$ ).
Proposition 1. $\omega(\omega(f))=f$ for all $f \in \Lambda$. In particular, the map $\omega$ is a ring automorphism.

Proof. Recall the generating functions

$$
\begin{align*}
& E(t)=\sum_{k \geq 0} e_{k} t^{k}=\prod_{n \geq 1}\left(1+t x_{n}\right)  \tag{1}\\
& H(t)=\sum_{k \geq 0} h_{k} t^{k}=\prod_{n \geq 1}\left(1-t x_{n}\right)^{-1} \tag{2}
\end{align*}
$$

Using the sum formulas in (1) and (2) gives

$$
\begin{equation*}
E(t) H(-t)=\sum_{n \geq 0} \sum_{k=0}^{n} e_{k} t^{k} h_{n-k}(-t)^{n-k}=\sum_{n \geq 0} t^{n} \sum_{k=0}^{n}(-1)^{n-k} e_{k} h_{n-k} \tag{3}
\end{equation*}
$$

On the other hand, the product formulas in (11) and (2) say that $E(t) H(-t)=1$. Equating coefficients of $t^{n}$ gives

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n-k} e_{k} h_{n-k}=0 \quad(\forall n \geq 1) \tag{4}
\end{equation*}
$$

Applying $\omega$, we find that

$$
\begin{aligned}
0 & =\sum_{k=0}^{n}(-1)^{n-k} \omega\left(e_{k}\right) \omega\left(h_{n-k}\right) \\
& =\sum_{k=0}^{n}(-1)^{n-k} h_{k} \omega\left(h_{n-k}\right) \\
& =\sum_{k=0}^{n}(-1)^{k} h_{n-k} \omega\left(h_{k}\right) \\
& =(-1)^{n} \sum_{k=0}^{n}(-1)^{n-k} h_{n-k} \omega\left(h_{k}\right)
\end{aligned}
$$

and comparing this last expression with (4) gives $\omega\left(h_{k}\right)=e_{k}$.
Corollary 2. $\left\{h_{\lambda}\right\}$ is a graded $\mathbb{Z}$-basis for $\Lambda$. Moreover, $\Lambda_{R} \cong R\left[h_{1}, h_{2}, \ldots\right]$.

By the way, the equation (4) can be used recursively to express the $e_{k}$ 's as integer polynomials in the $h_{k}$ 's, and vice versa.

## A Bunch of Identities

The Cauchy kernel is the formal power series

$$
\Omega=\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1}
$$

As we'll see, the Cauchy kernel can be expanded in many different ways in terms of symmetric functions in the variable sets $\left\{x_{i}\right\}$ and $\left\{y_{j}\right\}$.

For a partition $\lambda \vdash n$, let $m_{i}$ be the number of $i$ 's in $\lambda$, and define

$$
z_{\lambda}=1^{m_{1}} m_{1}!2^{m_{2}} m_{2}!\cdots, \quad \varepsilon_{\lambda}=(-1)^{m_{2}+m_{4}+\cdots}
$$

For example, if $\lambda=(3,3,2,1,1,1)$ then $z_{\lambda}=1^{3} 3!2^{1} 1!3^{2} 2!==216$. The notation comes from the fact that this is the size of the centralizer of a permutation $\sigma \in \mathfrak{S}_{n}$ with cycle-shape $\lambda$ (that is, the group of permutations that commute with $\sigma$ ). Meanwhile, $\varepsilon_{\lambda}$ is just the sign of a permutation with cycle-shape $\lambda$.

Proposition 3. We have the identities

$$
\begin{align*}
\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1} & =\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}  \tag{5}\\
\prod_{i, j \geq 1}\left(1+x_{i} y_{j}\right) & =\sum_{\lambda} e_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} \varepsilon_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}} \tag{6}
\end{align*}
$$

where the sums run over all partitions $\lambda$.

Proof. For the first identity in (5),

$$
\begin{align*}
\prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1} & =\prod_{j \geq 1}\left(\left.\prod_{i \geq 1}\left(1-x_{i} t\right)^{-1}\right|_{t=y_{j}}\right) \\
& =\prod_{j \geq 1}\left(\left.\sum_{k \geq 0} h_{k}(x) t^{k}\right|_{t=y_{j}}\right) \\
& =\prod_{j \geq 1} \sum_{k \geq 0} h_{k}(x) y_{j}^{k}  \tag{7}\\
& =\sum_{\lambda} h_{k}(x) m_{k}(y)
\end{align*}
$$

(since the coefficient on the monomial $y_{1}^{k_{1}} y_{2}^{k_{2}} \cdots$ in (7) is $h_{k_{1}} h_{k_{2}} \cdots$ ).
For the second identity in (5), we need some more trickery. Recall that

$$
\log (1+q)=\sum_{n \geq 1}(-1)^{n+1} \frac{q^{n}}{n}=q-\frac{q^{2}}{2}+\frac{q^{3}}{3}-\cdots
$$

Therefore,

$$
\begin{aligned}
\log \prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)^{-1} & =-\log \prod_{i, j \geq 1}\left(1-x_{i} y_{j}\right)=-\sum_{i, j \geq 1} \log \left(1-x_{i} y_{j}\right) \\
& =\sum_{i, j \geq 1} \sum_{n \geq 1} \frac{x_{i}^{n} y_{j}^{n}}{n}=\sum_{n \geq 1} \frac{1}{n} \sum_{i, j \geq 1} x_{i}^{n} y_{j}^{n} \\
& =\sum_{n \geq 1} \frac{p_{n}(x) p_{n}(y)}{n}
\end{aligned}
$$

and

$$
\begin{aligned}
\Omega & =\exp \left(\sum_{n \geq 1} \frac{p_{n}(x) p_{n}(y)}{n}\right) \\
& =\sum_{k \geq 0} \frac{1}{k!}\left(\sum_{n \geq 1} \frac{p_{n}(x) p_{n}(y)}{n}\right)^{n} \\
& =\sum_{k \geq 0} \frac{1}{k!}\left[\sum_{\lambda \vdash k}\binom{k}{\lambda}\left(\frac{p_{1}(x) p_{1}(y)}{1}\right)^{m_{1}}\left(\frac{p_{2}(x) p_{2}(y)}{2}\right)^{m_{2}} \cdots\right] \\
& =\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}
\end{aligned}
$$

The proofs of the identities in (6) are analogous, and left to the reader.
Corollary 4. We have

$$
\begin{align*}
h_{n} & =\sum_{\lambda \vdash n} \frac{p_{\lambda}}{z_{\lambda}} ;  \tag{8}\\
e_{n} & =\sum_{\lambda \vdash n} \varepsilon_{\lambda} \frac{p_{\lambda}}{z_{\lambda}} ; \quad \text { and }  \tag{9}\\
\omega\left(p_{\lambda}\right) & =\varepsilon_{\lambda} p_{\lambda} . \tag{10}
\end{align*}
$$

Proof. For (8), we start with the identity of (5):

$$
\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}
$$

Set $y_{1}=t$, and $y_{k}=0$ for all $k>1$. This kills all terms on the left side for which $\lambda$ has more than one part, so we get

$$
\sum_{\lambda=(n)} h_{n}(x) t^{n}=\sum_{\lambda} \frac{p_{\lambda}(x) t^{|\lambda|}}{z_{\lambda}}
$$

and extracting the coefficient of $t^{n}$ gives (8).
Starting with (6) and doing the same thing yields (9).
As Brian pointed out, you can't obtain (10) just by applying $\omega$ to (8) and comparing with (91), as I had mistakenly claimed in class. Here is a better reason. In what follows, $\omega$ is going to act on the $x_{i}$ 's while
leaving the $y_{j}$ 's alone. Using (5) and (6), we obtain

$$
\begin{aligned}
\sum_{\lambda} \frac{p_{\lambda}(x)}{z_{\lambda}} p_{\lambda}(y) & =\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\omega\left(\sum_{\lambda} e_{\lambda}(x) m_{\lambda}(y)\right)=\omega\left(\sum_{\lambda} \varepsilon_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}\right) \\
& =\sum_{\lambda} \frac{\varepsilon_{\lambda} \omega\left(p_{\lambda}(x)\right) p_{\lambda}(y)}{z_{\lambda}}
\end{aligned}
$$

and equating coefficients of $p_{\lambda}(y) / z_{\lambda}$, as shown, yields the desired result.

## The Hall Inner Product

Definition 1. The Hall inner product $\langle\cdot, \cdot\rangle$ on $\Lambda_{\mathbb{Q}}$ is defined by declaring $\left\{h_{\lambda}\right\}$ and $\left\{m_{\mu}\right\}$ to be dual bases:

$$
\left\langle h_{\lambda}, m_{\mu}\right\rangle=\delta_{\lambda \mu}
$$

- Two bases $\left\{u_{\lambda}\right\},\left\{v_{\lambda}\right\}$ are dual under the Hall inner product if and only if

$$
\prod_{i, j \geq 1} \frac{1}{1-x_{i} y_{j}}=\sum_{\lambda} u_{\lambda} v_{\lambda}
$$

- In particular, $\left\{\left.\frac{p_{\lambda}}{\sqrt{z_{\lambda}}} \right\rvert\, \lambda \vdash n\right\}$ is an orthonormal basis for $\Lambda_{\mathbb{R}, n}$, so $\langle\cdot, \cdot\rangle$ is an inner product - that is, a nondegenerate bilinear form.
- The involution $\omega$ is an isometry, i.e., $\langle a, b\rangle=\langle\omega(a), \omega(b)\rangle$.

It sure would be nice to have an orthonormal basis for $\Lambda_{\mathbb{Z}}$. In fact, the Schur functions are such a thing. The proof of this statement requires a marvelous combinatorial tool called the RSK correspondence (for Robinson, Schensted and Knuth).

